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1. Introduction

The function § defined for R(s) > 0 by the Dirichlet series

-y
n:l 2n —1)s
has the integral representation
+o00 +oo
1 et 1 1 et 1—e 2
= 57t dt = Li t5=tat
Als) I'(s) / 1+e 2t I'(s) / 1—e 2t 10< 2 >
0 0
where Lij, denotes the classical polylogarithm Liy(z) = >, Z—k One may also observe
that
—+o0
! / i (L—e )5 dt = (2—27°)sC(s + 1)
I'(s) I—e2t ! '
0

These preliminary observations lead us to introduce two families of functions ay and S
defined by the Mellin transforms

+oo
1 et . —21) ys—1
ag(s) = TG) / =7 Lip(1 —e ?)t*~"dt for R(s) > 0and k > 1,
0
+o00
1 et 1—e 2
_ Li s—1 f >
Br () TG / =T 1k( 5 )t dt for R(s) > 0 and k > 0,
0
so that

ar(s) =272 —1)s¢(s+1), and Bo(s) = B(s).

We point out that the function ai(s) introduced here is (apart from a factor 27%)
nothing less than the special value at = 1/2 of the (generalized) Arakawa—Kaneko
zeta function & (s,z) previously defined in [6], whereas the function S(s) is a new
function of the same type. Let us remind that the original Arakawa—Kaneko zeta function
&k(s) = &k(s, 1) was introduced by Arakawa and Kaneko in 1999 (cf. [1]) and formed the
subject of recent works and further generalizations (cf. [3,6,12]).

In the case where s is a positive integer, the special values ay(s) and S (s) can be
expressed by means of certain inverse binomial series studied by Kalmykov and Davydy-
chev in relation to the Feynman diagrams (cf. [7]). More precisely, we obtain the following
identities:
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> 92n—1

1 j m
k(m+1) Z (Prynk+t PO, ...,09), ... ,0im) (for k > 1),

2n71

me(o,gl), L, 09, 0l (for k > 0),
n

M?E I

Br(m+1) =

n=1

where P, is the modified Bell polynomial of order m and O,(zj ) = >ory ﬁ is the
“odd” harmonic number of order j. For small values of k and s, these series may be
explicitly evaluated in terms of zeta values and other related constants which are real
periods in the sense of Kontsevich and Zagier (cf. [8]). For instance, we have the following

evaluations:

n=1 (n

X 52n—1 4
(@)= 2(2n) % 7032 — = —8G(1)

n=1 n

where we use the following notation:

n

1
On =0 =3 5
=4

G:

£(2) is the Catalan constant,

Z On is the Ramanujan constant (cf. [2, p. 257], [11]).

The evaluation of «(2) above was given previously in [5], whereas the following ones are
new. In particular, the two last relations provide new interesting formulae for Ramanu-
jan’s constant G(1) as explained in detail in Section 6.

2. Bell polynomials and “odd” harmonic numbers

Definition 1. The modified Bell polynomials are the polynomials

Pm EQ[xlal?)"'vxm]
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defined for all natural numbers m by Py = 1 and the generating function

9 k oo
exp(Zxk%> = Z Pr(z1,...,2m)2™.
k=1 m=0

The general explicit expression for P, is
kl k2 knz
Z 1 x1 o Tm
Pm(x17"'7xm): —<—> <—) -"(— .
lkol oo |
AT A 2 m

Example 1. For the first values of m, one has

Py =1,
Py =z,
1,
P2 = 51’1 + 5(1327
1 1 1
P3 = gl’? —+ §$1$2 + §I3,
1 1 1 1 1
Py = ﬂx‘f + Zx%xg + gxg + 32173 + 1%

Notation. For s € C with £(s) > 1 and an integer n > 1, let 0% be the “odd” harmonic
sum:

T
0% =
k=1

3

1

- — oW
2E 1) and O, :=0," .

In the notation of [6], one has

1

0 =27*n) (1/2) with h{)(z) = : :

§ nl1(1/2) D0 =2 Gy
Proposition 1. For all integers m >0 and n > 1,
2n +oo

m n(n) - -2 n—1t"

P(On,...,00™) = S /e f(1—e?) . (1)
0

Proof. Since
P(Oyp,...,00) =27mp, (K1 (1/2),..., 0™ (1/2)),

formula (1) follows from Lemma 1 of [6] in the special case x = 1/2. To be self-contained,
we give a direct proof below. We show that
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+oo

00 n . 2n
Z Pm(On, ceey O,(lm))zm = H QjQiIi = ;2(7;1)1 / etz(l — e*%)nfle*tdt,

m=0 j=1 0

and then we shall obtain formula (1) by identification of the coefficients of 2™. On one
side, one has

n
:exp(— log(l—Q.zl>>
i=1 J
n —+oo k
z
(j_l o k1)
—+oo k n
z 1
—on( S5 )
(k—l k j=1 (25 1)

thus
n . (oo} (oo}
;-1 w2\ _ (m)\ ,m
On the other side, one has

n

2j—1 1 T(n+1/2)T(—2/2+1/2)
Eijuz_ﬁ I(n—2/2+1/2)
_ 1 I(n+1/2) IF'(n)I'(—2/2+1/2)
v I'(n) I'in—2/2+1/2)

S

\V]

2n
= - <n )B(n, —2/2+1/2),
where B is the Euler Beta function. Thus, for 0 < |z| < 1, one has

n

1

;-1 ”(2:) n—1 —2/2-1/2

H2j—1—z_ o2 /u (1 —u) du,
0

j=1

2

and making the change of variable u = 1 — e~2!, one then obtains:

n +oo

2j—1 n(*") ool _
e R
Jj=1 0
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and finally
0 2n oo
Z P, (On, ey Oﬁm))zm = ;LQ(nn_)l / etz(l — e*2t)nfle*tdt.
m=0 0

3. The operators D and S, and the Euler series transformation

Definition 2. Let a be an analytic function in P = {z | R(x) > 1} defined by

+oo
a(z) = / e~ "a(t)dt for all x € P,
0

where @ € C1([0, +00]) is such that there exists o < 1, and C' > 0 with
[a(t)| < Ce*  for all t €0, +ool.
For x € P, we define the functions « — D(a)(z) and z — S(a)(x) by

“+ o0

D(a)(z) = / (1) ),
0
+o0 4

S(a)(z) = £ (1-e™a) dr.
0/1 e

Proposition 2. For all integers n > 1, one has

S(a)(n) = alk),

k=1

n
and for all integers n > 0,

D(a)(n+1)=>"(~1)* (Z) a(k+1).

k=0

Proof. The first relation follows from

T (nry e n
S(a)(n) = / %a(t)dt: / (Ze_kt>a(t)dt22/

0 0

103
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The second relation results from the binomial expansion of (1 —e™*)" since

+oo

D(a)(n +1) = / (1 — )" at)dt
0
= Q?Ltgz(mk(z>e““ayﬁ
__éé(nk(z> Qfetemﬁ@ﬁﬁ

- g%(—l)’f (Z) ak+1). O

Example 2. For s with R(s) > 1 and « € P, let

1
o?) = Gp =1y
One has
+o00 +oo +
t —1 eé(i)\s*l
— —(2z—1)t dt = / —at 2 dt
a(z) / I'(s) ¢ Tor(s)
Thus, for all integers n > 1,
D(a)(n) = +/°Oe 2 (1 — e—t)n—l (%)Sildt _ :706 t(l _ —zt)n—l ts—1 it @)
= 2I(s) I'(s)
0 0
By (1), one has
+oo
n_1tm 22n—1
/ (1) dt = me(on, L., 0m).
0 n

Thus, if s is an integer, s = m + 1 with m > 0, then we get for all integers n > 1 the
following formula

D<1>(n) = &;Pm(on,...,ogm). (3)

n(3)
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Lemma 1. The operators D and S are linked by the following relation:

D(ES(G)> - iD(a) for all z € P.

o= Tl

integrating by parts, we get

%S(a)(x) = :/mewt< / : i_:_u&(U) du) dt,

this gives
1 T e
LS@(0) = [ ) du
t
Thus

+00
D(ls(a)> (z) = / Li—ey—" awdt = p@)@). o
T 1—et x
0
Remark 1. The relation between D and S given above is a reformulation of a result that
we called the “harmonic property” in an earlier paper (where the operator S is denoted
by A): cf. [3, Theorem 6].

Proposition 3. For all complex numbers z such that |z| < %, one has

zma)(n)z” - San(5)"

n=1

n

+o0 +o0 n
> pmE =~ Y ts@m(2) - (@
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Proof. For the first relation we write

+o0

+o0 5
Z D(a)(n+1)2"+! = / eftma(t)dt

n=0 0

The expansion

S T L

gives

0 n=1
+oo n T
- —Z( : ) / e~"a(t)dt
z—1 ’
n=1 0

the order of f0+ and Y, may be interchanged because

7‘% () = (12 70 ()] <+
NNV IRNEE 1ot L '
o n=1 0 1—|z|
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The second relation (4) is an immediate consequence of the first one by Lemma 1

above. 0O

Proposition 4. For all integers p > 1, one has

+o00
= et . [1—e"t\_.
> /1 — le< )a(t)dt
—1 0
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+oo
o] n

- (I—e"
a(t)dt
/1—6 Z pnk ®)

n=1

+oo

et 1 —et\
_ / - le< ; )a(t) dt,
0

the order of f0+oo and "7, may be interchanged since, by the hypothesis on @,

[a(t)| < Ce**  for all t €0, +o0],
which gives
“+ o0

+oo
e—t e (1 _ e—t)n e—t 1— e—t
alt)|dt < C Li ot qt )
/1—€_tnzl 0]t < /l—e‘t 1k< P >€ e
= 0

0

4. The functions o and Gy

107

Definition 3. Let k£ be a positive integer. The functions ay, and Sy are respectively defined

for all s € C with R(s) > 0 by

—+oo
1 —t
ak(s) = ) / . _ee—2t Liy(1—e®)t* " tdt (for k > 1),
0
1 i et 1—e 2
Br(s) = ) / (=T Lig (T)t81 dt (for k > 0).
0
Example 3.
+o00
2 eit s —s s+1
ai(s) = e g dt =27°(2°t = 1)s¢(s + 1),
0
+oo
1 e’ —2t\]ys—1
Bi(s) = () =T 2 —In(1+ e %)[t* 1dt.
0

Remark 2 (Link with the Arakawa—Kaneko zeta function). In [6], we introduced the

function (s, ) — &k(s,x) defined for R(s) > 0 and = > 0 by:

+ .
(s, x) = 1 /e—xtwts Lt

1—et
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which is a very natural extension of the original Arakawa—Kaneko zeta function in the
same way as the Hurwitz zeta function ((s,x) generalizes the Riemann zeta function.
In the simplest case k = 1, & (s,x) is nothing else than s{(s + 1,z), and moreover we
deduce immediately from the previous definition the following relation:

) =2 (51).

Proposition 5. If s is such that R(s) > 1, then

(s) = 2_:1 %D(ﬁ) () (fork > 1),

0109 =3 g D gy ) 0) Gor 2 0)

n=1

Proof. This is an immediate consequence of formula (5) applied to the function a(z) =

ﬁ (for p =1,2) since a(t) = ez £ )(S) as already seen in Example 2. O

Corollary 1. For all integers m > 0, then

Sl 2n—1

Oék(m'i'l)ZZWPW(OS),...,O,@)) (for k > 1), (6)
n=1 \n

Bum+1) =3 2 b (OW,...,0)  (fork > 0). (7)

1 (?)nkﬂ

Proof. This is an immediate consequence of Proposition 5 by formula (3). O

n

Example 4. Since a;(s) = 275(2°F! — 1)s((s + 1), then for all integers m > 1,

e 922n—1
(2-2"")ym¢(m+1) = Z (*M)n? m—1(0£1),...,07(lm71)). (8)

In particular, for m = 2, a nice formula for Apéry’s constant (cf. [5, p. 81]) is regained:

> ”0—2 7¢(3). (9)

Example 5. Since §y(s) = 5(s), one has for all integers m > 1,

=3

n_

Pgm (0D, ...,0@m=1). (10)
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In particular, for m = 1, a nice formula for Catalan’s constant (cf. [2, p. 293, Entry 34])
is regained:

> 2 =26, (1)

TL

and for m = 2, formula (10) is translated into

>, on x 2n 0,05 02> > 2" 0
Z +2)° ) = 126(4). (12)
n=1 n=1\n

Remark 3. In a similar way (cf. [3, §5.5]), one can prove for £ (s) := &x(s, 1) the following
identity:

&r(s) = Z nlkD(lé> (n) (for R(s) > 1 and k > 1),

and, furthermore, one has (cf. [3, §3])

D(ﬁ)(n) = Pm(H’(ll)’ﬁ' ) with H() = ki: k—lj (j=1,2,...,m),
=1
which gives for instance Euler’s famous identity:
4.1. The function [

The Euler series transformation (Proposition 3 above) provides an alternative expres-
sion for (1.

Proposition 6. For all s € C with R(s) > 1, one has

0 10(5)
= _1)n-l1zn
Bils) = L0 S
hence, for each integer m > 1,
0 O(m) 00 n—
S (-1 1_ — Z 1 (O, ..., 0fm=). (13)

n=1 n=1
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Proof. By (4), one has for all |z] < 1,

n=1

If the series Z+°° D(a)(n) 1

~ 2% is convergent, then, by the classical Abel lemma, we get

By formula (5), the series > °7 D(W)(n) is convergent and

n12"

)= 3. P () i (@)

Then, using formula (1) for D(W)(n)7 one obtains (13). O

Example 6.

n=1 n n=1 (2;1) F
<[7., (2.36) and (2.37)] with u = 2 and 0 = g , (14)
&0 0(3 0 on > on O( 7.‘_4
—1 n ~ 2
S =X s e a1
([7, (2.38), (2.39), (2.40) and (C.4)] with u = 2 and 6 = g) (15)

Remark 4. In complete analogy with (13), one also has the following relation

0o (m) oS 1
S = 3 P (B Y) (16)
n=1 n=1

which is equivalent to that given by Choi and Srivastava [4, p. 66, formula (4.29)].

Proposition 7. Let
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If s is such that R(s) > 1, then

e} > _1\n—1
g n—l (1-2- (3)1n2+;%—51(8). (17)

Thus, for each integer m > 1,

Zﬁ =(1-2"")¢(m)In2+ (-1 m1n2+22 ) RB(K) — Bi(m).  (18)

Proof. The first relation is a direct consequence of the following elementary result:
If the series Y 0| any Dovey bny Doveyanby and Y 07 by > [, ap are convergent,

n=1
then the series Y, <, an > p_; bi is convergent and we have

Zanzbk = Zanzbn + Zanbn - anzak
n=1 n=1 n=1 k=1

n=1 k=1 n=1

Applied to a,, = ﬁ and b, = #, this relation gives (17). The second relation
is a consequence of the first one by the following observation:
If s is an integer, s = m, then we have

i D" (=h™@En-1)"" -1

— (2n —1)F 2n ’

hence

(G e G5 D ~ymek (D!
mf(m THZH) b

which gives formula (18). O

Example 7. Formula (18) gives respectively for m = 2 and m = 3 the following identities:

ad H, w2 G
m2 2~ 426" o~ 19
;%_1 8n+n 5+ 1B+ (19)
o [ 7 7wt
_ M N2 —In2+ - —2 — 2 2
(2n—1)3 =3¢B)n2-In2+7 G+16+G 64 (20)
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5. The values a (1) and Bg(1)

The special values of oy and S at s = 1 are evaluated in terms of (generalized)

log-sine functions (cf. [7,9]).

Proposition 8. For each integer k > 1 and o € R such that 0 < a < 1, let Ly(«) be the

log-sine-type integral' :

Li(a) = /ulnk_1 (2 sin g) du = 7* /:rlnk_1 (2 sin %) dx.
0 0

Then, one has

&2 1 s, (2R
2a(1) —nz::l () nk T 2¢ 1;(—1) lm Li(1), (21)
S | i ., 21 (In2)k— 1
=3 e - X e () @

Proof. The proof is similar to that given in [13, §4]. Let
1K (o)
T ok Z 2n nk+1

Then, one has for k > 1,

u

[ Jr1(u)
Ji(x) = | ——du.
/

By a classical identity due to Euler (cf. [13,14]), one also has
Ji(x) = (arcsinz)?,

hence

2z arcsin x

Jo(.%‘) = m .

It is easily verified that

! With the notation of [9], Ly () is — le(ﬂl_*)_l(a'fr).
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1
20 (1) = 2 Jjo(1) = k/Jk—Tl(x)

0

dx,

and

N

28,(1) = 2% (—> _Qk/g‘]k !

)

By (k — 1) integrations by parts and the change of variable x = sin 5, we get
D i), (DT
_ =D ke Jol) o (1) 1 U
Ji(1) = Gi= 1! /ln (x) ~ dzx = 2(k_1)!/uln (sm2>du,
0 0

and

It remains to use the binomial expansions of

lnH(Sin g) = [ln(%> +1n<251n g)rl,
o (vaan ) = [ 3g) (o )]

to obtain formulas (21) and (22). O

O\"’ﬁ
Do
—~
E
|
—
=

and

Proposition 9. For all a such that 0 < a < 1, we have
a) Li(a)=—«

b) Lo()=c(3) - 3 C8(mma) oy sin(mna)

3
n=1 n n=1 n
N 4 8 3 2 — H,
°) L3(O‘)_E<O‘ ~3° *2“>+2nz_1 Gt 1 s(rn 4 e

113

"~ (v2z) Joix)da:: (_1)]%1. /ulnk—l(\/ising>du.
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Proof. The assertion a) is trivially verified and b) is a classical identity (cf. [9, for-
mula (7.53)]). It remains to prove c). We use the following expansion:

n+1
Log (1-2) *QE o
"n

to get
) ) el —mx(n+1)
—17T$ _
Log (1 —e = g R —
Since
L0g2(1 _ e—z'ﬂ':c) — L0g2 (e—iﬂx/Q (eiﬂ'ac/Q _ e—iﬂx/Q))
1 2
= (—iﬂ'x/? +im/2+In <2 sin 5x7r>>
2
= —I(x— 1)2 +1n? (2s1n 73:) +i3(Log? (1 — e ™)),
one has
2
In (2 sin %x) = T (e 1)+ R(Log(1 - ™)),
hence

2
2o T\ _ W cos(m(n+ 1)x)
In (28111—2)— 4(x 1) —|—2§ H—_’_1 .

n=1
Integrating, this gives

/xln2 2sm— :W—/ x—l
2 4
0 0

—i—QZln}il/xcos( m(n+1)z) dz. (24)

The permutation of Y and [ in (24) is justified by the following Lemma 2 and the
dominated convergence theorem. The integrals in the right-hand side of (24) are easily

computed by

2

ot 20«
C1)2de=2 T
/x(x Vv = -5t
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and

(e

cos(m(n+ 1)a) ! ) 1
/wcos(w(n +Dz)de = w2 (n+1)2 - m(n+1) sin{m(n + 1)) - m2(n+1)2°
0
Thus, we deduce from (24) the following expression for Lz («):
7t (ot 2a3
L3(a)zz<z——+ >+QZ 5 COS (r(n+1)a)
+27Taz sm m(n+ 1) —22 n—I— 3.
Moreover, one has
— H, — H, 5 1
—_— = — —(4)=-C4)—-C(4)=-¢4
;(n+1)3 ;ng C(4) = 7¢(4) = C(4) = ¢(4),
and this gives (23). O
Lemma 2. The partial sums
k
Z x cos(m(n + 1)x)
= n+1
are uniformly bounded for x €]0,1[.
Proof. Let Sy () =2} 7_, cos(m(j + 1)x). A summation by parts gives
k k
Hn H7L+1 Hk
1z S
nz::anrlmcos( mn ; <n+1 n+2>+k+1 k().
and one has
()] = xicos(ﬂ(j +1)z)| < L
= ~ sin(wz/2)
It follows that, for all z € ]0,1],
i cos(m(n + 1)x) 2x Hy  Hpy Hy, < Cx <
= nJrl ~ sin(mz/2) \ 2 k+2 k+1) ~ sin(rz/2) —

115

d
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Example 8. Formulae (21) and (22) give for k = 2 the following identities:

=n2ln2— gg‘(?)),

3|,_.

1 72 35
n— = §1n2+’ﬂ'G— EC(?)),

77,

A

which were known of Ramanujan (cf. [2, p. 269]).

I ME% HM8

6. New formulae for Ramanujan’s constant G(1)

In Chapter 9 of his notebooks (cf. [2, p. 255, Entry 11]), Ramanujan introduced two
generating functions?:

2n

> Opz
:; (2n)2

n

and G(x Z (();:;

n=1

then, he writes the following functional relation:

G(x)+G<;i) = F(z)log(x )+F(1+i>log(;;)

—1—610g( )10g2<1_z)+0, (i)

with

s — 1
0217;(4%1)3 *3\/37;0(2%1)3'

Unfortunately, this beautiful formula for C' given by Ramanujan turns out to be erroneous
since, letting = tend to 1 in (ii), one sees easily that the constant C' must be equal to

[2, p. 257], or [11] for more details).

However, the calculation of a3(1) and as(2) provides two interesting formulae for the
constant G(1).

2 These functions are respectively denoted by ¢ and 4 in the original manuscript: cf. [10, p. 108].
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Proposition 10. Let G(1) = >, (QOT”)S be the Ramanujan constant. One has

7 1 22n ]
G(1) = =¢(3)In2— — — =7%(In2)2 + 2
(1) = gl@)m2 - 55 — g (m2)*+ ;(2:)(270
Proof. One has
> O > H2n Hn
GO)ZZ "3—2 %
“— (2n) = (2n)
_i Ho, i1 H,
= (2n)3 = 2(2n)?
=1+ (-)"H, =1H,
=2 2 nd -2 24 3
n=1 n=1
I <H, 1< (-1)"H, 1 <=H,
PR RED D 1D D
n=1 n=1 n=1
35 1 & H
= —((4) - = 1 n—1-"1n
646( ) QZ( .

Moreover, by (23) with o = 1, one also has

Ls(1) = —C —22

7T'4

%+4G( ).

Then, applying formula (21) with k& = 3, it results from (26) that

00 on 4
2a3(1) = Z (22n — =7%(In2)? = 7¢(3)In2 + 2—8 +8G(1)
n=1

and this relation is equivalent to (25). O

Remark 5. We have seen before (cf. Example 4, formula (9)) that

22n 1 O 7
Z = 5¢(3),

and one also knows (cf. [2, p. 259]) that
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(25)

(26)
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Thus

2n

[\D

(28)

e} On 100
:;(W:zg

‘

The calculation of as(2) provides a nice expression of the Ramanujan constant G(1)
similar to (28).

Proposition 11. Let G(1) = > | (QOT")g be the Ramanujan constant. One has the follow-
ing formula:

(29)

Proof. Applying (7, (2.44) and (2.45)] with u = 4 and 6 = 7, one obtains, after calcula-
tions, an expression of as(2) involving L3 (1) which may be simplified using formula (26).
Finally, we get the following relation:

’/T4
a2(2) = 7¢(3) ln2 — 5 — 8G(1) (30)

and this relation is equivalent to (29). O

Remark 6. Since ¢(3) =, 5 m and g—; =Y >0 %, formula (29) may be

rewritten as

’I’L

G(l):21n(2)2ﬁfﬂ/8+ln Z2n+ 7%2

n>0 n>0

2n

(31)

which gets closer to the erroneous formula given by Ramanujan for C.
7. Conclusion

With the aim of defining a natural framework for the study of the special values of
zeta functions of Arakawa—Kaneko-type, we were led to consider polylogarithmic series
in the generic form:

0 n
:ZD(a)(n);—k with k€ N, z€ C, and

D +1) =31 (")t +1)
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We studied the important cases a(z) = z7° and a(z) = (22 —1)7° for z = 1 and
z = 1/2. Though limited in practice to small values of k and s, our approach provided
plenty of nice formulae with interest both in number theory and in physics.
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