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Introduction: The Summation of Series

The strange sums

+o0
D n=0+14+2+3+4+54+6+7+8+9+...

n>0

and

+o00
D=0+ 42 +3 448 +5 46 +7 ...
n>0
appear in physics about the study of the Casimir effect which is the existence of an
attractive force between two parallel conducting plates in the vacuum.
These series are examples of divergent series in contrast to convergent series; the
notion of convergence for a series was introduced by Cauchy in his Cours d’Analyse

in order to avoid frequent mistakes in working with series. Given a series of complex
numbers ), _, a,, Cauchy considers the sequence of the partial sums

S():O
S1 = Qo

S = ag + ay

Sy, =ag+ ...+ a,—
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and says that the series ), a, is convergent if and only if the sequence (s,) has a
finite limit when n goes to infinity. In this case the sum of the series is defined by

+o00
E a, = lim s,
0 n—-+00

The classical Riemann series ), _ nlj is convergent for every complex number s
such that Re(s) > 1 and defines the Riemann zeta function defined for Re(s) > 1 by
Cis 000 L

Non-convergent series are divergent series. For Re(s) < 1 the Riemann series
is a divergent series and does not give a finite value for the sums that appear in
the Casimir effect. A possible strategy to assign a finite value to these sums is to
perform an analytic continuation of the zeta function this has been done by Riemann
(Edwards 2001) who found an integral formula for ¢ (s) which is valid not only for
Re(s) > 1 but also for s € C\{1}. By this method we can assign to the series
> o n* with k > —1 the value ¢ (—k); we get, for example,

21"

n>1

1
THIH T+ 14T+ 00 =~

1
Zn‘:1+2+3+4+5+6+...|—>§(—1)=—12

n>1

Yo =142+3+44+5 4. > (-2)=0

n>1
1
D=1+ 4P 4L 4T+ ()=

n>1

For k = —1 we have the “harmonic series”

Zl—1+1+1+1+1+1+1+1+1+
n 2 3 4 5 6 7 8 9 7

n>1

which is easily proved to be a divergent series since the partial sums s, verify

1 1 21 31 n+1
=14+ _+...+ Z/ dx—}—/ dx—}—...—i—/ dx =Log(n+1)
2 n X X n X

But the strategy of analytic continuation of the zeta function does not work in this
case since ¢ has a pole at s = 1 that is lim,—,; {(s) = oo.
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Divergent series appear elsewhere in analysis and are difficult to handle; for
example, by using the preceding values of ), | n*, it seems that

11
— T, S IHF2H3HAESH6+ (AT I+

=24+3+44+54+64+7+...

=(04+24+3+4+5+6+74+..)—1

1
=—_ -1
12
This absurdity shows that with divergent series we cannot use the classical rules of
calculation, and for a given class of series, we need to define precisely some method
of summation and its rules of calculation.

Before and after Cauchy, some methods of summation of series have been
introduced by several mathematicians such as Cesaro, Euler, Abel, Borel, and
others. These methods of summation assign to a series of complex numbers Y " _ , a,
a number obtained by taking the limit of some means of the partial sums s,. For
example, the Cesaro summation assigns to a series Y .., @, the number

-t S

Z ap = liMys oo (when this limit is finite)
n>0 n
For the Abel summation, we take
A 400
> @y = lim (1—1) ) s,17" (when this limit is finite)
>0 t—1— —o
P -

where the series ), - s,+11" is supposed to be convergent for every ¢ € [0, 1]. Note
that this expression can be simplified since

+o00 +o00 +o00
(I-9 an-l-ltn =5+ Z(sn+l — st = Zantns
n=0 n=1 n=0

and we have

+o0
Zan = lim ) a," (when this limit is finite) ;

n>0 n=0
this gives, for example,
A

+00 1 1
Z(_l) - tl_l)I}l_Z:O(—l) r= rl—lgl— 141 - 2

n>0
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The classical methods of summation use these types of means of partial sum and
can be briefly presented in the following form.

Let T be a topological space of parameters and / some “limit point” of the
compactification of T (if T = N, then | = +o0; if T = [0,1], then [ = 1). Let
(pn(f))nen be a family of complex sequences indexed by # € T such that for all
t € T the series Y, ., pn(?) is convergent; then we set

T +o0
= n t n
Y a, = lim 2= Pr(0)s

+
n>0 =1 Zn:og p"(t)

when this limit is finite, and in this case, we say that the series Zn>0 a, is T-
summable. -

A theorem of Toeplitz (Hardy 1949) gives necessary and sufficient conditions on
the family ( p,(?)),en to ensure that in case of convergence this summation coincides
with the usual Cauchy summation.

These summation methods verify the linearity conditions

T T T

Z(an + bn) = Zan + an

n>0 n>0 n>0
T T
Z Ca, =C Z ay, for every constant C € C
n>0 n>0

and the usual translation property

T T
Zan =ap+ Zan+l

n>0 n>0

This last property which seems natural is in fact very restrictive. For example, the
series ) ., 1 can’t be 7-summable since the translation property gives an absurd
relation

T T
Yi=1+>1
n>0 n>0

Thus, if we need a method of summation such that the sums ZZ;O n* are
well defined for any integer k, then we must abandon the translation property
requirement and find a way to define summation procedures other than the way
of the “limit of means of partial sums.”

This can be done by using a sort of generating function for the terms of the series.
It is based on the following algebraic framework (Candelpergher 1995). Let E be a
C-vector space (in general a space of functions) equipped with a linear operator D
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and a linear map vy : £ — C. Given a sequence of complex numbers (a,),>0, we
call an element f € E a generator of this sequence if

a, = vo(D"f)

We can write formally

D an =) vo(D'f) = vo(Y_D"f) = vo((I = D)”'f):

n>0 n>0 n>0

thus if R verifies the equation
(I-D)R=f, (1)

then we get

Zan = UO(R)

n>0

Of course, such an algebraic definition of summation needs some hypotheses,
especially to assure uniqueness of the solution of Equation (1); this is presented
in Chap. 5.

It is easy to see that the Cauchy summation is a special case of this algebraic
formalism: we take E as the vector space of convergent complex sequences
u = (Uy)n>0 and

D : (u,) — (un+1)

Vo (un) > uo
In this case the generator of a sequence of complex numbers (a,),>o is precisely this
sequence f = (dy)uso since (D"f); = ag+n. If we set R = (r,)n>0, Eq. (1) becomes
the difference equation

'n = Tp+1 = ap

The solution of this equation is defined up to an arbitrary constant; thus to get a
unique solution, we need to impose a condition on (r,),>o. Since

ro—rp,=ap+ ...+ a,—1,
we see that if we add the condition

lim r, =0,
n—>-+00
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then we have a unique solution R of (1) and we get the usual convergence of the
series ) -, a, with

+o00
vo(R) =ry = n—1>iI-iI-loo(a0 + ... tan) = Zoan

With this algebraic setting, we have presented (Candelpergher 1995) the sum-
mation method employed by Ramanujan in Chapter VI of his second notebook (the
notebooks of Ramanujan are edited by the Tata Institute of Fundamental Research).
This is done in a way similar to the Cauchy summation but replacing the space of
sequences by a certain space E of analytic functions and

Df(x) =f(x+1)
vo(f) = f(1)

For the Ramanujan summation, the terms of the series are indexed with n > 1 as
Ramanujan does, and since vy(D"f) = f(n), we define this summation for the series

of type ), f(n) where f € E.
In this case Eq. (1) is simply the difference equation

R(x) —R(x+1) = f(x) @)

If we can select a solution Ry of this equation, then we define the Ramanujan
summation by

R
> fm) = Re(1) 3)

n>1

Existence and uniqueness of a solution of (2) can be proved by use of a general
Laplace transform (Candelpergher et al. 1997).

Now, in Chap. 1, we give a more simple presentation that avoids the Laplace
transform, and we give more explicit formulas. We start, as Ramanujan in his second
notebook, with the summation formula of Euler and MacLaurin

PO+ et 000 = G+ [ s s+ Y o)

k>1

This formula can be viewed as an asymptotic expansion, when x goes to infinity, of
the function that Ramanujan writes

orix=>f()+ ...+ f(x)
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which is a hypothetical interpolation function of the partial sums of the series
> n>1f(n), given with the condition ¢¢(0) = 0. This expansion contains a constant
Cy that Ramanujan calls “the constant of the series” and treats like a sort of sum for
the series.

Since @r(x 4+ 1) — ¢r(x) = f(x + 1), we see that if we set

Rp(x) = G + f(x) — ¢r(x),

then the function Ry is a solution of Equation (2) and

R
Y Sy =R(1) =G

n>1

We use the term Ramanujan constant for Re(1) since the expression “Ramanujan
sum” is widely used for another notion in number theory.

We give a precise definition of Rf in Chap. 1 by the use of an integral formula
which is related to the Abel-Plana summation formula.

For a function f sufficiently decreasing, the Euler-MacLaurin summation formula
gives

G=lim (f()+...+f(n)~ / f(x)dx) o))
n——+0oo 1

Thus if we are in a case of convergence of the series and integral, then we have

R +oo +00
S ey =3 fn) - /1 F@dx 5)
n=1

n>1

There is also the apparition of an integral when we compare the sums 27;1 f(n)

and 27;1 f(n+1), since by (4) we have, in contrast to the usual translation property,
the unusual shift property

R R 2
S 1) =3 fo) —f(1) + /1 f@dx (©)

n>1 n>1

When we apply this property to the function Ry and use Eq. (2), we get

2
/ Ry(x)dx =0 @)
1

This gives a way to define a general Ramanujan summation, independently of the
Euler-MacLaurin formula, by Eqgs. (2) and (3) with Ry of exponential growth <
and verifying the integral condition (7) in order to determine a unique solution Ry.
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The shift property (6) remains valid in this general setting and is very useful;
for example, the “Casimir series” }_ ., (n — 1)k (with k a positive integer) are
Ramanujan summables, and we have

R R 2 R |
an:Z(n—l)k—f-/ (x—l)kdx:Z(n—l)k+k+l (8)
n>1 n>1 1 n=1

We see that the series 1 +254+3%+4%+ .. and 0+ 1+2%+3%4+4¥+ ... don’t have
the same sum! This is a consequence of the fact that the Ramanujan summation of
3" = 1f(n) is intimately related to the function f (in the first case, we have f(x) = x*
and, in the second, f(x) = (x — 1)¥).

In Chap. 2 we study elementary properties of the Ramanujan summation in
comparison to the classical properties of the usual Cauchy summation. We prove
a surprising relation between the sums

R R
> @(myand Y /1 f(x)dx

n>1 n>1

We also give, in the special case of an entire function f of exponential type < =, a
simple formula for the Ramanujan summation of a series ) ., f(n) in terms of a
convergent series involving the Bernoulli numbers

3 = [ = Lo = S ts) B
;f(n)—/of(X) v 0= 2070,

In Chap. 3 we give important theorems that concern properties of sums
2,7;1 f(z,n) where z is a parameter, with respect to derivation, integration, or
summation of f in z.

The simplest introduction of an external parameter in a series Y, f(n) is to
consider the series Y., f(n)e”". We prove that if f is a function of moderate
growth, then we have -

R R
— 1s —nz
> f) = 1limy " f(n)e
n>1 n>1
But if z > 0, then the series anlf (n)e™" is convergent, and by (5) we have
R +o00 400
s = tim (3o rme™— [ ey ©)
n>1 ) n=1 1

which seems to be a standard method of regularization used in physics.
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A very important property of the Ramanujan summation is that the analyticity
of the terms of a series implies the analyticity of the sum. A simple example is
given by the zeta series Y, ., nl This series is convergent only for Re(z) > 1, but
the Ramanujan summation of this series is defined for all z € C, and by (5) we have
for Re(z) > 1

By this property of analyticity, this formula remains valid for all z # 1, and we
see that the Ramanujan summation of the zeta series cancels the pole of the zeta
function at z = 1. More precisely at z = 1, we have by (4)

1 1
Z = lim (1 +...+ - Log(n)) =y (Euler constant)
= n n—+00 n

We also note that for the “Casimir series” ), | (n — 1) (with k a positive integer),
we have by (8)

X k X k 1
;(n—l) =;n ~ g =R (10)

n the second section o ap. 3, we study the possibility to integrate the sum
In th d section of Chap. 3 dy the possibility to integrate th
ZnRzl f(z, n) with respect to z. For example, we have for 0 < Re(s) < 1

R R R
+o0 - 1 400 . 1 T 1
2D SRS Y RSN RIS S
0 nzln—}—u =170 n+u smnsnzln

which gives simply the functional equation for the ¢ function. Finally we give a sort
of Fubini theorem for double sums

R R
YD fmn)
m>1 n>1
We apply this result to the Eisenstein function G, (Freitag and Busam 2009)

+oo +oo 1
G2(2) = Z ( Z (m+nz)2)

n=—0o0 m=—0oQ
m#0 if n=0
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Since we don’t have absolute summability, we cannot interchange the sums, but
thanks to the Ramanujan summation, we can prove simply that this function G,
satisfies the nontrivial relation

1
GZ(_Z) = 722Gy (z) — 2inz

In Chap. 4 we give some relations of the Ramanujan summation to other
summation formulas. First we recall the classical result (Hardy 1949) on the Borel
summability of the asymptotic series ), if 0k~ (n) that appears in the Euler-

MacLaurin formula, and we give the formula linking 27;1 f(n) with the Borel sum
. By qk—
of the series ), ¥ 0*'f(1).
In the second section of this chapter, we use the Newton interpolation series
(Norlund 1926) to give a transformation formula involving a convergent series

S SIS
= A1
;f(n) ; ks 1 ANO

where the f; are the Bernoulli numbers of the second kind and A is the usual
difference operator. This formula is related to the classical Laplace summation
formula (Boole 1960).

In the third section, we see that we can define the Euler summation of alternate
series by using the Euler-Boole summation formula that is an analogue of the Euler-
Maclaurin formula. We see that this summation is given by

£ +o0o (_1)k
2T e =0 (A,
n>1 k=0

and we prove that this sum is related to the sums 27;1 f(@2n—1) and Zz;lf (2n) by

R R & 1 2
Soren=1= Y fem = Y0 - ) [ o

n>1 n>1 n>1

This can also be generalized to series of type Y, ., @"~'f(n) where w is a root of
unity. -

The unusual shift property (6) shows that the Ramanujan summation does not
verify the translation property which is required (with linearity) for a summation
method by Hardy in his very fine book Divergent Series. But we have seen that
abandon of the translation property is necessary if we want to sum series like
anl P(n) where P is a polynomial. Thus, in Chap. 5, we give a general algebraic
theory of summation of series that unifies the classical summation methods and the
Ramanujan summation. In this general framework, the usual translation property
appears as a special case of a more general shift property.
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In the appendix, we give the classical Euler-MacLaurin and Euler-Boole formu-
las and a proof of Carlson’s theorem.

Obviously we cannot claim that our version of the Ramanujan summation is
exactly the summation procedure that Ramanujan had in mind, so the reader can
find an exact copy of the Chapter VI of the second Notebook (in which Ramanujan
introduces the “constant of a series”) in the new edition of Ramanujan Notebooks
published by the Tata Institute of Fundamental Research.
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Notation

e For x = a + ib where a and b are real, we use the notation
a = Re(x) and b = Im(x)

 The derivative of a function f is denoted by f” or df.
¢ The difference operator is defined by A(f) = f(x + 1) — f(x).
e Forke Nandj=0,...,k, we use the binomial coefficient

k!

a =" .
KNk — )

¢ The harmonic numbers are H,(f) =1+ zlx + ...+ nls,
¢ The Bernoulli polynomials By (x) are defined by

Z B,,(x)tn _ te™

n! el —1
n>0

and the Bernoulli numbers B, = B,,(0)

We have By = 1,B; = —1/2,By,41 = 0ifn > 1.
e We define the Bernoulli numbers of the second kind §, by

_1+Z IBn-H +l

t
log(1+1) g n! n+ 1)'

¢ The Euler polynomials E, (x) are defined by

E,(x 2e%
n! e+ 1

n>0
and we set E,, = E,(0).

XXi



XXii Notation

¢ For x € C we use the notation flx f(u)du for the integral

X 1
/f(u)du:/f(l+t(x—l))(x—l)dt
1 0

that is the integral on the segment relying 1 to x.
* Log is the logarithm function defined on C\]—o0, 0] by

¥ 1
Log(x) =/ du
1 u
that is for x € C\]—o0, 0] by
Log(x) = Log(|x]) + i0 if x = |x|€?,0 € |-, 7|

» The Stieltjes constants y; are defined by

n

Log(j Log"t'(n
S ¢ (j)  Log ())

= lim
Vk n——+o00 — Jj k+1
=
The Euler constant y is yy .
* The Catalan constantis G = Z;;"f ((;nlinl; .
¢ The digamma function is
I'(2)
Z =
V@=L @

e We define O% the space of functions g analytic in a half plane
{x € C|Re(x) > a} with some a < 1
and of exponential type < «: there exists § < « such that
lg®)| < CeP™ for Re(x) > a
* We say that f is of moderate growth if f is analytic in a half plane
{x € C|Re(x) > a} with some a < 1

and of exponential type < ¢ for all € > 0.
* Forf € O the function Ry is the unique solution in O* of

2
Re(x) = Re(x + 1) = f(x) with / Re(x)dx =0
1
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* For f € O the function ¢y is the unique function in O such that
¢r(n) = f(1) + ... + f(n) for every integer n > 1
s Forf € O" the Ramanujan summation of ) _ ., f(n) is defined by
R
> fm) = Re(1)
n>1

If the series is convergent, then Z;:f f(n) denotes its usual sum.



Chapter 1
Ramanujan Summation

In the first two sections of this chapter we recall the Euler-MacLaurin formula
and use it to define what Ramanujan, in Chapter VI of his second Notebook, calls
the “constant” of a series. But, as Hardy has observed, Ramanujan leaves some
ambiguity in the definition of this “constant”. Thus in the third section we interpret
this constant as the value of a precise solution of a difference equation. Then we can
give in Sect. 1.4 a rigorous definition of the Ramanujan summation and its relation
to the usual summation for convergent series.

1.1 The Euler-MacLaurin Summation Formula

Let’s consider a function f € C®(]0, +o0[). For every positive integer n we can
write

D fl) =Y (k— (k= 1)f (k)
k=1

k=1
n—1
= nf(n) = Y K(Fk+ 1) —f(K)
k=1

k+1

n—1
= nf(n) — [x1f' (x)dx
>

where [x] is the integral part of x. Let {x} = x — [x], then

;f(k) = nf(n) — /1 of (O)dx + /1 Y ()
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2 1 Ramanujan Summation

and integration by parts gives
St =r+ [ oo+ [ o
=1 1 1
In order to generalize this formula we define the function

b =t -

which is a 1-periodic function with fol b1(x)dx = 0. We have

n n n 1 n
St =+ [ swast [ beareds ) [ 5o
—1 1 1 1
thus we get the Euler-MacLaurin formula to order 1:

Sorw = [ redrs w sy + [Cnerwa

k=1

To make another integration by parts in the last integral we introduce the function
cx) = / by (t)dt
0
which is a 1-periodic with ¢, (n) = 0 for every positive integer n and
2
) =" - ’2‘ if x €]0, 1]

then by integration by parts

/n b1(x)f (x)dx = — /n cr(0)f (x)dx
1 1

Thus we get
3216 = [ o+ 3t 500~ [ extorcoas
We now replace the function ¢, by

B,

bzéx) =@+
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with the choice of B, in order that

|

b

/ Z(X)dx: 0
0 2

which gives B, = 1/6 and hzz(x) = )‘22 — 34 Lifxe[0,1[.
Then we get the Euler-MacLaurin formula to order 2:

" by (x)

) " (x)dx

‘ (" 1 By, , ,
k;f(k) —/1 Sf)dx + 2(f(n)+f(1))+ 5 (f'(n)—f (1))—/1

If we continue these integrations by parts we get a general Euler-MacLaurin
formula to order m:

+f(n)

fm+~+ﬂm=[ﬂwﬂjm2

mo Nk
DI CR D

(=1 /1 " ’”(!x) 3"f (x)dx

m

where b,,(x) is the 1-periodic function b, (x) = B, (x — [x]), with the Bernoulli
polynomials By (x) defined by

Z Bn(x)tn _ te™

n! el —1
n>0

and the Bernoulli numbers B,, = B, (0) (we verify that Byy; = 0 fork > 1). For a
simple proof of this general formula see Appendix.

1.2 Ramanujan’s Constant of a Series

Let f be a C* function defined for real x > 0. In the beginning of Chapter VI of his
Notebook 2, Ramanujan introduces the hypothetical sum

O +fQ+fB)+fH + ... /() = 9(x),

which is intended to be the solution of

P(x) —p(x— 1) = f(x) with ¢(0) =0
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Let’s take the numbers B, defined when r = 2,4,6,... by (second notebook
chapter V, entry 9)

X (-1 BZk
Z (2 k!

k>1

then Ramanujan writes the Euler-McLaurin series

_ 1 B, / _84 " Be Vv Bs Y/
000 =+ [ 700+ 700+ 27w = A+ w0+

and he says about the constant C: the algebraic constant of a series is the constant
obtained by completing the remaining part in the above theorem. We can substitute
this constant which is like the centre of gravity of a body instead of its divergent
infinite series.

In Ramanujan’s notation the numbers B,, are related with the usual Bernoulli
numbers by

BZn = (_l)n_lBZn

Thus we can write the above Euler-McLaurin series in the form

p(x) = C+/f(x)dx+ f(x)+Z(2k)'32k ()

k>2

The main difficulty with this formula is that this last series is not always convergent.
Therefore we replace this series by a finite sum and give a precise meaning to the
integral. We are thus led to write the Euler-MacLaurin summation formula in the
form

FO) + o +f) = Cul) + /1 “fwax+” (2”) £Y O )

£ (2h)!

bomt1(X) ompr
—/n (2m +1)'3 f(x)dx

where

_fa N Bt oy T bt 1(X) ot
et =50 =30 a0+ [ ot P
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in this formula we assume that the function f is an infinitely differentiable function
and that the integral

+o00
/ Dot (09" () dlx
1

is convergent for all m > M > 0. Then by integration by parts we verify that the
constant C,,(f) does not depend on m if m > M thus we set C,,(f) = C(f).
We use the notation

R
C(f) =Y _fn)
n>1

and call it the Ramanujan’s constant of the series.

Example If f is a constant function then df = 0 thus ZZ;I f(n) = ! (21). Thus

R
-
n>1

Iff(x) = xthen 3*f = Othus Yo\ n =) — 5 = .

The Case of Convergence
Assume that the integral f . bi1(x)df (x)dx is convergent, then the Euler-
MacLaurin formula to order 1 is simply

n +o00
fO)+...+f(n) =C(f) + / fx)dx + f(zn) —/ by (x)f (x)dx
1 n
with
+o00
cn="04 [ b war

Since |, oo b1 (x)f’ (x)dx — 0 when n — 400 we get the following expression of
the Ramanujan constant as the limit

3 ) = Jim (7)o po = [ a0 (1.2)

n>1

If in addition we assume that lim,,—, 4 o f(n) = 0 then we have

k+1
Zf(n) i (£ + . +f(n—1)—Z/ f(x)dx)

n>1
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thus we get an expression of the Ramanujan constant as a sum of a convergent series

R too n+1
Sy =3 (s = [ ooy (1.3)
n>1 n=1 n

This proves the property that if the series anl f(n) and the integral | 1+°° f(x)dx
are convergent then we have the relation

R oo +o0
S =Y rm = [ s (1.4)

n>1 n>1

Examples

(1) Iff(x) = | with Re(z) > 1 then by (1.4)

1

thus for Re(z) > 1 we have the relation with the classical Riemann zeta function

L 1
Y. =t)- (1.5)
n z—1
n>1
(2) Iff(x) = ! then by (1.2)
1 "1 1 "
2= e ) = i (3 L)
thus
LSy
Z = y where y is the Euler constant (1.6)
n
n>1

(3) If f(x) = Log(x) then by (1.2)

R n
> Logn) = lim (3" Log(h) — (nLog(w) —n + 1+ ) Log(n)
k=1

n>1
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Ramanujan’s Constant of a Series 7

Using the Stirling formula we have

. 1
n_l)lllloo ;Log(k) — (nLog(n) —n + 2Log(n)) = L0g(«/271)
this gives
R
> Log(n) = Log(~/2m) — 1 (1.7)
n>1

If f(x) = xLog(x) then we have df (x) = Log(x) + 1 and 3*f(x) = i Thus by
the preceding Euler-MacLaurin formula with m = 1 we have

R n
. " nLog(n) Log(n)+ 1
;nLog(n) :n—lillloo(ékllog(k)_ /1 xLog(x)dx— 5 T 1 )
this gives
i Log(n) = 1i (Xn:kL ® — Logi("- +" + 1)+"2)
nLog(n) = lim 0 — Log(n _
2 MO8 = S N 8 SR, T T T4 T3
thus
2 1
ZnLog(n) = Log(A) — 3 (1.8)

n>1

where A is the Glaisher-Kinkelin constant (Srivastava and Junesang Choi 2012,
p-39).

This constant is related to the zeta function by the following relation that we
prove later on

R 1
> nLog(n) =={'(=1)—

n>1

Remark Note that with the Euler-MacLaurin formula we have for all a > 0:

fH+...+f(n) =

a m — + bom X m
Jifdx + f(zl) = 2=t (13125!32/( () + /i = (22m—"—_|-11()!)32 T (x)dx

- +00 by
+ [ ede 1S+ Ly G = [T G0
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This is a summation formula where the constant C(f) = 2,7;1 f(n) is replaced by

Y R
cn = [ s+ Y-

n>1

It seems that Ramanujan leaves the possibility that the choice of a depends on
the series considered.

In the special case where the series Y f(n) and the integral f1+°° f(x)dx are
convergent then if we take a = +o00 we get

+o0 R
Coolf) = /1 F@dx+ 3 f)

n>1

and with the relation (1.4) we get

+o0
Coolf) = ) _f(n)
n=1

This explains an assertion of Ramanujan in Notebook 2 Chapter 6 p.62:

“Iff (1) + f(2) + ...+ f(x) be a convergent series then its constant is the sum of
the series.”

But if for example f(x) = x, then it is not possible to take a = 400 since Coo (f)
is not defined but if we take for example a = 0 then

1 R
Co(f) :—/0 xdx+zn=—322

n>1

To get simple properties of the Ramanujan summation we fix the parameter a in
the integral, and we make the choice a = 1 in order to have

Conclusion
With the use of Euler-Maclaurin formula we have the definition of the constant
of a series by

m

ff(n) = lim (f() + ... +f()— / e+ 3 B gty
=1 noeo ! 2o @ ‘

(1.9
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this needs convergence of the integral

+o00
/ Dot (09" () dlx
1

This last hypothesis is not always satisfied, for example if we look at a series like
> _.>1¢"- Thus we need to avoid the systematic use of Euler-McLaurin formula and
define in a more algebraic way the Ramanujan summation.

1.3 A Difference Equation

1.3.1 The Functions ¢y and Ry

In his Notebook Ramanujan uses the function ¢ formally defined by

p) =f(D)+...+f(x)
It seems he has in mind a sort of unique interpolation function ¢y of the partial sums

f() +f(2) + ...+ f(n) of the series anlf(n) associated to f. This interpolation
function must verify

o) —grlx—1) = f(x) (1.10)

and Ramanujan sets the additional condition ¢r(0) = 0. With this condition the
relation (1.10) gives for every n integer > 1

o) =fM) +f2) + ... +f(n)

Note that if the series ), ., f(n) is convergent we have

+o0
Jim gp(n) = glf(n)

Now in general the Euler-Mclaurin summation formula gives an expansion of the
function ¢y which we can write

¢r(n) = C(f) +f(n) — Ry(n)

where the function Ry is defined by

_f) — By oy T bomi1 (1) o "
win =730 -3 S [ O oa— s

(1.11)
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and

_ () By oy T2 bamt1 (V) et
=", ;(Zk)!a f(lH/l am 1y’ @

We observe that C(f) = Ry(1). Thus we get

R
> fm) = Re(1) (1.12)

n>1

1.3.2 The Fundamental Theorem

To avoid the systematic use of the Euler-MacLaurin summation formula we now
find another way to define the function Ry. The difference equation

g+ 1) —gr(n) =fn+1)

and the relation ¢r(n) = C(f) + f(n) — Re(n) gives for Ry the difference equation

Ry(n) = Rp(n + 1) = f(n)

By (1.12) it seems natural to define the Ramanujan summation of the series

anlf(n) by

R
> fm) =R(1)

n>1

where the function R satisfies the difference equation
R(x) —R(x+1) = f(x)

Clearly this equation is not sufficient to determine the function R, so we need
additional conditions on R. Let us try to find these conditions.

First we see, by the definition (1.11) of Ry, that if f and its derivatives are
sufficiently decreasing at +oco then we have

+o00
lim Rs(n) = — f(x)dx
1

n—-+00
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But we can’t impose this sort of condition on the function R because it involves the

integral || 1+°° f(x)dx which, in the general case, is divergent. Thus we now translate
it into another form.
Suppose we have a smooth function R solution of the difference equation

Rx) —R(x+1) =f(x) forallx >0

Now if we integrate the two sides of this equation between k and k+ 1 for all integer
k > 1, and formally take the infinite sum over k, we obtain

+o0 2
1 f)dx = /1 R(x)dx — X_l)iE)oR(x)

We see that for the function R we have the equivalence
+o00 2
lim R(x) = — f(x)dx if and only if / R(x)dx =0
1 1

x—>—+00

Thus we can try to define the function R; by the difference equation
Rf(x) — Re(x + 1) = f(x) with the condition

2
/ Rp(x)dx = 0
1

Unfortunately this does not define a unique function Ry because we can add to Ry
any combination of periodic functions x > e?™*, To avoid this problem we add the
hypothesis that Ry is analytic in the half plane {x € C|Re(x) > 0} and of exponential
type < 2m:

Definition 1 A function g analytic for Re(x) > a is of exponential type < «
(o > 0) if there exists 8 < « such that

lg(x)| < Ce’M for Re(x) > a
We define O” the space of functions g analytic in a half plane

{x € C|Re(x) > a} with some a < 1

and of exponential type < « in this half plane.

We say that f is of moderate growth if f is analytic in this half plane and of
exponential type < ¢ for all € > 0.

With this definition we have the following lemma:

Lemma 1 (Uniqueness Lemma) Let R € O?7, be a solution of
2
R(x) — R(x 4+ 1) = 0 with / R(x)dx =10
1

then R = 0.
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Proof By the condition R(x) — R(x + 1) = 0, we see that R can be extended to an
entire function. And we can write

R(x) — R0(62inX)
where Ry is the analytic function in C\{0} given by

1
Ro(z) = R( nis Log(z))

(where Log is defined by Log(re’”) = In(r) + i with 0 < 6 < 27).
The Laurent expansion of Ry gives

R(x) — cheZiﬂnx

nez
the coefficients ¢, are
1 /ZHR ( it) —im‘dt 1 /27r R( t + 1 1 ( )) —intdt
= re')e = - In(r))e
2rrt Jo 0 2rrt Jo 2 2w

where r > 0.
The condition that R is of exponential type < 27 gives

1 |«
lea] < Ced O wign & <1
" 2
If we take r — 0 we get ¢, = 0 for n < 0 and if we take r — +oo then we get
¢y = 0 for n > 0. Finally the condition | 12 R(x)dx = 0 then gives ¢ = 0. O

Theorem 1 Iff € O% with a < 2m there exists a unique function Ry € O% such
that Ry(x) — Ry (x 4 1) = f(x) with flz Ry (x)dx = 0. This function is
Foo it) — f(x — it
KO [T iy
0

2 et — 1

&m=—[fmw+

Proof

(a) Uniqueness is given by the preceding lemma.

(b) The function Ry defined by (1.13) is clearly in O*.

(c) Letus prove that Rr(x) —R(x+1) = f(x). By analyticity it is sufficient to prove
this for real x.

Consider the integral

/f(z) 1, cot(m(z — x))dz
y 21
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with y the path

X } X+1

/f(z) le, cot(m(z — x))dz = f(x)
y

By the residue theorem we have

To evaluate the different contributions of the integral we use the formulas:

li cot(w(z—x)) = —

) | when Im(z) > 0

2 - e—Zin(z—x) —

and

1
2i cot(w(z —x)) = when Im(z) < 0.
i

2 + e2im(z—x) _ 1
Let us examine the different contributions of the integral:

* the semicircular path at x and x 4 1 gives when ¢ — 0

00— G+ 1)

* the horizontal lines give

s 1 [+l
—(—2)[( f(t+iy)dt + 2/x f(t—iy)dt

and two additional terms which vanish when y — +o00 (by the hypothesis that f
of exponential type < 2m).
* the vertical lines give

i/yf(x-i-it)—f(x—it)dt_i/yf(x—}-1+it)—f(x+l—it)dt

6‘27” -1 eZﬂt —1

and

;/Syf(x+it)idt—;/Syf(x—it)idt—;/syf(x+1+it)idt+;/syf(x"‘l_it)idt
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If we add this term with the contributions of the horizontal lines we obtain the
sum of the integrals of f on the paths

I
4 L7

By the Cauchy theorem this sum is

1 x+1 1 x+1
2/ [t +ie)dt + 2/ f(t—ig)dt

which gives the contribution fXXH f(t)dt when ¢ — 0.
Finally when ¢ — 0 and y — 400 we get

F0 = 00— fG+ )
+i/+°°f(x+ it) —f(x — it)dt
0

eZﬂt -1

_i/+°°f(x+l+it)—f(x+1—it)
0

eZnt -1
x+1
+ / f()dt

This is f(x) = Re(x) — Re(x 4 1) with Ry given by (1.13).

(d) It remains to prove that 12 Ry(x)dx = 0. By Fubini’s theorem

eZnt -1 eZnt —1

/2/+°°f(x+it) —f(x—it)dtdx=/+°° 2 fx+ i) —fa—in
1 Jo 0

1

We haveforl <x <2

2
/ (f(x+it) —f(x —it))dx = FQ2 + it) — F(2 — ir)
1

— (F(1 + i) — F(1 — it))
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where F(x) = [ f(#)dt. Thus

/2 /+°° flx +it) —f(x —ir) e — /+°° FQ2+if)—FQ2—if) 0
1 0 0

eznt — 1 e27r1‘ — 1

TR 4+ i) — F(1 —it)
- 0 e27rr -1 dt

By the preceding result (applied with F in place of f) we have
1 1
F(x) = 2F()c) — 2F(x +1)

too it) — F(x — it
+i/ (x+ir) (x l)dt
0 627”—1

,/+°° F(x+1+it)— F(x+ 1 —if)
—l
0

6‘27” -1
x+1
+ / F(t)dt
With x = 1 we get

[P TS+ — fx—in) _ _F()+F(Q2) 2
i /1 /0 dt dx = + /1 F(r)dt

et — | 2

This gives
/2Rf(x)dx - /2F(x)dx+ ! /2f(x)dx— FOTED, /ZF(t)dt -0
1 1 2 N 2 1 a

1.4 The Summation
1.4.1 Definition and Examples

Consider f € 0?7, then by Theorem 1 we can define the Ramanujan summation of
the series ), ., f(n) by

R
Y fm) = Re(1)

n>1
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where Ry is the unique solution in 0% of
2
Re(x) = Rr(x + 1) = 0 with / R(x)dx = 0.
1

We immediately note that for some f € O>" this definition can give surprising
results. Let us consider for example the function f : x > sin(xx), since

sin(7rx) B sin(zw(x + 1))

5 5 = sin(mx)
we get
Ri() = sin(x) / 2 sin(7rx) e = sin(7rx) N 1
‘ 2 1 2 2 T
thus

R 1
Zsm(nn) =

n>1

But sin(wn) = g(n) with the function g = 0, and we have trivially R, = 0 which
gives

This example shows that for f € O>" the sum 2,7;1 f(n) depends not only on
the values f(n) for integers n > 1 but also on the interpolation function f we have
chosen.

To avoid this phenomenon we restrict the Ramanujan summation to functions f
in O, since with this condition we can apply Carlson’s theorem (see Appendix)
which says that such a function is uniquely determined by its values f(n) for all
integers n > 1. Note that in this case the function Ry given by Theorem 1 is also in
or.

Definition 2 If f € O, then there exist’s a unique solution Ry € O™ of

2
R(x) — Rr(x + 1) = f(x) with / Ri(x)dx =0
1

We call this function Ry the fractional remainder of f and we set

R
> fm) =Ri(1)

n>1
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By (1.13) we have by the integral formula

R . ) )
> f@ zf(zl) +i/+ fA+in =f =i, (1.14)
0

6‘27” -1
n>1

We call this procedure the Ramanujan summation of the series ) ., f(n) and

2,7;1 f(n) the Ramanujan constant of the series.
Some properties are immediate consequences of this definition:
Linearity

If a and b are complex numbers and f and g are in O”, then we verify immediately
that

Raptbg = aRy + DR,

thus the Ramanujan summation has the property of linearity

R R R
D af() +bgn)y=a) _fn)+bY_ gn)
n>1 n>1 n>1

Reality

Consider g € O such that g(x) € Rifx € R.
Then for all # > 0 we have by the reflection principle g(1 — it) = g(1 + if) thus
i(g(1 +ir) — g(1 —ir)) € R and by the integral formula (1.14) we have

R
Zg(n) eR

n>1

Real and Imaginary Parts

Take f € O™ defined in the half plane {x € C|Re(x) > a} witha < 1. We define
for x €la, +oo[ the functions f, : x +— Re(f(x)) and f; : x + Im(f(x)) and
assume that the functions f. and f; have analytic continuations on the half plane
{x € C|Re(x) > a} that are in OT.
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Then we can define the sums 2,7;1 Re(f(n)) and 2,7;1 Im(f(n)) by

R R
D Re(f(m) = _fi(n)

n>1 n>1

R R

D m(f(m) =) fin)
n>1 n>1

By linearity we have

R R R R
D fm) =) +ifim) =D frln)+iY fin)

n>1 n>1 n>1 n>1

Since f,(x) and f;(x) are real for x € R then by the reality property we get

R R
Re(D_f(m) =Y _Re(f(n)

n>1 n>1

R R
Im(Y_fm) = > Im(f(n))

n>1 n>1

For example if f(z) = ! thenf : z szH and f; 1 z > 5 ! are analytic

+i +1
functions in O”. Thus ’
s 1 s n
Re(d_ =D
e n+i e n-+1
LI R
I fr—

Remark Note that generally we can’t write Zﬁ S = Zzlil f(n) since the
function f is not analytic (if f is non constant).

Examples

(1) Take f(x) = ¢ ** with z € C then for Re(x) > 0 we have

|f ()] = e Re@) = g~ Relejy)l
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Thus if we set |} = ¢ then f € O for z € U, where

Ur ={z€C| sup Re(—z"”) <}
0€l-3.5]

L%/

a4
n\\o

Then if z € U, \{0} we can write

e e—z(x+l)

l—e= 1—e=

— e—ZX

2 —zx
¢ _.dx, thus we have

this gives Ry(x) = le_:,i —J1 1—e

e e ¢
R = _
f(X) 1—e2 z
and we get for z € U, \{0}
ie‘m _ €e° _¢€r
1—ez Z
n>1
For z = 0 we have Zn>1 e = 27;1 1 = 2 - hmz—>0(1 [ e—l)

19

(1.15)

If z = it with ¢t €] — &, 7[\{0}, taking real and imaginary part of (1.15)

we get

s sin(r) 1
Zcos(nt) = -

2
n>1

Zsm(nt) = cot( ) — cos(t)

n>1

(1.16)

(1.17)
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(2) Let k be a positive integer. By the definition of the Bernoulli polynomials we
verify that

Biri(x+1)  Bipi(x) _
k+1 k+1

and since fol Bi+1(x)dx = 0 we have

’B 'B 1 'B ! 1
/ k+l(x)dx:/ 1 (x + )dx:/ k(x)dx+/ Ky —
L k41 y k1 ) k41 A k+1

Thus if f(x) = x* where k is an integer > 0 then

1 = Biy1(x)
R = 1.18
ww= 0 (118)
thus we get
R R
I —Biy1 . 1
k
E = fk>1and E 1= 1.19
n>1 " k+1 1 - n>1 2 ( )

(3) Take f(x) = . with Re(x) > 0.

(a) For Re(z) > 1 and Re(x) > O the series Y
defines the Hurwitz zeta function:

1 .
020 (nne 1S CONvergent and

+o00 1

E(Z,X) - r; (n +x)z
Since
’(z.x) = C(zx+ 1) = xl (1.20)

we have

2 +oo

R = 26— | > 4ol

Since the series Z is uniformly convergent for x € [1, 2] we have

"0(+)

2 +oo B 1 +o00 1 1 B 1
/Xj(n—i-)c)Z _z—lg((n—kl)z—l_(n+2)2_1)_z—1



1.4 The Summation 21

Thus for Re(z) > 1 we have

Ri@=LGo-
(b) For every z # 1 the integral formula (1.13) for the function R, gives

IR N lx_z+2/+°° (2 +12)7? sm(zarctan(l/x))
-1 z—-1 2 0 et — 1

since this last integral defines an entire function of z we see that the Hurwitz
zeta function, previously defined by the sum Z can be continued

analytically for all z # 1 by

Ri(y) =

n=0 (n+x) ’

1=z 400 2\—z/2
O ;x—z i 2/ (2 + )~/ ?sin(z arctan(t/x))
0

—1 et — 1

And by analytic continuation the Eq. (1.20) remains valid, thus for all z # 1
we have

1
R x) =¢(z,x) — e 1 (1.21)

If we define for z # 1 the Riemann zeta function by

$(x) =¢(z 1)
then we have
R
1 1
Y. =t@- (122)
n® z—1
n>1
‘We use the notation
R
RN —
t@—zw (1.23)
n>1

@ If f(x) = 1 then the series Z is divergent and to get a solution of

n=0 n+x
the difference equation R(x) — R(x + 1) = ! we replace it by the series
s n_}_x Vl+l) Thus we have

2 +oo

1
R(x) = Z( n—+x n+l)_/zn+x n+1)d
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This last integral is

2t 1 +o00
/ Z(n tx na l)dx = Z(Log(n + 1) — Log(n) —

n=1

where y is the Euler constant. Thus

1 1
Ri(x) = ZO(HX n )Y

and we get

(1.24)

Another way to get (1.24) is to use the the digamma function ¥ = T''/T that

verifies

1 2
Y(x+1)—v((x) = with / Y(x)dx =0
X 1

Thus we have

Ri = —y()
Note that we have
=3 Loy
Y = n+1 n—+x

and ¥ (1) = —y. By derivation we have for any integer k > 0

k!
PP+ 1) - Y@ = D

with
2
/ Py (e = 'y (2) = 3y () = (=) (k- 1)!
1
Thus we get
(=D 1
ka-lH - n 9 Kﬁ—k

(1.25)

(1.26)

(1.27)
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Note that for any integer k > 0 we have 2,7;1 nkﬂrl =¢k+1)— ,l(, thus we
have

dy (1)

= CD

Take f(x) = Log(x), where Log is the principal determination of the logarithm.
Then the relation I'(x + 1) = xI"(x) gives

LogT'(x + 1) — Log T (x) = Log(x)

thus
2
Riog = —LogI' + / Log T (t)dt
1

since it is known that || 12 Log T'(t)dt = —14Log(~/27) cf. Srivastava and Choi)
we get

Rioe(x) = —Log(T (x)) 4 Log(v/27) — 1 (1.28)

and for x = 1 we have

R
ZLog(n) = Log(v/2m) — 1

n>1

1.4.2 The Fractional Sum

We will now explain how the Ramanujan summation is related to the function that
Ramanujan writes

-1

p) =f()+...+f(x)

Consider f € O™ and suppose we have a function ¢ analytic for Re(x) > a with
< a < 0 and of exponential type < 7 which satisfies

9(x) —p(x—1) =f(x) with ¢(0) = 0

This gives ¢(n) = f(1) + ... + f(n) for every positive integer n, thus the function

i

s an interpolation function of the partial sums of the series Y _ f(n). If we set

1
R(x) = —p(x—1) + /0 @(x)dx
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then R is an analytic function for Re(x) > a + 1 of exponential type < 7, which
satisfies R(x) — R(x + 1) = f(x) with flz R(x)dx = 0, thus R = Ry and we get

1
o(x) = /0 (dx — Ry(x + 1)

Since ¢(0) = 0 we have
1 R
| et = = s
n>1

and the function ¢ is simply related to the function Ry by

e(x) = Re(1) = Re(x + 1)

Inversely this last equation defines a function ¢ analytic for Re(x) >a with
—1 < a < 0 and of exponential type < 7 which satifies

P(x) —p(x —1) = f(x) with 9(0) = 0

We are thus led to the following definition:

Definition 3 Letf € O, there is a unique function ¢, analytic for Re(x) > a with
—1 < a < 0 and of exponential type < & which satisfies

¢r(@) — @r(x — 1) = £(x) with g(0) = 0

We call this function the fractional sum of f, it is related to Ry by

R
or(x) = Re(1) = Re(x + 1) = Y _f(n) — Rp(x) + () (129)
n>1
and we have
R 1
> fm) = / @y (x)dx (1.30)
n>1 0

Example If k is an integer > 1 then

—Bit1 1= Bit1() s Bit+1(x) — Bi+1

k
k+1 k+1 k+1 T

a0 = |

If k = 0 we have ¢ (x) = Bi(x) + ) = x.
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If k is an integer > 1 then

k
@ 1 ( b I 4

pan) k! Xkt +ok+1)

For k = 0 we have
1
01 =YW+ +7

More generally for z # 1 we have
R

P1@W=Y ~Ce- )+ =t@-ten+

X2
n>1

Integral Expression of ¢

The relation (1.29) between ¢r and Ry gives by (1.13)

+oo _
o) = Zf()+f() /f(t)dt / fatin —fle—in

2t
e 1
n>1 0

If we replace x by a positive integer n we get the classic Abel-Plana formula

D [ -,
FO) 4+ ) = / o

/f(t)dt /+°°f(n+lt) f(n—lt)

e27rr -1
Note that the condition

. T fn +it) —f(n — n)
lim

n—>-+00 0 6‘2]” - 1

is sufficient to obtain

R n
s = tim 1)+t -7 = [

n>1

25
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Examples
(1) Take the function f = x +— » ixq where p and g are strictly positive integers.
We have
i ! —lim(1 +...+ ! —lLo(n))+1L0(+)
ptng  nteoptq T pang g ST R8P

Thus the generalized Euler constant (Lehmer 1975) defined by

( )—lim(l—i- N
= ey Tp+q T png

1
— Log(ng))
q
is related to the Ramanujan summation by
o 11
v(p.) =) + — Log(p+q)
Siptng p g
(2) Take f(x) = Log(x) then
PrLog(x) = Log(I'(x + 1))

and by the integral expression of ¢;,, we have

o0 arctan(!)

Log(T(x + 1)) = Log(~/27) + 1Log(x) + xLog(x) — x + 2/ 5
2 0 et — 1

Remark In his Notebook Ramanujan uses for the function ¢; the expression

+o00
o) =Y _(f(0) —f(n+x) (1.31)

n=1

when this series is convergent.
Note that if the series ) ., (f(n) — f(n + x)) is convergent and if

lim f(x) =0

x—>—+00

then the relation

N N
DM —fr+x) =D () —f(n+x—1)) =f(x) —f(x + N)

n=1 n=1
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gives when N — 400

o) —gr(x—=1) = f(x)

Thus if we assume that the function defined by (1.31) is analytic for Re(x) > a
with —1 < a < 0 and of exponential type < 7 then it verifies the requirements of
Definition 3.

1.4.3 Relation to Usual Summation

Consider a function f € O™, such that

lim f(n) =0

n——+00

By the definition of R; we have

n—1
R(1) = Re(n) = ) f (k).
k=1

Thus the series anl f(n) is convergent if and only if Rs(n) has a finite limit when
n — +o0 and in this case

R o]
D )= f@) + lim Ryn)

n>1 n>1

Now let us see how this last limit is simply related to the integral of the function f.
Recall the integral formula

Ry(n) = f(zn) - /lnf(t)dt+ i/0+°°f(n i) —f(n—ir)

6‘27” -1

and assume that

+o0 ; ;
1) — — 1t
i[OO —f0=i0
n—>+o0 Jo et — 1
Then the convergence of the integral | 1+°° f(1)dt is equivalent to the fact that Ry(n)
has a finite limit when n — 400 and in this case

+o0
lim Ry(n) = — f(Hdt
1

n—>-+00
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Thus we have proved the following result:

Theorem 2 Consider f € O™ such that

lim f(n) =0

n——+00

and

lim +OO f(n + it) — f(n — it) U=
n—+o0 J e2rt — 1 a

0

(1.32)

Then the series an \f(n) is convergent if and only if the integral | 1+°° f(0dt is

convergent and we have

R o0 +oo
S o =3 fn) - /1 F@dx

n>1 n>1

(1.33)

From now on, we will say in this case that “we are in a case of convergence”.

Example For z € C\{1,2,3,...} we have

R 1 ® 1 +oo 1
Z(n_n+z)zz(n_n+z)_/1 (x_x+z)dx

n>1 n>1

and by (1.26) we get

& +oo | 1
Sy L mravern- [ e
nzln n31"+z 1 X x+z

Thus for z € C\{1, 2, 3, ...} we have

R

1
> = Y@+ 1) +Log(z+ 1)
il +z

If p and q are strictly positive integers this gives

R

1 1 p 1 1 P
> —— y() -+ Log" +1)
Siptng 9 ¢ p 49 " 4q

(1.34)
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By Gauss formula for v (c.f. Srivastava and Choi) we get for 0 < p < g

LA 11 1 e »
Z = y— + Log(p+q)+ _ cot(n")
q9° P q 2q q

q—1

1 k
— Z cos(ZJrkp )Log(2sin(xw ))
9.5 q q

Remark Take a function f € O™ such that the function

+o00
gixr Zf(x—i—n)

n=0

is well defined for Re(x) > 0 and assume that g € O". Then we have
g —glx+1) =f(x)
Thus we deduce that
2
R = )~ [ gt
1

If in addition we have

2 +oo 400 .2
/ Zf(x-l—n)dx:Z/ f(x 4+ n)dx
Lp— n=0"1

then it follows that
+o00

+o00
Ri(x) =) flx+n)— 1 f(x)dx. (1.35)
n=0

Thus we see that in this case the function Ry is simply related to the usual remainder
of the convergent series ), f(n).



Chapter 2
Properties of the Ramanujan Summation

In this chapter we give some properties of the Ramanujan summation in comparison
to the usual properties of the summation of convergent series.

In the first section we begin with the shift property which replaces the usual
translation property of convergent series. This has important consequences in the use
of the Ramanujan summation, especially for the classical formula of summation by
parts and of summation of a product. General functional relations for the fractional
sum ¢y are also deduced.

In the second section we examine the relation between the Ramanujan summa-
tion and derivation, we see that the fractional sums ¢; and ¢y are simply related.
We deduce some simple formulas for the evaluation of the Ramanujan summation
of some series, which constitutes the content of Theorems 5 and 6.

In the third section we show that in the case of the Ramanujan summation of an
entire function the sum Zzli \J(n) can be expanded in a convergent series involving
the Bernoulli numbers. This very easily gives some formulas involving classical
constant or trigonometric series.

2.1 Some Elementary Properties

2.1.1 The Unusual Property of the Shift

Let f € O" and consider the function g defined by g(u#) = f(u + 1), we have by
definition of Ry

R(u+1)—Ru+2)=fu+1) =g

© Springer International Publishing AG 2017 31
B. Candelpergher, Ramanujan Summation of Divergent Series,
Lecture Notes in Mathematics 2185, DOI 10.1007/978-3-319-63630-6_2
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we deduce that the fractional remainder function R, is given by
2
Ro(u) = Ry(u+1) —/ R(u+ 1)du
1

2
= Re(u) — flu) — / (Rp(u) — £ ()

Thus we have

2
Re(u) = Rp(u) —f(u) + /1 Fluydu

And for u = 1 this gives the shift property
R R 2
oo 1) = Yo pm 1)+ [ e @
n>1 n>1

Therefore we see that the Ramanujan summation does not satisfy the usual
translation property of convergent series.
More generally let f € O™ and for Re(x) >0 let g(u) = f(u + x). Then we have

Ri(u+x) =Re(u+x+1) = fu+x) = g

we deduce that

x+2
Ro(u) = Re(u +x) — / Re(v)dv
x+1
thus taking # = 1 in this equation we get
R x+2
D fn+x) =Rex+1) - / R;(v)dv
x+1

n>1

This last integral can be evaluated by using

X+l xt+1 x+l
/1 Rr(v)dv _/1 Ri(v+ 1)dv = /1 f(v)dv

which gives

x+2 x+1
—/ R (v)dv :/1 f()dv

+1
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Therefore we have

R X1 x+1

Z-f(" +x) =Ri(x+1)+ /1 f)dv = Re(x) —f(x) + /1 fv)dv  (2.2)
n>1

Since Ry(x + 1) = R(1) — ¢r(x) we get the general shift property

R R x+1
Y fn+x) =) fn)— ¢ + /1 f(v)dv (2.3)

n>1 n>1

If m is a positive integer then the shift property is simply

R R m m+1
S fnem) = =Y+ [ fws
n=1

n>1 n>1

Remark Let us consider a function f such that x — f(x — 1) is in O", we define

SR of(n) by

R R
Y fmy =Y fn-1)

n>0 n>1

By the shift property applied to x — f(x — 1) we have

R R 1
S 1) =) + 3 f) + /0 f@dx
n>0 n=p

Examples

(1) Letf(x) = )1( and H,, = Y ]1(, we have

R 1 R 1 m+ll
Z ZZ _H'”+/ dx =y —Hy + Log(m + 1)
n>ln+m n 1 X

n>1

(which is a special case of (1.34) since H,, = ¥ (m + 1) + y).
As an application, consider a rational function

M

M
glx) = Z B i"m such that Z cn=0

m=0 m=0
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then we are in a case of convergence for the series ), ., g(n) and we have

IITED 9 DIIRY D S

1

n>1m=0
Note that
M R
Zzn+mzzzn+m:—zcmlf +ZcmLog(m+1)
n>1m=0 m=0n>1 m=1
and

+o00 M M
=1 = — nLog(1
/ x+mx A—iTOO/ Zx+m ZC og(l +m)

m=1
Thus we get

M

Zg(n) =Y cuHy

m=1

By summation by parts we obtain the classical result

+ + .ot e
Zg(n):co-l-co Cl+...+co Cm=1

2 m
n=1

(2) Forf(x) = Log(x) we get by (2.2)

ZLog(n +x) = —Log(T' (x + 1)) + Log(¥2m) = 1 + (x + 1)Log(x + 1) — x

n>1

Let’s have t > 0, since

t 1
arctan( ) = 2.(Log(n + it) — Log(n — it))
n i

then we get
R ; | R R
> arctan( ) = 2i(2 Log(n + i) = ) Log(n — if))
nzl n>1 n>1
1 ra+i
= — Log( (1+i )) + tLog(\/t2 + 1) + arctan(t) — ¢

2 °N (1 —ir)
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With t = 1 we get

R R R 1
Z arctan(n) = Z 5~ Z arctan(n)
n>1 n>1 n>1
1 ra+i b4
=—_L L 2 -1
28 p— ) T B(VD+
Note also that we have arctan(;) - r’l = O(nlz), thus we are in a case of

convergence and by (1.33) we deduce that

= oot s t +oo rot
Z(arctan( )— )= Z arctan( ) — yt +/ (arctan( ) — )dx
n n n 1 by X

n=1 n>1

this last integral is for (arctan(u) — u) M’Z du and by integration by parts we get

R toot 1 (1 +it)
Z(arctan(n) — n) = _ZiLOg( (- i) ) —yt

n=1

(3) Lett €] — m, +n[ and consider the series

1 1
Z(l + e(n—Dt o 1+ 6‘nt)
n>1

1 1

The partial sum of order N of this series is equal to , — | v,

convergence of the series and we have

this gives the

—) fort <0

+o00

Z( ! _ )=130 fort=0
— 1+ en—1t 14+ e -
"= +, fort >0

Thus, although the terms of the series are continuous at ¢t = 0, the usual sum
has a discontinuity for ¢ = 0. This is not the case for the Ramanujan summation,
as we can verify with this example:

By the shift property applied to the function

1

SO = e

we have immediately

R 1
1 1 1 1
2 - )= - / dx
14 e=Dr 1 4 e 2 Jo l4e7

n>1
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This is a continuous function of # which is given by

R
S 1 1 - —) 4 I (Log(1 + €') — Log(2)) fort # 0
il T 0 fort =0

+1/2

-1/2

We examine in Chap. 3 how the Ramanujan summation of a series ), >1f(1n,2)
with f(x, z) depending analytically on an external complex parameter z conserves
the property of analyticity.

Application

Ramanujan gives an explicit evaluation (Ramanujan 1927, 13. Sommation of a
certain series) of sums like

3

+00 , 3
Y (Wntl=n'= ()

n=0

)

Let us see how we can obtain this result by a simple application of the shift property.
First we write

400 oo
SN (Wt 1=y =1+ > (n+ 1 Jn)
n=0 n=1

and since we are in a case of convergence

+00 R +o00
Y (Wnt1—ynP =) (Wnt+1-yn)’+ / (Vx 41— /x)3dx
n=1 n>1 1

R
=Y (Vn+1-yn)’- ;(12\/2 —18)

n>1
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Next we use the binomial expansion of (v/n + 1 — /n)® and we get

R R R
Y (Wnt1=yn?P =43 (n+ D= =3Y 0+ (n+ 1))
n=1

n>1 n>1

By the shift property (2.1) we have

R 2
1
§ (n+ 17 =n?) =1 +/ XPdx = -1+ 5(8¢2—2)
1

n>1
Z((n—i— )1/2—}-111/2)—22:n1/2 1+/ x'2dx
n>1 n>1

= 2(@(—2)+ i)—1+ ;(wz—z)

After some simplifications we get
+o00 1
Y (Wn+1—n) = —~6¢(~,)
=0

which, by the functional equation of the zeta function, is Ramanujan’s result
Note that the series >, > 1(\/ n+ 1 — /n) is divergent but we can evaluate the
sum of the “regularized series” ), ((Wn+1—n— 2\1/}1) by the same technique:

+o00
Z(x/n—i-l—\/n— )—Zx/n—l—l—z\/n—zz\/n

n=1 n>1 n>1 n>1

+o00 1
+/1 (Jx+1—Jx—2Jx)dx

1

1
= — (-1

2.1.2 Summation by Parts
Letf € O™ and g € O™ be two functions such that fg € O™, we have

J@g) —f(x + Dglx + 1) = () —f(x + 1)gx) +f(x + D(gkx) —glx + 1))
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Thus by definition of the Ramanujan summation we have

R 2
D) —fn+ 1D))g(m) +f(n+ 1)(gn) —g(n+ 1)) = f(1)g(1) - /1 F(0)g@)dr
n>1

Using the property of linearity we get the formula of summation by parts

R R
D+ 1) —fm)gn) ==Y fr+ (g + 1) —gn)
n=1 nzl 2.4)

2
(g + /1 F@)g(0dr

Examples

(1) With f(x) = Log(x) and g(x) = x we have

R R 1

1
E nLog(l+ )=-— E Log(n) + / t Log(t + 1)dt
n>1 n n>1 0

and we get

X 15 J
ZnLog(l + n) =4 — Log(V/2m)

n>1

The regularized series an 1(n Log(1 + rll) -1+ 21}1) is convergent and by
linearity and application of (1.33) we deduce that

I 1 1 1
Y mLog(l+ )—1+ )= _y—Log(~¥2m)+1
n 2n 2

n>1

2.1.3 Sums of Products

If we replace g by ¢, in the formula (2.4) of summation by parts we get

R R
D+ 1) = f@)pe(n) = =Y fn+ D(gg(n + 1) — gg(n))

n>1 n>1

2
F(D(1) + /1 F@)ge(t)dt
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since pg(n 4+ 1) — @o(n) = g(n + 1) we get, by the shift property, a formula for the
summation of a product:

R 2 R
Y fgn) = /1 F@@e(t =Dt =Y (f(n + 1) = f(n)ge(n) 2.5)
n>1 nx=1
Example 1If f(x) = x and g(x) = Log(x) we get by (2.5)
R 2 R
> nLog(n) = /1 t9Log(t = D)t = Prog(n)
n>1 nx=1
Since ¢p4e(x) = Log(I'(x + 1)) we have

R 2 R
Z nLog(n) = / tLog(T (¢))dt — Z Log(n!)
1

n>1 n>1

Note that we can evaluate more directly the sum ZnRZ  nLog(n) by using the relation
(Srivastava and Junesang Choi 2012)

x+1 X
/ Log(T(1))dr — / Log(T(t))dt = xLog(x) — x + Log(~/21)
1 1
which gives
R 2 px
1-B, 1
Z nLog(n) — 5 + 2L0g(x/27r) = Log(T'(2))dt dx
- 1 J1
By integration by parts we deduce that
S 2 19 3
Z nLog(n) = — | tLog(T'(¢))dt — 12 + 2Log(«/27r)
n>1 1
Thus we get the relation

X X 19 3
ZLog(n!) =-2 Z nLog(n) — 12 + 2L0g(\/271)

n>1 n>1
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Theorem 3 Let f and g be two functions of moderate growth then we have

R R R R R
D fmgm) =Y ermgm) + Y gemf(n) =D fm) Y gn)

n>1 n>1 n>1 n>1 n>1
2
- / Rr(X)Rg(x)dx
1

Proof Since Ry(x) = ZZ; 1S (n) — @r(x) 4 f(x) we see that it is equivalent to prove
that

R R R R R
Y Rimg(m) + Y Re(mf(n) = Y fmgm) + Y f(m) Y gn)

n>1 n>1 n>1 n>1 n>1
2
- / Rr(X)Ry(x)dx
1
We have immediately

Ry(0)R(x) = Ry (x + DRy (x + 1) = Rr(x)g(x) + f(0)R,(x) —f(x)g(x)

thus if 2(x) = Rr(x)g(x) + f(x)R,(x) — f(x)g(x) then we have

2
Riw) = R0 = [ R (OR (0

taking the value for x = 1 we obtain the result. O

Example With f(x) = g(x) = )lc the preceding theorem gives
R 2
H, 1 1
Y Je@-te+ ) [ wora 26)
n>1 n 2 2 1

Remark Since Ry = ZnRZ f(n) — ¢ + f we can express the result of Theorem 3
only in terms of the fractional sums:

R R
D Fmgn) =D (F(megg(n) + ¢r(n)g(n))

n>1 n>1

2
4 /1 (FO)0e () + 07 (g () dx

2
_ /1 (F@8) + ¢ @) e ()
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2.2 Summation and Derivation

Let us first remark that if g € O% then we have dg € O%. This is a consequence
of Cauchy integral formula, since if g is analytic for Re(x) > a (a < 1) then for
0 <r<1—awehave for Re(x) > a+r

1 2 ) ) 1 2 )
1980 = | [ g+ re)e )| < [ g+ rei®)|d6
2rr Jo 2rr Jo

Letf € O" then df € O™ and we have
ORf(x) — ORp(x + 1) = 9f (x)

since Ry € O” then dRy € O™ and we deduce that

2
Raf = 8Rf —/ 8Rf(x)dx
1

This last integral is simply R;(2) — Rr(1) = —f(1) thus we get a relation between
ORy and Ry that is

Rap(x) = Ry (x) +/(1) 2.7)

which we can translate into the fractional sums

R
Qi (x) = 0y (x) —f(1) + D _ A (n) (2.8)

n>1

Theorem 4 Let f € O then for every integer m > 1 we have

R m 1
Zf(n) =— Z IZ‘ () + (—1m ! /0 Ran (1 + 1)3’”(” dt (2.9)

m!
n>1 k=1

Proof We have B|(t) =t — é thus

1 1
O=/O Rf(t—i-l)dt:/O Ry (t + 1)0B;(t)dt

Using the relation (2.7) and integrating by parts we obtain

1
Re(1) = ;f(l)+/O Ry (t + 1)By (H)dt
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If we proceed by repeated integration by parts we find

3™ ) = Z%W#m+mm/mmwn“)

n>1

Corollary Letf € O™ and for k> 1 let

Fr(x) = / Fi_1()dt with Fy = f
1
then by the preceding theorem we have immediately

R

t

ZM®=GW“/RWM "0 4
n>1

Form =1 we get

Z / f)dx = /1 iRy (1)dr

n>1

Example Letf(x) = )1( We have F|(x) = Log(x), and

Pl Pi(x)
Fit) = () Los+ )

where the Py are the polynomials defined by P; = 0 and

P (x) = kP (x) — kx* 2 if k> 2
Pi(1) =0

By the preceding corollary we get

(0 Prt1(n)
V;nkLog(n)—( Dk 1/ v+ 1) Bis dt—Z;l I]::l

In this relation the last sum can be evaluated in terms of Bernoulli numbers since

R

R 1 — Beys 1
k_ : _
E n = 41 if k>1 and E 1—2

n>1 n>1
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we get for example

ZnLog(n) / Y+ 1) 2() 32

n>1

R 1
Zn2Log(n) = —/0 Vvt + 1)333(t)dt+82—

n>1

Theorem 5 Let f € O then

R R
> gt =5 32 ) - S ) — 3 Flay with F5) = [ roar
n>1 n>1 n>1 n>1
Proof Since we have

XRr(x) — (x + DR (x + 1) =xf(x) =R (x + 1)

we deduce that

Z(nf(n) Ri(n+1)) = R(1) — / IR (1)dt

n>1

By the preceding corollary we have flz IR ()dt = Zn > 1 F(n), thus we obtain

R R R R
Yonfm) =Y Rin+1) =) fm)— Y F(n)
n>1 n>1 n>1 n>1
which is the result since Re(n + 1) = Ry (1) — ¢r(n). O

Example For all s € C we define the harmonic numbers H,(f) by

"1
H;SY) — ('0/\}Y (n) = Z

ks
k=1

Then by the preceding theorem we get

SLEED DRED SIRIED o) e

n>1 n>l n>1
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Let us write explicitly some different cases:

(a) Fors # 1,2 we have

R R
3 31 1 1 1
Y HY = — —(s—1 — > (1-
w =Rty TR 20 )
n>1 n>1
then

s 3 s—2 1
© — 2 e(s) — s—1)—
S oHY =) - (t=D =

n>1

1

(b) Fors = 1 we have

R 3 R 1 R R
S =35 Yt
n>1 n>1 n>1 n>1
thus
R 301
Zanz)/—i-z—Log(x/Zn)
n>1

This gives the sum of the regularized series

+o00
> (Ha— Logn) —y — ) = v~ Log(~/27) + |

n=1
(c¢) Fors = 2 we have
B 31 & &
’;HL)ZZI;nz_;n—F’g(n_l)

thus

R

3
Y HD = t@)-2
n>1 2
This gives the sum of the regularized series

+o0
P @+ H=t0)-1

n=1
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Remark Let f be a function of moderate growth, then by Theorem 3 we have

R R R R R
D F@AFm =Y e mof(n) + Y gap(mf(n) — Y f(m) Y f ()

n>1 n>1 n>1 n>1 n>1
2
- / Ry (x)Ryr(x)dx
1

Using (2.7) this last integral term can be easily evaluated:

2 2 1
/1 Rr(X)Ryp(x)dx = /1 R (x)0Rs(x)dx = 2f(l)2 —f(DR(1)

thus we find the relation

R R R R R
D F@AFm) =Y e mof(n) + Y gap(mf(n) — Y f(n) Y f(n)

n>1 n>1 n>1 n>1 n>1
1 R
2
= JFOP+FM) Y f )
n>1
For example if f(x) = xlp with p # 0, 1 the preceding relation gives
R (P R p+1)
Hy, H, 1 1
PR =t2p+D+CP)— ip+1) - (2.10)
nzlnp n>1 n? p-_l p

and for f(x) = )1( we obtain

R H, R Hr(lz)
;nz +§1 EOESHORS @2.11)

2.3 The Case of an Entire Function

2.3.1 The Sum of an Entire Function

In the first entry of Chapter XV of the second notebook Ramanujan writes:

+00
ho(h) + ho(2h) + ho(3h) + ... = / o(x)dx + F(h)
0
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where F(h) can be found by expanding the left and writing the constant instead of a
series and F(0) = 0.
Cor. If ho(h) = ah” + bh? + ch” + dh® + ... then

+o00 B B
ho(h)+heRh)+... = / e(x)dx+a "Hcos(mp/2)+b Thicos(mq/2)+...
0 p q

We try to give a precise meaning to Ramanujan’s assertion with the following
theorem.

Theorem 6 Let f be an entire function of exponential type < w, then we have

5 ) = / Fd— 1f0) - Zakf«»

n>1

(k+ 1)'

Thus in a case of convergence we have

+o00

k Bi+1
;lf(n) [ rwa o - >0

Proof Let us write f(x) = Y% xk with ¢, = 9*f(0). By the Cauchy integral
formulas we have for 8 < m a constant C > 0 such that for every integer k > 0 and
every r > 0

1 2 ) )
lex| = klr | f(reMe ™ di| < CrFefr
2 0

Since B < 7w we get

lex| < inf Cr*ef” < Ct* where T < 7
r>0

Let us now prove that Rf = 3,5 %R.«. We have

0 k!
1-B B
Ru(x) = P —lii+11 ) where ZZ_ | = Z (x)

thus we consider the function

+o00

Bit1(x)
XHZk'Rk() Z(k+1)' Z"(k+1)!
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By the Cauchy integral formula we have for 0 < r < 2x

e ™ gy

Bk+1(x) _ r—k 1 /27'[ grreiz
k+ 1)! 2 e — 1

thus for Re(x) > 0 we get

B 1 1
| k+1(X) I < ( / ) dl‘) r—kerlx\ _ Mrr—kerlx\
k+ D! =Y o jer 1

Since |c;| < Ct* where T < m, if we take T < r < 27, this inequality shows

that the series 3% =0 Ck ! (f_ﬁ;!(x) is uniformly convergent on every compact of the x

plane and defines an entire function of exponential type < 2. By

/2 =2 Bk+1(x) Z / 1- Bk+1(x) dr —
(k + 1)! 1 (k+ 1!
we can conclude that

_ X 1= Bei(v)
Rf(x)_gck (k + 1)!

Thus
+o00 +o00

X 1= Bii(1) Cr Biet1(1)
Rf(l)zgck k+1)! _Z(k+1)' whih = Zk(k“)'

this gives

>y = [ reoas— e Se B
k)

n>1

Remark Since Byi+1 = 0 for k> 1 we have

+o00

3 ) = / Fdx = L0 = 3 #0)

n>1 k=1 (Zk)'
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thus if f is even then

3 ) = /f(x)dx— £(0)

n>1

Example With p an integer > 0 and 0 < ¢ < 7/p, let f(x) = Sin;fxr) for x # 0 and
f(0) = ¢7. This function is entire and even, thus by the preceding theorem we get

R - p 1 winp
t t 1
Zsm (nt) :/ sin (x)dx—ztp
0

nP xP
n>1

Since we are in a case of convergence then

+oo . V4 R sop 400 P 400 D
t t t t 1
Zsm (nt) :Zsm (n)+/ sin (x)dx:/ sin (x)dx_ »
nP nP 1 0 2

xP xP
n=1 n>1

this gives

+oo . + .
Z sin” (nr) _ tP_I/ > smp(x)dx_ ltp
n? 0 2

xP
n=1

Remarks

(1) The preceding theorem is simply the relation

+o00

a"f(O)
Zf( )= Z NI
n>1 n>1

If we apply this to the function
+o0
a*r(1

x> fx+1) = Z ];E )xk

k=0

we get

k
Zf<n+1>_zaff”zk

n>1 n>1
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and by the shift property we obtain

R +o00 B
DSy ==
k=1 :

n>1

(2) The preceding theorem is not valid if f is not an entire function. For example

take f(x) =, +i 2,2 then if we apply the preceding result we find
St 1 1
e = L+ ™72 2
n>1 0

in contrast with the classical formula (Berndt 1985, Ramanujan’s Notebooks II,
ch.15, p.303)

i" Lo_m 1L
n>11+n2t2_2t 2 ret/t— ]

This is a particular case of a remark that Ramanujan writes after the first entry of
chapter XV:

11 the expansion of ¢ (%) be an infinite series then that of F(h) also will be an infinite series;
but if most of the numbers p,q,5,s,t,. . . be odd integers F(h) appears to terminate. In this case
the hidden part of F(h) can’t be expanded in ascending powers of h and is very rapidly
diminishing when h is slowly diminishing and consequently can be neglected for practical
purposes when h is small.

Corollary Let f be an entire function of exponential type < . Then

R +o00
o) _ (110 =£(0) » 0'/(0) B,
PO - [ CRRZICRIACED Dhra

Thus in a case of convergence we have

too 1 — (0 +o0 1
SO IO [y 0y

n>1

X 947 (0) By

-2 Kk

k=2

Proof Let the function g be defined by

_ S =10
N X

g if x # 0 and g(0) = f'(0)
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If we apply the preceding theorem to this function we get

f(n) f(O) f(x) f(O) 1 By
; Z / f(O) Zak (0)(k+ b

. + .
Since #g(0) = Bkkifl(o) we obtain the formula. O

Examples

(1) For z € U, (cf 1.15) take the entire function x — e~%. We have by the
preceding corollary

R —m 1 - too k
e e — 1 1 —F By
= d j—
D A DA

n>1 k=2

The sum Z+°° ( kl,) & lik is easily obtained by integration of the relation

X (- l)k -1 et 1 1
By = -
Z S e 2T
which gives

Z( l)kzk K~ Lo (1—e7%)—Log(z) + 1Z
g g 2

Finally we get for z € U,

R e~ 1 e — 1
> L= +/ _ dv—Log(1—¢™) + Log(2) (2.12)
n>1 0

For Re(z) > 0 or z = i with o €] — r, w[\{0} we are in a case of convergence

then
too e~ 1 p—zr _q oo ,—ux
Z =/ dx+/ dx+y + Log(z)
i1 n 0 X 1 X

— Log(1 —¢7%)
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Since ;l" ; e:" = —Log(1 — e77%), this gives the relation
too ,—ax [P |
/ dx + / dx = —y — Log(z) (2.13)
1 X 0 X

Taking the real part of this relation for z = i we obtain

/ cos(e) | / cosen) = )~ Log(lal) (2.14)
1 0

X X

(2) Let’s take Re(z) > 0, if we apply the formula (2.4) of summation by parts to the
functions f(x) = Log(x) and g(x) = ¢~ **, we get

R R 1
1

E e "Log(l+ )= (e£—1) E e "Log(n) + / Log(t + 1)e ¥dt
n 0

n>1 n>1

2.3.2 An Expression of Catalan’s Constant

Let f be an entire function of exponential type < . By the same method of the
preceding corollary we have

Zf(n) /f(x) ~FO =1 Ox +(Z Lo+ rro- o

nzl n>l
X T (0) By
< (k+ 1!k

With f(x) = sin(ax), 0 < o < 7, we get

R 1o 2k+1
sin(an sin(ax) — ox o B
Z n? 0 x2 Z (2k+ 1! 2k

n>1
Since we are in a case of convergence we obtain

+Z°:° sin(on) _ /1 sin(ox) — o /+°° sm(ax)d ‘e
0 1 x2

n2 x2
n>1

_JFXO:O( )k o2+ B,
P 2k + 1)! 2k
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By integration of (2.14) we get

1 . _ +o00
/ sin(oex) axdx+/ sm(ozx) dx = a —aLog(a) — oy (2.15)
0 l

x2 x2
Thus

o0 . +o0 2k+1
sin(an) P Boy
n; 2 = olosg@) kz::l( 2k + 1)1 2%

The Catalan’s constant G is defined by
G Z (=1t +Z°:° sin(7 n)
2n—1)2 o n?

thus we get the expression of the Catalan’s constant:

B

+o00
T T T T
2 T o Los(y) k;( VO kak+ 1y

2.3.3 Some Trigonometric Series

Let f be an entire function of exponential type <  and the partial sum of its Taylor
expansion

»~f(0)
»—1)!

By the same method of the preceding corollary we have for any integer p > 1

Tﬁ(f)(x) = f(0) +f/(0)x + ...+ e

f(n) fx) — T(f)(x)
/0 - [

n>1

R 1 R 1 , ap—lf(o) 1 3"’f(0)
+(;np)f(0)+(;np—l)f(0)+... o

X RHTIF(0) By
(k+p—1!k
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thus in term of zeta values we obtain

Zf(n) /f(X) LH®

n>1
= TN (0)
+§<z<p D= 1)
0 1 #F(0)
Y oo T2 p

R KHIIF0) By
(k+p—D!k

Example With f(x) = sin(ax), 0 < o < m, and p = 4, we are in a case of

convergence, thus we get

I sin(ax) — ax + a3 % §in
(ax) 6dx+/ (le)dx
1

+z°:° sin(an) /
o x* x*

n>1
+o0
3 OéZk 3 sz

1 o k—1
taB - )-r, _;(_1) (2k + 3)! 2

By repeated integration of (2.15) we have

I sin(ax) — ax + @3 +oo g 1 11 1
/ (@) 6 dx + / sin(ax) dx= o*(Logla)+y— )+ .«
0 1 x4 6 6 2

X4
Thus
3 e - PORRIE) Z( et @0 Ba
= o —_
L g 6" o8¢ * 2k + 3)! 2k

Since for o = ’2’ we have

n— oo . 7
Z (=1t :Zsm(zn)
2n—1)* p— n*
we get
)k X ( )2k+3 BZk

(1)"1_1713 T 11 =«
Z _pps Tl Ees(y) = 6)+2§(3)_;( D™ ok 43y 2%
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By derivation with respect to o we get

+o0 +o0 2k+2
cos(an) 1 , 3, — o By

) = o’Log(a) — 3)-Y (-1

Zoop T 08(@) = o +{0) k:l( " k42 2

and taking @ = 7 we have

n 2n)? 32
n>1 n>1
thus we get
o0 7T\2k+2
6 4 T 32 (3 By
3) = 2 27 )t 2
@)= 357 = 357 Los(y) + 55 ;( " okt 2 2%

(if we write By in terms of {(2k) this is a special case of an identity given by
Srivastava and Choi p.409 (22)).

Remark (Summation over Z) Since Fourier series are often given by summations

over Z it is natural to ask for the possibility of a Ramanujan summation over Z for

an entire function f € O such that the function x — f(—x + 1) is also in O”.
Then we can try to define Z,ﬁz f(n) by breaking the sum in two parts

R R
Y fm)+ ) f=n+1)

n>1 n>1
Now by the shift property we find easily that
m+1

R R
S f )+ Yo+t bm = [ pwas

n>1 n>1 m

is independent of m, thus we can define Zﬁz f(n) by

R R R 1
Soro = 3 f+ Ym0 = [ s

neZ n>1 n>1
R R 1
= > 0+ 10 + Yo~ | Fds
n>1 n>1 -

For example, let’s take @ € C and |a| < 7 and a # O, then the “divergent
calculation” of Euler

Ze"":Ze""—i-edZe_m: 1iea+ 1—e =0

nez n>1 n>1
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is justified if we apply our preceding definition to the function f : x > e** since

R R R 1
Ze"" = Ze“" —i—e“Ze_””—/ e“dx
nez n>1 n>1 0
:(lea+e)+( 1 _1)_6‘ 1
—e a
=0

Note also that for any integer k > 0 we have
R R R 1
St = Yok Yt - [ a0
nez n>1 n>1 -1

Note that if we apply our preceding definition to the function x
is not entire) we find that for z € C\wZ we have

I
Mo
[}e)

[\
N
[} %)
+ |
N
+
9
h
S
oQ
Nf\l\l
+ |
El

‘22— x> 2 — 272

= cot(z)

2.4 Functional Relations for Fractional Sums
Let’s take f € O™ and an integer N > 1, we note f(x/N) the function
X
x> f()

Theorem 7 Let’s take f € O™ and an integer N > 1, then

N x4k 1
Reeymy () = ) Ry( )—N | f(x)d
/Ny (X /; AN /1 /N x)ax

2 too o 1 1
= ¢ / ¢ dx+ + Log(Z
1 Z T Z

' (which

—XT

-7
+7'[)

(2.16)
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And we get
R N-1 R k/N 1
- - dx—N dc (217
LG ;[gﬂn Z / seac—N [ jear @1

Proof The function

—1
k —
R =Y R =Ry R D R

satisfies
R() = R+ 1) = Ri() = Ry 4+ 1D =£()

therefore by definition of the fractional remainder we have
2 N—1

N—1
Rpw =2 &3O [ ZRf(”"
k=0

Since

2 N—1

ZRf( +k)dx =N / R)dx = N / Fo)dx

J

we get

= x4k 1
Rreymy (@) = ) Ry( )—N | [fx)d.
f(x/N) (X /;f N /l/N x)ax

and for x = 1 we deduce that

1
Zf( )—ZRf( How /I/Nf(X)dx

n>1

We have by (2.2)

(k+1)/N
"“)—Zf(n—H v s

n>1
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thus we get
R N-1 R N—=1 .k/N 1
n k+1
NIVED ) WCEEESNDED B IO TS e
n>1 k=0n>1 k=1 1 1/N
which is
FGp =3 0= =3 [ = [ s
n>1 N k=0n>1 N k=171 /N
O
Remark If g € O™/N, then with f : x > g(Nx) we have
R N—1 R N-L N N
Z g(n) = Z [ Z g(Nn—k)| + Z N / g(x)dx — / g(x)dx
n>1 k=0 n>1 k=1 k 1
Thus if N = 2, we get for f € O™/?
R R R 1 2
Y fy = "f@n)+ > f@en—1) - 5 /1 f(x)dx (2.18)

n>1 n>1 n>1

Example For f(x) = i we get by (2.18)

L T I N | 1

- — Log(2
Zn ZZn+ZZn—l o Log2)
n>1 n>1 n>1

thus

R

1 y 1
- Log(2
2;12;1—1 o T ,los)

and by the shift property

koo y 1 1
=1 Log(2) + _Log(3
;2}1—}-1 + ot les@) + ,Log(3)



58 2 Properties of the Ramanujan Summation

This leads to an easy solution to a question submitted by Ramanujan in the Journal
of Indian Mathematical Society, that is how to prove that

1 3
1+2 = Log(2
+ ’; (4n)? —4n 2 08(2)

This relation is a simple consequence of the fact that

R

I B O RO
;(4”)3—4n__4;n+2(;4n—1+nZ=:l4n+l)

With f(x) = formula (2.18) gives

2x+l ’

R

s 1 LI 1
- Log(5) — Log(3
Z; n+1 T2 g ;12n+1+4( 08(5) = Log(3))

n>1

y 1 1 1
-1 Log(2 Log(3 Log(5
+2+20g()+40g()+4og()

thus

I 1 1 1
= - Log(2 Log(3 Log(5
;(4,1)3_4” 5+ 41082+ (Log(3) + o Log(5)

Since we are in a case of convergence then
+o0 R

Z 1 Z 1 N /+°° 1 J 1 N 3L @

= X = — O
(4n)} — 4n (ny—dn " ), (40P —4x 2 T 4%
n=1 n=1

Theorem 8 Let’s take f € O™ and an integer N > 1, then

Prem () = wa( )+Zf( VNS F) 4N / F()d

n>1

which is the entry 7 Ch VI of Ramanujan’s Notebook (corrected with the addition of
an integral term).

Proof We can write (2.5) in the form

x+1 x+2 x+N !
R+ 1) =R ) +Re(C )+ + Re( )—N/ f(x)dx
N N N 1N
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with Ryeym (6 + 1) = 305 1 f(3) = @rm (0) we get

R R
Zf(:,) — @ =N Y f(n)

n>1 n>1
x+1—N x+N-—-N
—loC " DA ]
1
- N f(x)dx
N

Corollary Since ¢pi/n)(0) = 0 and ¢;(0) = 0 then we get
N—1 Kk R R n 1
b)) =N g0 = =N [ s

a formula that Ramanujan gives without the correcting integral term.
Examples

1) Iffix) = )lc, we have f(x/N) = Nf(x) and since ¢r(x) = y + ¥ (x + 1), the
preceding theorem gives

Ny + ¥ (x+ 1)) = Ny +N(W(x; b4 qj(x;“vN)) + NLog(N)

and we get the well known formula
N—1
1 x+k
Y(x) = Log(N
(9= 2V C )+ Los

(2) If f(x) = Log(x), then ¢r(x) = Log(I'(x + 1)) and
Prix/N) (%) = @rog(x) — Progvy (x) = Log(I' (x + 1)) — xLog(N)
With the preceding theorem we get
NG

Jon )+ (x+ ;)Log(N) + Log(\/27r)

N
Log('(x+ 1)) = ZLog(
k=1

Taking the exponential we get the Gauss formula for the Gamma function.

N—1
- k
T(Wx) = @) 2 N2 [T+ )
k=0 N
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(3) Iff(x) = "9 thenf(x/N) = N**® — NLog(N)!, thus

@r(/n) (X) = Nogp(x) — NLog(N)(y + ¥ (x + 1))

and we get

N—1 . 1
xX=J
Noy) = Nogx+ 1) = S wr (" D+ [ s

J=0 N

this gives entry 17 iii of Chap. 8 in Ramanujan’s Notebook:

1 x—j 1
P Lozt x) = N ;(pmi(x)( N )+ Log(N)Y(x + 1) — 2LogZ(N)

(4) Iff(x) = Log?(x), then f(x/N) = Log*(x) — 2Log(x)Log(N) + Log?(N), thus
@ree/m) (%) = @5 (x) — 2Log(N)Log (T (x + 1)) + xLog*(N)

and by the preceding theorem

N—1 .

xX—=J

Prem (0) = > N
j=0

R
+ (1=N) > Log*(n) — 2Log(N)(Log(~/2m) — 1) + ;Logz(N)
n>1

1
+ N f(x)dx
1N

this gives

x+1
b4

1 2
Sy )7 Lo )

N—1 ) r
o) =Yo7+ 2Log()Log(
j=0

R
— (N=1)(Q_ Log’(n) —2)

n>1

this is 18(ii) of Chap. 8 in Ramanujan’s Notebook (with C= ZnRzl Log2 (n)—2).



Chapter 3
Dependence on a Parameter

In this chapter we give three fundamental results on the Ramanujan summation of
series depending on a parameter.

In the first section we prove that the Ramanujan summation conserves the
property of analyticity with respect to an external parameter z. We deduce the result
that an expansion of f(x, z) in terms of a power series in z gives the corresponding
expansion of the sum Zﬁ f(n,z). Some consequences of this result are examined.

In the second section we study the interchange of the Ramanujan summation
and integration with respect to a parameter u € [ where I C R is a given interval.
This gives a simple integral formula for the Ramanujan summation of a Laplace
transform.

In the third section we prove that with a very simple hypothesis we can inter-
change the two Ramanujan summations in Zzlil ZZ:>1 f(m,n). As a consequence
we easily prove a functional relation for Eisenstein function G,.

3.1 Analyticity with Respect to a Parameter

3.1.1 The Theorem of Analyticity

It is well known that the simple convergence of a series anlf (n, z) of analytic

functions for z in a domain U does not imply that the sum Z:;of f(n,z) is analytic
inU. -

A very important property of the Ramanujan summation is that analyticity of the
terms implies analyticity of the sum.

© Springer International Publishing AG 2017 61
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‘We have an illustration of this fact with

R

1 1
;m:z(z)—z_l

where we see that the pole of ¢ is removed.

Definition 5 Let (x, 7) — f(x, z) be a function defined for Re(x) > Oandze U C C
such that z — f(x, z) is analytic for z € U. We say that f is locally uniformly in O™
if

(a) forall z € U the function x — f(x, z) is analytic for Re(x) > 0
(b) for any K compact of U there exist « < 7 and C > 0 such that for Re(x) > 0
andz e K

|f(x,2)] < CeM

By the Cauchy formula there is the same type of inequality for the derivatives
9%f(x, z) thus for any integer k > 1 the function (x,z) — 0%f(x,z) is also locally

uniformly in O”. Thus we note that for any integer k > 1 the sum ZZ;I a’;f (n,z)is
well defined.

Theorem 9 (Analyticity of z — 217;1 f(n,z)) Let (x,2) — f(x,z) be a function
defined for Re(x) > 0 and z € U C C such that 7 — f(x, z) is analytic for z € U
and f is locally uniformly in O™. Then the function

R
> Zf(n,z)

n>1

is analytic in U and

R R
oD fnz) = 8 (n2)

n>1 n>1
Thus if zo € U and
+o00
fn,z) = Zak(n)(z —z20) for|z—z| < pandn > 1
k=0

then

+o0o0 R

R
Y )= am]c—z)

n>1 k=0 n>1
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Proof Let z be in a compact K C U, then by definition we have

R
S =" i

n>1
with

+o00 . _ _
e :/0 fA+it,2)—f(1 zt,z)dt

eZﬂt -1

For every t €]0, +oo[ the function

Z|—>f(1 +lt,Z) _f(l_ltvz)
et _

is analytic in U and, if z € K, we have by hypothesis a constant C such that

. _ s ot
F0 4t ~fA =it o e
et _ eZm -1

then by the analyticity theorem of an integral depending on a parameter, we get the
analyticity of Jr in U and for t > 1 we have

+o0 : _ _
a]f(Z) — / 0.f(1 +it,2) — 0. f(1 —it, Z)dl = Jys
0

6‘27” -1

Thus the function z — ZZ;I f(n, z) is analytic in U and

f(1,2) f(1,2)

R
0: ) fln2) =0 )7 +idJp@) =007 + i f()

n>1
that is
R R
0:Y fn.2) =Y 0.f(n.2)
n>1 n>1
Repeated application of this procedure gives for any integer k > 1

R R
Y fnz) =) 0 (n.2)

n>1 n>1
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For any zp € U we have the power series expansion

+o00

fn.2) = an)(z—z0)" for [z—zo| < pandn > 1
k=0

where ai(n) = ,(1! BIfo(n, 20)-

Since the function g : z Zzlil f(n, z) is analytic in U we also have

+o0 1
g@ =3 8=
k=0 """

and by the preceding result

R
0*g(z0) = Y _ 9f(n.20)

n>1

Thus we have

+o0o R

R
S =3 3 e

n>1 k=0 n>1 "

+oo R

=Y 1D am)z - )"

k=0 n>1
O

Corollary 10 Consider a function f analytic for Re(x) > 0 and of moderate
growth, then for z > 0 we have

+o0 +o00 R
lim (Z f(n)e™ — /1 fx)e™) = Zf(n)

z—>0+
n>1 n>1

Proof By the preceding theorem if (x,z) — g(x,z) is a function uniformly in O”
for z in a neighborhood U, of zy € C, then

R R

i vy

Jim D s =) Jim g(n.2)
n>1 n>1
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As a special case we consider g(x,z) = f(x)e™ where f is of moderate growth,
then with zop = 0 we get

R R
lim > f(mye™ =3 f(n)

n>1 n>1

For z > 0 we are in a case of convergence, thus we get

+00 +00 R
lim (;f(n)e‘"z - @) = gf(n)
O
Examples
(1) Take f(x,z) = Hl_x and U = {|z| < 1}, we haveforz € U andn > 1
oo k
f(n,2) = 1111—1Ffl =i+;(nki)lz"

thus by the preceding theorem with zo = 0 we have

> S ek - e
nzlz—i—n_y P kZ

By (1.34) we get for |z] < 1

Foo +o0 1
“Ve+D+Llogle+ ) =y+ ;(—1)%(/« + 1) - ;(—l)kkzk

thus we have the classical result

+o0
Y+ D =—y+ ) (-D""tk+ D
k=1
Note that by integrating this relation we get

+00 k
Log(D(z+ 1) = =yz+ Y (=DM,
k=2
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and since the series Zkzz(_l)k g(kk) is convergent then, by the classical Abel

theorem on power series applied with z — 1, we get
+o00
k
y = Z(_l)k—l gg{ )
k=2

Take f : (x,5) — x{., the function s + f(x, s) is analytic for s € C and f is
locally uniformly in O”. By the preceding theorem the function s ZZ; nlx
is an entire function. -

We have seen in Chap. 1 that ZZL; nls ={(s) — Sll for Re(s) > 1, thus by
analytic continuation we have -

21 1
Zns—é(s)—s_lfors;aél

n>1

If s = —k with k integer > 1 we get
R
(R + =2 Bt ek > 1
n=1

thus

Bt .
k) = — fk>1
(R == k=

and fork =0
X 1
;(0)_—1+§1 =-,
By derivation with respect to the parameter s we get

Z“g ™) _ e -

n>1

k!
(s — D+ fors # 1.

In the case k = 1, s = 0, this gives

R
') =— ZLog(n) —1 = —Log(v/2n)

n>1
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For s = 1 we have the sums ZR L”gn(") which are related to the Stieltjes

constants y; defined by the Laurent expansion of ¢ at 1
- =DF
(s+1) = Z o TS
The expansion

Z( 1)" LOg (n)

ns+l

gives by the preceding theorem

R R

1 (=D* 4 Logh(n)
DD DRI D
n>1 k>0 n>1

thus the Stieltjes constants are given by

R k
Log"(n)
=y "

n>1
Note that
R
> Log*(n) = ¢"(0) + 2
n>1

since ¢”(0) can be simply obtained by derivation of the functional equation of ¢
(Berndt 1985, p.204) we see that the Stieltjes constant y; is related to this sum
by

R
1 1 2
Log?(n) = 2_ " Log*(2w) — 2 3.1
n§>1 08" (n) ity Zog(ﬂ) ut 3.1

In the first page of chapter XV of his second Notebook Ramanujan writes (with
a little change of notation):

L 1
v+ Log(@) + e Log(l) + ¢ ¥Log(2) + ... = 2L0g(27r) when z vanishes.

The function

+o0
7 Z e “Log(n)

n=1
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is well defined when Re(z) > 0 and Berndt (Berndt 1985) gives an asymptotic
expansion of this function when z — 0+ by use of the Mellin inversion. Now
we can give an exact formula for this sum by use of the Ramanujan summation.

Let f(x,z2) = e “Log(x), for z € U, (cf. Example 1 of Sect. 1.4.1). the
function x — f(x, z) is locally uniformly in O™ and

+00 i
f(n,z) = Z (_j'l)]zjnjLog(n)
- J

By the preceding example we have

R
> niLog(n) = —¢'(=)) —

n>1

1
(J+1)?
Thus by the theorem of analyticity we get for z € U,

R

k—1
S e Log(n) = Z( D7 bk +

n>1

1
(k+ 1)2)

k—1

Z( D kHZ( l)k 41

|

+o0 k—1 1 -
—1 1
=S :( k)' *E(—k) + / ¢ dx
k=0 : <Jo *

For Re(z) > 0 and —7 < Im(z) < m, we are in a case of convergence thus

we have
R +o00 400
Z e “"Log(n) = Z e “"Log(n) — / e “Log(x)dx
n>1 n=1 1

and using integration by parts

oo 00 ,—zx
Z e “"Log(n) = Z e “Log(n) + / dx
n=1 n>1 1 *

Thus by formula (2.13) we get for Re(z) > O and — < Im(z) < =

+o00

too k—1
—n N DTy 4 Log(?)
Y e Loy =3 " dE(h) .

n=1 k=0
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Since ¢'(0) = —Log(~/27) we get the precise form of Ramanujan’s formula

k—1
7+ Losto SR e Lagn) = Long,mz( R

n=1

Take the series Y-, ¢~ with 0 < & < 1 and z € C with Re(z) > 0 and

- <Im(z) < 7.

Using th i ion ¢~ = Y00 U pak di
sing € power Series expansion e = k=0 Qo n € preceding

theorem gives
B ( l)k k 1
Z o = Z (¢(—ak) + )
e ak +1

Since we are in a case of convergence, we deduce that

Yo =3 e+ 2 T L [T

= — e X
k! +1 1

Now we observe that

too kk +o00 +00
—1 1 1 1
E (=D +/ e_z"udx:/ e dr=T( )z_ti
= k' oak+1 1 0 o o

thus we get for0 < o <1

+o00 ( )k k
e = Z t(—ak) + F( )e e

Note that this formula is not valid for ¢ > 1 since for o = 2 it gives the formula

S NR B R
2 =80+ ,T()z

n=1

which is wrong since it is well known that the true formula involves exponen-
tially small terms when z — O (Bellman 1961):

+o00 , 1 1 1 l+o<> ,
—znc __ — — —Jrn/
§ e* _5(0)+2F(2)z2+¢nz2§ ‘

n=1 n=1
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Remark With the same hypothesis as in the preceding theorem we have

R x+1
Riea@) = 2 fn+ 9+ = [ s

n>1
R R xtl
B = Y10 = Y fox )+ [ fd
n>1 n>1

By the preceding theorem we get the analyticity of these functions of z and by
derivation with respect to z we get

8zRf(x,z) (x) = Razf(x,z) ()
0:@r(x.0) (X) = @0, f(x.2) (X)

For example let f(x,z) = | with z # 1 then

Log(x
Prog) = —az(p:z =—{'(z) +0,¢(z, x) + i( )
For z = 0 then

PLog(x) = —£'(0) + 9:2(0,x) + Log(x)

but we know that ¢;,,(x) = Log(I'(x 4 1)) thus we get the Lerch formula (Berndt
1985)

Log(T'(x)) = —¢'(0) + 9:£(0,x)

3.1.2 Analytic Continuation of Dirichlet Series

Let a function x — c(x), be analytic for Re(x) > 0, with an asymptotic expansion
at infinity

1
c(x) = Z(xkxjk

k>0

where Re(jo) < Re(j1) < Re(jz) < ... < Re(ji) <...
The Dirichlet series

+o00
h(s) = Z c(n)

ns
n=1
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defines for Re(s) > 1 — Re(jy) an analytic function 4 and since we are in a case of
convergence we have

R 00
h(s) = Z Cf:?) + /1+ c(x)xdx

n>1

By the theorem of analyticity the function s +— Zn>1 ‘f;‘) is an entire function,

thus the singularities of the function 4 are given by the integral term. Let us write
formally

+o0 +o00 )
c(x)x"Fdx = / oapx T kdx
J >

k>0
+o00 )
= Z / oyx " kdx
k=01
pre s +jr—1

In some cases this can give a simple proof that the function % has simple poles at the
points s = 1 — j; with residues o.

Examples
(1) Take h(s) = YF2° (n+l)n3 for Re(s) > 0, solution of

h(s) + h(s—1) = L(s)

We have for Re(s) > 0

koo too
h(s) = d
©=2 it /1 (c+ Do
1

From the analyticity theorem we deduce that the function s +— Zn>l (s
is an entire function, thus the singularities of the (analytic continuation of the)
function & are the singularities of the function

+o0 1
k:s!—)/ dx
1 (x+ Dx°

The analytic continuation of the function k is obtained simply by observing that
for x > 1 we have

(=1t
()C + l)xs Z xSkt
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and the dominated convergence theorem gives

+oo 1 too . +o00 1 too (_1)k
k(s) = / dx = -1 / X N dx =
1 (x+ Dxs ; 1 /; s+ k
Thus the function /4 has simple poles at s = —k, k = 0, 1,2, ..., with residues

(—=1)* and

. [ D LN g (8 Y
‘vli@k(h(s)_wk):z; +;j—k
n> Jj

(2) Take c¢(x) = ¥ (x + 1) + y then ¢(n) = H, and for Re(s) > 1

+o00

h(s) = IZ

n=1

We have for Re(s) > 1

R +o00
h(s) = Z + /1 (Y (x+ 1) + y)adx

n>1

The singularities of the integral term are easily obtained by the asymptotic
expansion

By 1

1
1 =L —
Yx+1)+y 0g(x) +y + . E ok 2k

k>1

This gives for & a pole of order 2 for s = 1 with residue y, a simple pole for

s = 0 with residue 1/2 and simple poles for s = 1 — 2k with residues —Bzif.

3.1.3 The Zeta Function of the Laplacian on S*

Let A be the Laplacian on the sphere S?, the eigenvalues of A are the numbers
n(n+ 1) forn =0,1,2,..., each eigenvalue having multiplicity (2n + 1). Let {4
be the associated zeta function defined for Re(s) > 1 by

+o00

2n+1
Cals) = Z ns(n+ 1)

n=1
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Analytic Continuation of the Zeta Function of the Laplacian

The analytic continuation of this function (Birmingham and Sen 1987) can be
obtained by the use of an asymptotic expansion when + — 0+ of the function

+o0
Ot~ Z(Zn + 1)e D

n=1

since 6y is related to {4 by the Mellin transformation

+o00
/0 £ 04(0)dt = Ea(s)T(s)

But a more simple method is to use the Ramanujan summation. Since for Re(s) > 1
we are in a case of convergence, we have

R
2n+ 1 Too 2x 41
Cals) = ; n*(n+ 1)* +/; X+ 1) .

In this expression the sum is an entire function by the theorem of analyticity, and
the integral is

+oo 2x 4+ 1 +o0 21—S
dx = 2+ D 4 x)dx =
/1 St 1y X /1 2x+ 1)(x" +x) " dx Pl

Thus the analytic continuation of {4 on C\{1} is simply given by
R

2n + 1 21=s
) = ; ns(n+ 1) Tl (3-2)

and the evaluation of {4(—p) for p = 0,—1,—2,..., is easily done by the
Ramanujan summation:

R o+l
Sal=p) = ) @n+ Dnf(n+ 1) —
; p+1

We find for example

2 1
¢a(0) = 3 Ca(=1) = 15
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Note that by the use of binomial expansion we obtain

p p+1
a(=p) =Y Cy QR (—p—k—1)+ R (=p—k) -
=0 p+1
and since (R (—q) = ¢(—q) + q41-1 for g # —1, it follows that
P
ta(=p) = Y _ChQ2t(—p—k—1) + {(—p—k))
k=0
p p+1
1 1 2
+y c@ + -
; ”(p+k+2 p+k+1) p+1

and by a combinatorial identity we have finally

p
ta(=p) =Y _Ch(=p—k— 1)+ t(—p— k)

k=0

The Determinant of the Laplacian on S?

The product

det(A) = [ [n(n + 1)

n>1

is clearly divergent and it is classically defined by a well-known procedure to
define infinite divergent products. The zeta-regularization of a divergent product
[ 1,51 @(n) is defined by

reg
[Jatn = -0

n>1

where Z, is defined near 0 by the analytic continuation of the function

which is assumed to be defined and analytic for Re(s) > « for some @ € R.
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In our case we have a(n) = n(n + 1), thus Z, = {4 is given by (3.2) and we have

R
2n+1 2'=5Log(2) 21=s
— () = L 1 33
AY Zl pn s PpLos@@ D+ T T, G
Thus
R
—C4(0) = > "(2n + 1)Log(n(n + 1)) — 2Log(2) + 2
n>1
R R
=2 ZnLog(n) +2 Z(n 4+ 1)Log(n+ 1)
n>1 n>1
R
+ Z(Log(n) —Log(n+ 1)) —2Log(2) + 2
n>1
and by the shift property, we get
X 3
-2, (0) =4 L
£3(0) =43 nLog(n) +
n>1
since 2,7;1 nLog(n) = —=¢'(—1) — i we get for the determinant of the Laplacian on

S? the value

0 _ (=D,

3.1.4 More Zeta Series
The preceding technique can be applied to zeta series of type

=2 P
2 = Z (P(n))’

where P is a polynomial such that P(x) # O for Re(x) > 1.
We have for Re(s) > 1

400 / +o00 /
o) o) P
2 (pnyy -3 vow oy

n>1
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Again the sum is an entire function by the theorem of analyticity, and the integral is

/+oo P’(x) e P(l)l—s
1 (PO s—1

Thus the analytic continuation of Z is given by

2P PO
0= 2 by + s

Examples

(1) The simplest example is given by P(x) = x + a with Re(a) > 0. We have for
Re(s) > 1

o koo (a+ 1)
Z(s):’;(n+a)‘?:;(n+a)‘v+ s—1

Since Z is related to the Hurwitz zeta function by {(s,a) = a=* + Z(s), we
obtain the analytic continuation of the Hurwitz zeta function

@+ &
(ea="""" +a +§(n+a)s

which easily gives for s = —k = 0, —1, -2, ..., the values

a k+1 R
k)= + ¢ /j+1)1 +Y (n+a)f

n>1

this last sum is given by (1.18) and (2.2) in terms of Bernoulli polynomials

R a+1
1 — Biti(a) k + k
(n+a) = —a +/ X dx
Z k+1 1

n>1
thus we obtain

_Bk+1(61)

Sk a ==
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We have also

R _
ron Logn+a) (a+1)"° 1
202 gy T g1 BBE@EDE )

The value Z'(0) is easily evaluated since by (2.2) we have

R

Z Log(n+a) = —Log(I'(a + 1)) 4+ Log(v/27) — 1 + (a+ 1)Log(a+ 1) —a
n>1
thus

Z'(0) = Log(I'(a + 1)) — Log(~/27)

This gives the regularized product

reg
Fosazcroo Vo
e TFa+1)

(2) Take for Re(s) > 1 the function

+o00
2n+1
Z(S) = ; (l’l2 +n— 1)s

Then the analytic continuation of Z is given by
R

2n +1 1
7 =
() ;(n2+n+l)s+s—l

Note that for the function defined for Re(s) > 1/2 by

+o00 1
ZO(S) = nZ::l (}’l2 +n— l)v

the analytic continuation is not so simple. We have for Re(s) = o > 1/2

R 1 +o00 1
Z(s) = d
v ;(n2+n—1)f+/1 (2 +x—1p"
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Here again the sum is an entire function by the theorem of analyticity, and now

the integral is

too x—1_ . (=1 (s+k—1)
/1 x2‘(1+ x2 ) dng /

the interchange of Z,j:g and | 1+°° is justified by

X s] .. |s| + k—=1) [t (x— l)k too ]
Z x20+2k . X (-

+o0 (x l)k
x2s+2k

-1 _
* ) )_de< 400

We verify that the integral is a function s — Y(s) with the expansion

1 1 1
Y(s) = —s(. -
= e 17 Tasa 1)

s(s+l)( 1 1

2 2541 2543 s41

+...

1

)

And we deduce that Z is analytic near every negative integer —p, with

R

Z(=p) =Y (@’ +n— 1) + Y(-p)

n>1

For example, we have

R 1 3
Z(O):ZI+Y(O):2—2:—1

n>1

R
Z(-1)=) M +n—1)+Y(-1) = i +

n>1

R
Z(-2) =) (" +n—17+Y(-2) =

n>1

Z(=3) = Z(n +n—174+Y(=3) =

n>1

R

Z(-4) =) (" +n—1"+¥(-4) = 25 -

n>1



3.1 Analyticity with Respect to a Parameter 79
3.1.5 A Modified Zeta Function

We now study the function defined for Re(s) > 1 by

+o00

1
Gi(s) = ; L
Then the analytic continuation of Z is given by
LS too
Z(s) = d
() ;1+n5+/1 l—i-xsx

For the integral term we have

+o00 1 +001 1 +oo ‘ +ool
dx = dx = —1 d
[ 7 e [T e T [ L

the interchange of ;% and |, l+°° is justified by

NS % -DF (=)

X1+ ):Y - P xv-l—kx st(l +X‘Y)
and limy_s 400 f 1+°° s (11 +x0) dx = 0. We obtain for the integral term the simple
expression

+00 1 +o00 } 1

dx = —1
/1 1+x g( )(k+1)s—1
Thus the analytic continuation of ¢ is defined on C\{1, ). }....,0} by

R

1 e 1
GO=2 1 _;(_1)kks— 1

n>1
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For —s € C\{1, ;, é,...,O} we have

R " +o00 1
—5) = —1)*
61 (=) ;1+ns+k=l( )ks+1

R R 1 +00 . 1
zzl_zl—kns-’_;(_l) ks + 1

n>1 n>1
1 +o00 1 +o0o 1
IORD DD B
k=1 k=1
We deduce that for the function ¢; we have the simple functional equation

1R ]
é‘l(s) + é‘l(_s) = 2 + 2;(_1)k 1k2s2 -1
3.1.6 The Sums Znﬂzl n* s (n)

We examine the relation between the sums Y_/% e ™@;(n) and "% | e~"*f (n).

Theorem 11 Let f be a function of moderate growth and for 0 < z < m let

Ly (x,2) =/1 e “f(ndt

Then we have

R 1 R o R R
DT = D e = Y S =eT Y (g (4
n>1 n>1 n>1 n>1

Proof We have (by Example 1 of Sect. 1.4.1)
et et e —1
Refz/\‘ =—e ¢ - d e—X =
W=—e o7, adem®="_
Then by Theorem 3 we get
R . R . R
—n e e —n
Do == Y f— Y T
n>1 z n>1 € n>1
eZ

2
— / e “Rr(x)dx
1

1 —ef
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It remains to prove that

& 2 R n
“IRy()dt = ¢ " / I (ndr
o = e [ e

n>1

Consider the function G defined by

G(x,z) = & / ' e If(r)dt
1

We can evaluate Y7 |

differential equation

G(n, z) by observing that the function G is the solution of the

0,G —zG =fwithG(1,z7) =0

By (2.7) the condition G(1,z) = 0 gives Ry, ¢ = 0,Rs and we deduce that the
function Rg is a solution of the differential equation

3XRG - ZRG = Rf

This gives
X
Rg(x,z) = Ke” + e”/l e “Ry(r)dt

Using the condition || 12 R (x)dx = 0 and integration by parts we get
Kk=— ¢ / ’ Ry (1)dt
e—1J
then Rg(1,z) = Ke® gives

R n eZz 2
Y e / e (t)dr = / ¢ Re(1)dt
1 l—e Jy

n>1

Application: Evaluation of ZZZZI n"«pf(n)

For a function f of moderate growth we define the sequence of functions (Fi)x>0 by
Fo=fandfork > 1

X (x_ l‘)k

ﬂ@=[ﬂ4wmﬁm®=[ D roa
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Then the Taylor expansion of the function z = e“L¢(x, z) of the preceding theorem
is

X X Y
e“Lp(x,z) = & /1 e f(1)dt = Zz" /1 @ k!t) fdt = ZFk+1(x)z"

k=0 =)

Thus, by derivation of (3.4) with respect to z, we get a relation between the sums

R R R
Z nkgof(n), Z nkf(n) and C;, = Z Fi(n)

n>1 n>1 n>1
that is
R 3 R R
Do) =) S = nfn) =Gy
n>1 n>1 n>1
Rf 5 _R, 1 R 1 R
; ngp(n) = |, ;f(n) +, Zl nfn) = Zl wf(n) = Ci + €
3 1 3 1 5 1 3 1 &
;nzwf(n) =, ;.f(n) ~ ;nf(n) +, ;nzf(n) -, ;n?’f(n)
—C +2C, — 2G5
Example For f(x) = 1/x we get
S 3 1
;Hn =7 — Log(v/27) + )
S 5 7
;an = 7 —Log(N2m) = ¢'(—1) + g
s 1 17
D mHy = iy —Log(V2m) =2/ (1) + {(=2) +

n>1
More generally we have (Candelpergher et al. 2010)

R 14
1-B, .
> mlH, = ) +11+1 y+ Y (=DFCE'(=k) — Log(v/27) + 1, with 1, € Q
k=1

m>1
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3.2 Integration with Respect to a Parameter

3.2.1 Interchanging ZnRzl and [,

Theorem 12 Let (x,u) — f(x, u) be a function defined for Re(x) > a, with a < 1,
and u € I where I is an interval of R. We suppose that

(a) for all Re(x) > a the function u +— f(x, u) is integrable on I
(b) there is o < m and a function u — C(u) integrable on I such that

|f(x,u)| < Cu)e®™ for Re(x) > aandu € I
Then the function u +— Zz;lf(n, u) is integrable on I and we have
R R
/Zf(n,u)du = Z/f(n,u)du
1 n>1 n>1 !

Proof By the integral formula (1.14) defining the Ramanujan summation we have

R o0 . .
Zf(”»u) _ f(12, u) N i/+ F( + it,u) —f(1 — it u)dl

2t
e 1
n>1 0

Since by hypothesis
. _ _ ot
FAC i L;) S —it, ) < Cly2et €
e Tt __ 1 eznt —_ 1
we get
R 1 +o0 et
|;f(n,u)| fC(u)(ze +/0 2¢ ezm_ldt)

which proves that the function u Zgl f(n,u) is integrable on /. Therefore
R +00 . .
1, 1+ it,u) —f(1 —it,
/Zf(n,u)du:/f( ”)du+i// A ”;)tf( ) e
1 12 1Jo el —1

It remains to prove that this last integral is

/+oo flf(l + it, u)du — flf(l —it, u)dudt
0

et 1
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This is a consequence of the Fubini theorem since

+00 1 .t _ 1—'1‘, +o00 20{ ot
// |f(1+it,u) — f( i u)ldtduff/ C(u) Zete 1dtdu<+oo
] 1 Jo ent

6‘27” -1

|

Example In Sect. 1.4.1 we have seen that

Z sin(mrnt) = _cosﬂ(;n‘) + 5 cot( )fort e [0, 1]

n>1

this gives

12 R 1 2 /4
/ > tsin(rnnydt = - + 7 / 1 cot(r)dt
0 v = Jo

n>1

By the preceding theorem this is equal to

1/2 cos nn sin(}zn
Z/ tsin(mnr)dt = Z(— + 7t(22n2 ))

n>1 n>1

and since we are in a case of convergence this last sum is
1)1 1)1 +00 cos Larx +oo sin L x
Z( : Z o1 [ e [
4 n Jr2 (2n—1)2 2mx 1 2x2
Finally using integration by parts we get
/4 1 1
/ xcot(x)dx = 2G + g wLog(2) (G is the Catalan’s constant)
0
And by the same type of calculation we get

/ " 2 cot(x)d ! G+ I 2y ) 35 c(3)
X X)ax = T T~ LO, —
A 4 37 8 T gy
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3.2.2 The Functional Equation for Zeta

By the integral formula (1.14) defining the Ramanujan summation we get for u > 0
the formula

R 1 1 +oo 1 _ 1
Z — +l/ u+;tt u—it dr
nzln—l+u 2u 0 et — 1
and by the use of the shift property we have
i e+ 1+2/+oo ! Lo
= Lo —
n+tu & u  2u 0 e —1u? + 12

this gives the integral formula

i by (1+1)+2/+w( : byt
= O —_
“Iintu & u 0 et — 1 2mt’ u? + 12

By the Mellin transform for 0 < Re(s) < 1 of the two sides of this last relation we
can obtain the functional equation of the Riemann zeta function:

(a) for the left side we can apply the preceding theorem since for 0 < a < 1 we
have for Re(x) > a

Ms—l MRe(s)—l
| | <
X+ u a—+u
. Re(s)—1 ,
and the functionu > * = is integrable on ]0, +ool. Thus

+o0 R 1 R +o0 1 R
_ — s _
[ SR TED Y MRS D 3
0 n>1n+u 0 n—+u sin ;s

n>1 n>1

(b) for the right side we get

+o0 . 1 +o0 ) +o0 1 1 ¢
S~ Log(1 d 2 = — dtd
/0 u Log(1 + u) At /0 . /0 (62’”—1 Znt)u2+t2 !

which is

" +2/+oo( ! 1)/+oof—1 Y dudi
ssins 0 et —1 2nt’ [, . uz—i—tzu
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From (a) and (b) and since ZZ;I Tt =¢(1-s)+ i we get for 0 < Re(s) < 1

T -y 2/+oo( ! ! )/+oo I
—5) = - u u
sin(rs) 0 e —1  2mt’ Jy u? + 12

Evaluation of this last integral (Titchmarsh and Heath-Brown 2007) gives the
Riemann functional equation

T t(1—s) = 2Qn) T (s)¢ (s) /2

sin s sin(ws/2)

3.2.3 The Case of a Laplace Transform

Theorem 13 Letf be a continuous function on [0, +00[ such that there is a < 1
and C, > 0 with

IF(€)] < Cae forall € >0

and consider its Laplace transform f defined for Re(x) > a by

+o00 .
) = /0 e f(E)d

Then f is analytic for Re(x) > a of moderate growth, and we have

X oo 1 1,
OE /0 e O (3.5)
n>1

Proof By hypothesis
e f(§)] < Cpe =%
and for Re(x) > a we have

1

T (Rew—ak
—(Re(x)—a

dE =

/0 ¢ ; Re(x) —a

This proves that the function f is analytic for Re(x) > « and of moderate growth.
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Then we apply the preceding theorem to the function (x, ) > e f (&), this
gives

R r+o0 +o00 R
—né 7 — —né 7
; /0 e f(£)dt /0 ;e F(&)de

and since

R
1 1
Ser=et( )
e e
e l—e% &

we get the result. O

Remark With the same hypothesis of the preceding theorem we have an integral
expression for the fractional remainder

X 400 .
R == [ soa [t - D (6

Example Take f(x) = Xlz for Re(z) > 0 then

+o00 B Ez_l
— x€
&) = /0 ‘re “

Thus for Re(z) > 0

R 400 1 1 gz—l
_ _ _ — _
‘@-, 1_2 z_/o U T re®
and
R +oo 1 1
_ _ — _
=X, = G e

Theorem 14 Let f be a function of moderate growth such that for Re(x) > 1 we
have

+o00 1
fx) = Z k
k=1

where the power series Y -, cxx* has a radius of convergence p > 1.
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Then if p > 1, we have

Zf(n) =ay+ Z = ) 3.7)

n>1

This result remains valid for p = 1 if this last series is convergent.

Proof We begin with the case p > 1.
Foreveryp—1 <e < pletr = plg < 1, by hypothesis there is M > 0 such that

lex] < Mi* for every k > 1

k—1
Thus the series Zk>l Ck (i ! is convergent for all £ € C and the function

k—1

R +o0 ég-
f® = ;ck(k_ I

is an entire function with | f ()| < Ce"!. The function f is the Laplace transform of
the entire function f because for Re(x) > r we have

400 +00 e %-k—l 400 +o0 v ,f;'k_l 100 .
/0 ;Cke (k— 1)|d$ = ;Ck/o e (k— 1)‘d$ = I;Ckxk :f(_x)

where the interchange of the signs [ et ) is justified by

400 t00 S — +o0o
Z lckle™ Re(x)g dé < Mr e~ RO g < 400
0 - 0

Thus by Theorem 13 we get

n et ! —1 +OOC g
> [T RO ST

n>1

Since

k—1

1 Lo
Jmet "% gy =

1
le™5( — e < e I77%

1 —e$

we can again interchange f et Y, and so we get

1 gk—l
> - ZC"/ Qe T

n>1
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and by the preceding example
Zf(n) =y + Z al® =, )
n>1

It remains to extend this result to the case p = 1.
Let 0 < a < 1, if we apply the preceding case to the function x — f( ) we get

R n +o0 1
YA )=ara+ )y ath— ot
=1 ¢ k=2
By the theorem of analyticity we have
lim Zf( ) = Zf(n)
n>l n>1
and by the Abel theorem on power series we have
+o00 1 +o0 1
li k) — K = k) —
Jim ey @+ et - _ pat) =ay + L aG®) - )

if this last series is convergent. O

Remark Since

R R 1
Zln y an Zlk )~ | fork#

the preceding theorem can be stated in the form of the result of an interchange of
the signs Y7¢ | and Y7

R +oo 1 +o0 R 1
PIPILEDILD D
n>1 k=1 k=1 n>1

Example Letx € R and f(x) = Zn>l e_n'A; , we get by the preceding remark

+o00

(- 1)” = (- )k
f@ =Y Zm: Z Ck+1)— )

k=0 n>1
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Let us now see how this function is related to the heat equation in R2. Consider, for
X = (x1,x) € R? and 7 > 0, the function

R
1 [1x112

UXx,t = Z nt te_4<"+')

n>1
It is easily verified that this function is a solution of the heat equation

U= U+ U

X1X1 X2X2

Using the well known heat kernel we get

1 _ix—rnp
UX,1) = e 4 U(y0)dY
R2 47Tt

Thus, using polar coordinates, we have for ¢ > 0
R R
1 _ 2 21 [T rp o? 1 _2
At = " 4 1 K Tan)d
;(n—}-t)e ¢ 2t/0 0(2t)'0€ (; n’ )dp

where I, is the Bessel function

+o00 1 z
In(z) = 2%
1D =2 5
k=0
. 2 o
Withx ="', andu = ', we get
R +00 R
1 X « 1 2 /xu. _u 1 _u
Tt = et 1 T Y
D, = B A TaeT SBIIT

For t = 1, by the use of the shift property, we see that f verifies the integral equation

2 +o00
fx)=e*— /1 the_?tdu + e_x/o To(2v/xu)e™"f (u)du

Note that

Re_i—l +ooe_
=3 Hr=v+)]

n>1 n>1

x

n—1 too ey ]
—/ ¢ dv
n 1 v
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The function
= e n—1
g =y+>
n>1 n
is the exponential generating function of the zeta values
+oo Xk
— k
g =y + ) Lk+ DD,
k=1

It is easy to prove that the integral equation on f now gives a simpler integral
equation for this generating function g, that is

gy =e e /000 e "Io(2+/xu)g(u)du

3.2.4 Series Involving Zeta Values

Consider an integer m > 0, by the shift property we have
R R 2
Z(n + 1D)"Log(n+ 1) = anLog(n) + / xX"Log(x)dx
n>1 n>1 1
On the other hand we have the expansion

U oo 1
(n+ 1)"Log(n+ 1) = Z C,n’Log(n) + Z C.n'Log(1+ )
n
j=0 j=0

m o m ‘ '+oo (_1)k—1 1
= § :C/ L § :C/ J§ :
' ml Og(n) + ‘ mll k nk
j=0 j=0 k=1
Since

R
> niLog(n) = —¢'(~j) -

n>1

(j+1)2
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we get the relation

m—1 ' m ) 400 (—l)k_l 2
“Ya@Em+ e R = [ g
=0 =0 k=1

m—1

. 1 5
260G, )
j=0
For example we get:
withm = 0
k—1
Z( V=0
with m = 1
)k 1
Log(V/2m) + y+Zk(k+1) (k) =1
with m = 2
Log(v/2m) — 28/ (=1) + | 2+oo (D ="
0g(V2m) =20'(=1) + v + ;k(k+l)(k+2)z()—3
withm = 3
) ) 1 = (— 1)k 19
Log(v2m) =3¢'(=1) =3¢ (_2)+4V+6; ke k+26+3 P T 1

and more generally we have

o, (=D
_1n(¢zn)—jzzlc;n§(—1)+m+ y+m Z ket )(k)eQ

We can give another form of the preceding relation if we consider the function
R
)k k

Z Log(1 + )—Z( !

n>1

1 j—1
Z( .) R - B
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if we use the formula we have proved in Sect. 2.1.2, that is

R R

1 1
Z e Log(1+ ) =(—1) Z e “Log(n) + / Log(t + 1)e ¥dt
n 0

n>1 n>1
and (by the theorem of analyticity) the expansion

R

k—1
S e Log(n) = Z( D7k +

n>1

1
(k + 1)2)

we get the relation

k+°°( 1)—1

z“?k >

k k
f)Z( R

+o0 k_k
: (-1)*z 1
(1 -e ); Ko+ 1)

1
+/ Log(t + 1)e™%dt
0

Expanding in powers of z this gives an explicit evaluation of the sums
+
3 V)
=/ +k

We get for example

+o0 i

=1, . 1 .
> i+ ¢(j) = —Log(¥/2m) + ,v + 1 (Singh and Verma 1983)
Jj=2

Z V) = 20D - LogWam) + Ly +
2
Z V() =302 =301 ~ Log(vam) + Ly + ]

12

Z( 4() =~ £ + 60— 4 L)~ LogVam) + Ly +

93
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Remark Note that a series like ) ;. g(kk) is divergent but we have

+o00 k) — +o00
DR S E (R
k=2

n=2

+o00
=Y (Log(n+ 1) — Log(n) — . ! )

n=1 +1

R R R 1
=YL D=3 Logn) —

ICIRRINS SRTIRD S

n>1 n>1 n>1

+o00 1
+ /1 (Log(x + 1) — Log(x) — ‘t 1)

This technique can be applied to evaluate the sum Z,j:f C(ﬁ_)l—l . Since

+00 +00 +00 —
§2k—1 _ ((n+ D72 2

we can write
+o0 +o0
(-1 _ 3
> = fn)
k=1 k +1 n=1
where f(n) is given by the function

f(x) =2(x+ 1)?Log(x + 1) — (x + 1)*(Log(x + 2) + Log(x)) — 1

Thus we have

R +o0 3
=) fm+ | fedx =) — Log(m)

n>1

+o00
§(2k) =1
; k+1

And, using the shift property, we deduce that

=~ Log(n)

+Z°:°§(2k)—1 3
okt 2
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We can apply the same method to get

= Log(2) —y

+§§(2k+1)—1
— k1

3.3 Double Sums

3.3.1 Definitions and Properties

We study iterate Ramanujan summations
R R

2.2 flmn)
n>1 m>1

Theorem 15 Consider a function (x,y) +— f(x,y) analytic for Re(x) > 0 and
Re(y) > 0. If there is C > 0 and o < 7 such that

|£(x,y)| < CeHIFDD (3.8)

then we have

R R R R
DO fmny =" f(m.n)

n>1 m>1 m>1 n>1
Proof First we note that (3.8) implies that

x> f(x,y) in O"for all Re(y) >0
y = f(x,y) in O™ for all Re(x) > 0

For Re(y) > 0 consider the function f; : x — f(x,y) and its fractional remainder
Ry, € O". If we set R(x,y) = Ry,(x) then we have

R(x,y)—-R(x%—l,y)::j(x,y) (3-9)

with flz R(x,y)dx = 0. Thus for Re(y) > 0 we have

R
> fOm.y) =R(1.y) (3.10)

m>1
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This function R is given in Theorem 1 by the integral expression

. +o00 . _ .
R(x.y) = —/l f(t,y)dt+f();y) +i/0 ftity) —flx—ity)

6‘27” -1

By this integral expression we see that the function R satisfies an inequality like (3.8)
(with another constant C).

Thus for Re(x) > 0 the function y — R(x, y) is in O, thus by Theorem 1 we get
a function y = W(x, y) in O™ such that

W(x,y) — W(x,y + 1) = R(x,y) (3.11)

and [ W(x,y)dy = 0 for all Re(x) > 0.
This function also has the integral expression

(x.y) +i/+°° RQ.y + i) = R(ey—in)
0

M R
W(x, y) = —/; R(x, l)dl + 5 o2t _ 1

By definition of the Ramanujan summation we have for all Re(x) > 0

R
> R(x.n) = W(x. 1) (3.12)
n>1
By (3.12) and (3.10) we get
R R R
W(.1) =Y R(l.n)=>» > f(m.n) (3.13)
n>1 n>1 m>1

Now it remains to prove that W(1, 1) = 2531 2,7;1 f(m,n).
By (3.9) and (3.11) we have the relation

Wy) =W+ 1y —Why+1)-Wk+Ly+1)=f(xy)
Thus if we set
T(x,y) = W(x,y) = Wx+1.y)
and define for Re(x) > 0 the function f, by £.(y) = f(x,y) then
T(x.y) =T(x.y+1) =f(y)

Using the above integral expression of W(x,y) we verify that W also satisfies an
inequality like (3.8). Thus for Re(x) > 0 the function y — T'(x,y) is in O". Since
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we have

2 2 2
[ ey = [ Wy [ weer 1y =0
1 1 1
then it follows that for Re(x) > 0 we have

Ry (y) =T(x.y)
We deduce that
R
D fen) =T 1) = Wx.1) = W+ 1.1)
n>1
This gives for any integer m > 1
R
> flm.n) = W(m.1) = W(m+1.1)
n>1
Since the function x = W(x, y) is in O" for Re(y) > 0 then
R
> (W(m. 1) = W(m +1.1))
m>1
is well defined and we have by the shift property
R R R R 2
DO fmy =D W 1) =Y Wim+1,1) = W(l, 1) — / W(x, 1)dx
m>1 n>1 m>1 m>1 1
It remains to note that by (3.12) and Theorem 12 we have
2 2 R R 2
/ W(x, 1)dx = / ZR(x, n)dx = Z/ R(x,n)dx =0
1 1 n>1 n>1 1

|

Remark Note that the sum 2,7;2 Y min=if (m+ m) is well defined for f € O"
since we have for k > 2

> f+m) = (k= Df(k)

m+n=k
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Thus we have

R R R
Yo ftmy =) (k—=Dfk) =Y nf(n+1)
k>2 m+n=k k>2 k>1

But we don’t have equality between the sums
R R R
DD Skmyand Y Y fntm).
m=>1 n>1 k>2 m+n=k

Let us examine the relation between these sums. Let F(x) = |, lx f(t)dt then by the
shift property and Theorem 5 we have

R R 1 R R R m+1
S D ftm = e =Yg+ Y [ s
m>1n>1 n>1 m>1 m=1
R R n R rmt+l
=Y (n—-1fm+2y / f@dx+ )" / f(x)dx
n>1 n>1 1 m>1vM

R R 2
=Y -+ 23 F + [ FO)

n>1 n>1 1

Next we observe that

R R
DY f+my= nf(n+1)
k>2 m+n=k n>1

R 2
S 00— 1f () + /1 (= 1 @

n>1
R 2

=Y (n—1f(n) +FQ2) - /1 F(x)dx
n>1

Thus we obtain the following formula of diagonal summation

R R R R 2
Y farmy=>" " f(n+m)+22F(n)—F(2)+2/l F(x)dx

m=>1 n>1 k>2 m+n=k n>1

or in another form

R R R R )
X fntmy =D (n—Df(m)+2> Fn) + / F(y)dy (3.14)

m>1n>1 n>1 n>1 !
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Example Consider the sum ZZ;I SR ™ We have

m>1 m+n

R R R R R R
)I)IININED 35 DUENED 35 DI
nzllnzlm+n n>1 m>1m+n nzllnzlm+n

thus we get

Since Zznzzl m-li-n =y —H,+ Log(n+ 1), we get

R 5 R 1
ZnH,, = 12)/ + ZnLog(n—}— 1) — g
n>1 n>1
Note that
R R R
ZnLog(n +1) = Z (n+ DLog(n+ 1) — ZLog(n +1)

m>1 n>1 n>1

—'(=1) — Log(v/27) + 1

thus we get another proof of the relation

s 5 7
Zan =7 — Log(V2m) = &' (=1) + 8

n>1
More generally for a positive integer g we have

2q 2g+1 2¢+1
m- T 4+ n
E (—1)knkm2q k=

m n
k=0 +
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and by the preceding theorem

R R R R R R
sz2q+l +n2q+l m2q+1 N n2q+1
n>1 m>1 m+n nzlmzlm+n nzlmzlm+n
R R R R
m2q+1 n2q+1
nzlmzlm+n >1 m>1 +n
R R 2a+1
=222,
m+n
n>1 m>1

thus we get

Z( DR (k)" (= 2q+k)—zzn2q+1z

m n
k=0 n>1 m>1 +

then we have

Z n**H, = Z n** Log(n + 1) + y{® (=29~ 1)

n>1 n>1
1 &
=, D DR (=2 + k)

k=0

this gives ZZ?ZI n**1H, in terms of the values ¢'(—k) fork = 0,1,...,2¢g + 1.

3.3.2 Some Formulas for the Stieltjes Constant y,

R Log(m+1)

The Stieltjes constant y; = > is related to the sum ) <, "7

We have

R Log(m)
m>1 m

R R R
Log(m+ 1) Log(m+ 1) Logim+1) 1
>, =X +2.

m>1 m>1 m+ 1 m>1 m+ 1 m
R Log(m) 2 Log(x) R Log(m+1) 1
N RS>
~ m 1 X = m+ 1 m

_ Log(m) ) Log(m+1) 1
_Z . +L (2)+Z el m

m>1 m>1
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Since for the last series Zmzl L"frffﬁl) yln we are in a case of convergence, then we
have
R Foo +o00
Z Logim+1) 1 Z Log(m+1) _/ Log(x + 1)dx
—~ m+1l m N — m(m + 1) 1 x(x+1)
R Logim+1) =% 1
= Z - — Log*(2)
— m(m + 1) 12 2
Finally we get
R 400
Log(m + 1) w2 Log(m + 1
Y A A (3.15)
= m 12 — m(m+ 1)
Proposition We have the relation
R R
L 1 H, 2
DR DI @16
m m 2
m=1 m>1
And the Stieltjes constant y; is given by
2 L1 /2(1#( ) Ji"’ Log(m + 1) 317
= —_ X X — .
=6 272 m(m + 1)

m=1

Proof We have by the linearity property

R 1 R 1 R R 11 R R Lyt R R 1
+ — m no_ — 2
%m;m—f—n %;nm—}—n r;;m—f—n Y;;mn v

Interchange of m and n gives trivially
Syma— m+n n n+m
and by the preceding theorem

LNy P LN
gn;n%—m:zznn—i—m
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thus we get
R R
1 1 1,
= 3.18
Z mZm+n 2)/ ( )
Since ZZ?ZI m_lHl =y —H,, + Log(m + 1) we have

1&E 1 R

E E = E (y — Hy, + Log(m + 1))
m m-+n m

m>1 n>1

m>1

that is
R
Log(m +1)
Z > R D 5>
m>l n>1 m>1 m>1
which gives by (3.18)
iLog(m+l) _ iHm B y?
m N m 2
m=1 m>1
This last relation gives by (3.15)
B i H, 3 Z X Log(m + 1) (3.19)
= = m = m(m + 1) '

The conclusion is obtained by the use of (2.6) that is

~H, 1 12 5
> — @ -1+, [ oy

Remark Note also that

n>1 n>1 I+ nx
By Theorem 12 we have

L0g(n+1)
Z / Zl—i—nxx

n>1
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and by (1.34)

L Log(! + D=y (L +1)
>l e
11+nx X

therefore we have

R
Log(n+ 1) TR Log(x+ 1) —y(x + 1)
Z = /1 dx

n X

n>1

By (3.15) this gives

(3.20)

X

X Log(m + 1) T Logx+ 1) —y(x+ 1)
Z m(m + 1) /1 d

(n+1)

L
There are similar integral expressions for the sums Z+°° o8 n,,

p > 1. Using the finite Taylor expansion we get

with an integer

p— 2 )k—l

+o00 1 1
Log(x+ 1) = Z

X
14+ x

)H<+(_1)17)C17—1/
1

which gives for every integer n > 1

L(+1) (1)“1 too g 1
og(n Z ok Jr(—l)P/l 1 e 4 m) t

and by summation we get

os(n k +o00 ¥
ZLg(H) Z() _k)+<1>1y+(1)p/ Yt

xP
n=1 p

Proposition We also have the integral expressions

2 1 1
y=" + 1/ (W(x + 1))de—/ vt Dty (3.21)
6 2 Jo 0 X
and
1 +o00 _
" (/ Yx+1)+ ydx n / Yx+ 1) Log(x)dx) (3.22)
X 1 X
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Proof We can obtain another formula for y; by using the relation

R
1 1
> =y—H,+ + Log(n)
Zlm+n—l n

which gives

Log(n)
- -t2)+1
> Zan+n V+Z (@) +
n>1 n>1 m>1 n>1
By the preceding theorem this last double sum is also

ZZ m+n—1

n>1 m>1

1

R R R 1
22: m+n—1 ;mzzzlmm+n—l

|VMZ)

thus we have

R
=Y -+ N e 4

n>1 n>1
with
R
1 1
fm _mz;lmm+n—l

For n > 1 we have by (1.34)

I BN R .
f(n)—n_l(;m—m o) = gy @Y= Log)

and for n = 1 we have f(n) = {(2) — 1. Thus we see that the function f is given by

Y+ ¢ () = Log(x)

£ = _1

f)=t@) -1

Using the shift property we have

R
Zf(n) Z Z Log(n +1) +e@)— / y+y(x)— Log(x)dx

x—1
n>1 n>1 n>1
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which is by (3.16)

R 2 1
1, n Yx+1)+y
Zf(n)—2y+4—1—/0 DH g

n>1
this gives

R
H, 1, = "yx+D+y
= — — d. 3.23
Y1 ; n 2J/ + 12 /0 . x ( )
and (3.21) is obtained by using (2.6).
With the preceding results (3.17) and (3.21) we get
! 1 =L 1
[ 7D 3 st )
0 X — m(m+ 1)

and by (3.20) we have

Y1 =

12 X X

w’ _/+°° ¥(x + 1)+de_/+°° Y+ 1) —Logx+ 1)
1 1

this is (3.22) since

X X 12

2 Log(x + 1) — Log(x) o Log(l 4+ 1) a?
d.x == d_x =
1 1

Remark The series Y ., ! (H, — Log(n) — y) is convergent and we have

n>1 n

K H,—Logn) =y S~ Hy—Log)—y [T y(x+ 1) — Log(x)
> =y ey "

n X
n=1 1

Since by (3.19) and (3.20) we have

R
S, _/+°° Yo+ 1) - Log)
—n 2 12 1 X

this gives the following result (Furdui 2012)

+o0 2

> H— Log) ~ ) =~ 2+

2 127

n=1
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3.3.3 A Simple Proof of a Formula of Ramanujan

Now we use double sums to give a new proof of the Ramanujan’s relation
(Grosswald 1972): for t > 0 we have

1 T mir = mir 1. 1
+t =(t+ — 3.24
t;ezmﬂ/’—l l; exmrt _ 1 ( t)24 4 ( )
Let us start with the well known identities
—io K2 T n X7 1
=X —
o x2 4 n? 2 ermr—1 2
+o0 2
X T 1
dt = — x arctan
/; X2+ 12 T TH (x)
We deduce that
i X2 X7 1 n . (1)
= — X arctan
xX24+n?2 etrx—_1 2 x
n>1

Let 7 > 0, using the preceding relation with x = m/r we get

R R 5 R R
m 1 mir 1 1 t
Z Z m: 422 ¢ Z o1 a4 Zmarctan(m) (325)

m>1n>1 m>1 m>1

Consider for t > 0 the functions

R R m2
f) = ZZ m2 + n2f2

m>1n>1
132 mn
S(t) = t Z:l eZmﬂ/t —1
m=

R
1 t
A(r) = arctan
0= ; marctan( )
Since we have

R

1 mm t too
=5() — d

IZeZmn/t_l () 4n/2f e —1 *

m>1
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then by (3.25) we have the relation

X

1 +o00
S(t):f(t)—A(t)+4+4; /2” ex—ldx

The relation (3.24) is simply S() + S(}) = (t+ 1) J, —
To prove this relation we use the following expression of A(?).

Lemma We have
1 1 1 2t
At) = t tan(r) + 1) — dx —
0=+ parean(y+ =L [T
From (3.26) we deduce that
1 #t 1 1
St =f(@) + g@) + 4 + 4" 2((t—f— t)arctan(t) +1)

where

e*—1 4t Jo e —1

t +o00 1 2mt
gl = / * dx + / * dx
47 7

For this last function g the equation

+o00
+e) =+ [

is immediately verified. And since f0+°° s dx = ’22 we get
1 t b4
H+ = +
g +e( )=, +,,,

It remains to find a similar relation for the function f. By Theorem 15 we get

1 & m
f(t)zzzm2t2+n2

m>1 n>1

107

(3.26)

(3.27)

(3.28)
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We have
R R R R R
1 m? + n*t 11
SO =223 e = 22221=22,=,
m>1n>1 m>1 n>1 m>1

Thus we obtain
1 1
() +f(;) =4 (3.29)

Finally by (3.27), (3.28), and (3.29) we have

1 1 wt T
S +S =
0+ (t) 4+24+24t
1 t 1
+4-|-]:1 2((t+ )arctan(t)+1)
PR ) aret ()+1)
a4 arctan

since arctan(f) + arctan( 1) = 7 this proves (3.16).

Proof of the Lemma Expanding the function arctan and by using Theorem 14
we get

R +o0 k k 2k
(=D 2% 1 ( 1)1‘2
A(n) = (C( )— )

Since ¢ (2k) = Dt em By we have

2 (@)
oo k 2k oo 2k 2t
—1)“t 1 B 2t 1 t
Z( ) F(2k) = — Z w 2r™ / X
= 2k+1 2~ 2k+1 (2k)! dnt Jo e —1 4
and it is immediately verified that
too k 2k
(=D
— t tan(z) + 1
;(2k—1)(2k+1) ((+ mean(” )
Thus we get
2wt X Tt
Al = _((t tan(z) + 1) — dx —
(0= Dareanty + )= L[ e
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3.3.4 The Functional Relation for Eisenstein Function G,

Let k be an integer > 1 and let Gy be the Eisenstein function defined for Im(z) > 0
by

1
Gau(2) = Z Z (m + nz)

n m

where this double sum is restricted to (m, n) € Z\{(0, 0)}.
It is well known that G, satisfies the modular relation

1
Gu(— . ) = G (2)

For k = 1 we consider for Im(z) > 0 the Eisenstein function

1
G2(2) = Z Z (m + nz)?

where this double sum is restricted to (m, n) € Z\{(0, 0)}, more precisely

+o00 +o00

1
G2(2) = Z ( Z (m+nz)2)
n=Tee mga?zio

Since we don’t have absolute summability we cannot interchange ), and ), and
we have only

1 1
Gz(—z) = ZZ;; (m -+ )

But it is well known (Freitag and Busam 2009) that this function G, satisfies the
non trivial relation

Gz(—i) = 22G(2) — 2inz (3.30)

We now give a simple proof of this relation thanks to the Ramanujan summation.
The relation (3.30) is equivalent to

1 1 2im
Xm:Xn:(m—i-nz)2 :;;(m—}-nz)z_ z

where the sums are restricted to (m, n) # (0, 0).



110 3 Dependence on a Parameter

These sums can be written in another form, we have

Xn:Xm: (m + nz)? - 2;;((”1 + nz)? + (m —nz)z) +2(1 + ZZ)C(Z)
Thus if we set
+o00 +00 1 1
AR = ;;((M w2 T ey
and
400 +o00 1 1
B(z) = ;;((M—f—nz)z + ey

we see that the relation (3.30) is equivalent to
in
A(z) = B(z) = .

To compare A(z) and B(z) we can use the Ramanujan summation, since by
Theorem 15 we have the commutation relation

R R 1 1 R R | |
ZZ((m+nz)2 + (m—nz)z) - ZZ((m+nz)2 * (m—nz)z)

n>1 m>1 m>1 n>1

Next we use the relation between the Ramanujan summation and usual summation
to transform this relation into a relation between the usual sums. Let us start with
A(z), we have

1 1 1 1

)

+
+nz)?  (m—nz)?

+o0
2

this gives

+00 +00

1 1
Z Z((m + nz)? * (m — nz)?

n=1m=1

+
+nz)>  (m—nz)?

R
)=
2

1
+ +
1+nz

1
1 —nz

+00 R 1 1
)= ;r%:l((m—}-nz)2 * (m—nz)z)
1 1

+
+ nz l—nz)

+o00
-+ Z(l
n=1
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Using again the relation between the Ramanujan summation and the usual Cauchy
summation we obtain

+o0 R 1 1

R R
ZZ (m—i—nz)2 (m — nz)? ZXZ:XZ: m+nz)2 (m—nz)z)

n=1m=>1
+oo R 1
/1 Z (m+ l‘z)2 (m— tz)z)

Interchanging Ramanujan summation and integration we get

+o0 R
/1 Z(m—i—tz)z (m— tz)2 Z(m—i—z_m—z)

Therefore we finally obtain

1 1
AQ) = ZZ((m+nz)2 (m— nz)z)

n>1 m>1

> 1 1& 1 1
+ + + -
;(l—i—nz l—nz) zr;(m—i-z m—z)

The same calculation with 3, -, +an)2 gives
Bo-Y 3 ! ")
: (m+ nz)2 (m — nz)?

m>1 n>1
+oo
1 1 1 1
+;(1+nz+ l—nz)+zm2=:l(m+z_m—z)

By Theorem 15 the double Ramanujan summations in the last formulas for A(z) and
B(z) are the same, so we get

+o0 +oo
A(z)—B(z)z/l (ol )dt—I/l LY

141z 1—1z z t+z t—z

and finally

A(z) —B(z) = i TETOO(Log(l + Tz) — Log(1 — Tz)) = i:



Chapter 4
Transformation Formulas

In this chapter we study some transformations that give interesting relations between
the Ramanujan summation and other summations. In the first section we examine
the Borel summability of the series deduced from the Euler-MacLaurin formula. In
the second section we use finite differences and Newton series to give a convergent
version of the Ramanujan summation which generalizes the classical Laplace-
Gregory formula. In the third section we use the Euler-Boole summation formula
to link the Ramanujan summation of even and odd terms of a series with the Euler
summation of the corresponding alternate series.

4.1 A Borel Summable Series

4.1.1 A Formal Transform

In the preceding chapters we have seen that the Ramanujan summation of a series
> =1 f(n) is related to the series involving the Bernoulli numbers

>t

k=1
by the formulas

m

R +o00
— _ By Dy+1(x) m+1
;f(”) - ; UREAL +/1 1y S

© Springer International Publishing AG 2017 113
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or

Zf(n) Zk!kak—lf(l)ﬂl)m“/o Ryt 1) ’”()

n>1

The series Zk> ! i 0*~1£(1) appears more directly in an operator setting of the
difference equation. Let E be the shift operator on functions defined by

Eg(x) = g(x+ 1)
by the Taylor formula we get formally
E=¢°
and we can write the difference equation R¢(x) — Re(x 4+ 1) = f(x) in the form
(I—e )R =f

which gives formally

1 0 ,_ _ By -
Ri=, pf==, 0 r==0"r=3 o

k>1

If we interpret the operator 9! by

Y (x) = ’
£ () /1 Floydr

we get formally

_ _ k
Ri(x) = / For Zaﬂ)(k Y

k>0

(=D Byt
(k + 1)!

/ FOde+£) — 3 0 @)

k>0

this last series is noted G(x) (Hardy 1949, p.341). Taking x = 1 we get formally

(=D)*'Byyy

R
_ _ _ _ k
Y fm)y =f1)—&1) =£(1) =Y dF(1) k4 1)!

n>1 k>0

This last series is often divergent, but we can give a meaning to this sum by the
Borel summation procedure.
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4.1.2 Borel Summation

Let) ", ., a, beaseries of complex numbers and S, = ZZ;(I) ay the partial sums (we
set So = 0). As in the Abel summation method we can try to define a summation of
this series by taking a generalized limit of the partial sums.

We suppose that the series ) _, ”:,Sn is convergent for every ¢t > 0 and we set

B 400
. = " e
E a, = lim e E S,, when this limit is finite.
= 1—>+00 ‘ n!
n> n=

Since the series ) . ”:,Sn is supposed to be convergent for every ¢ > 0, the function

_r+a>ﬂ
sit>e Sy
n!
n=0
is an entire function and we have
+o0 +o00 —1
" "
/ —t —t
s(t) = —e Z S, +e Z Sy
| — 1)
—n! = (n—1)!
+o00 o
=e' Z ! (Sn+l - Sn)
n=0""
+o00
"
—t
= Z n!a"
n=0
Since s(0) = Sy = 0, we get
t +o00 xn
s(t) = / e_x(z n'an)dx
0 n=0 "
thus we have
B +o0 too X"
Z a, = / e—X( Z l an)dx when this integral is convergent.
0 .
n=1 =0

This definition is a little too restrictive since it supposes the convergence of the
series Y, fl", ay for every x. We can give a more general definition of the Borel
summation if we use analytic continuation:

We say that the series Y, @, is Borel summable if the power series Y, ¥ ay
has a radius of convergence R > 0 and defines by analytic continuation an
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analytic function x + a(x) in a neighbourhood of [0, +00[ such that the integral

f0+°° e "a(x)dx is convergent.
In this case we set

Zan = /+°° e “a(x)dx

n=>0

Example Consider the series ) - a, = )_,-o(=1)"n!, then for [x| < 1 we have

+o0 v +o0
_ 1) —
2 an, =D U=
n=0 n=0
By analytic continuation we have a(x) = 1-1+x and we set

+o0 B 1
Z( 1)'n! = / e dx
14+x

n>0
Similarly for Re(z) > 0 we get
1)*n! +o0 1 +o0 1
Z (= )ln = / e dx = / e dx
= ot Z+x 0 1+x

Remark As in the preceding example we see that with some hypothesis the Borel
summation of the series Zn>0 “”1 is related to the Laplace transform of function
X a(x) by

B

400 a,
—XZ j—
/0 e “a(x)dx = E ot

n>0

For a function f of moderate growth this gives a Borel-sum expression of
X:WRZlf(n)e_”Z for0 <z < m.
Since we have

R +o00 400
Zf(n)e_"Z = X:f(n)e_”Z —e / S+ e dx
n>1 n=1 0

and by the Taylor expansion

+o0 v
fat =307

n=0
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we get
R +o0 B (1
> rme =3 e - ey L
n>1 n=1 n>0

Taking for example f(x) = Y (x + 1) + y we getfor0 <z < 7

R _ _ B
n Log(l—e™%) €% _ (=D)"n!
;Hne = T, _ez; e G D=1

4.1.3 Borel Summability of Euler-MacLaurin Series

Theorem 16 Let a function f be analytic for Re(z) > a, 0 < a < 1, such that there
is C > 0ands > 0 with

lf(@)] < Clz|™*
Then the series

sy = Yo D e

= (k+ 1!
is Borel summable and we have
R B
(=D 'Biyy
= f(1) — kr(1 4.1
;.f(n) £ gaf() &+ ! (@.1)

Proof Since the proof of this theorem is given in the book “Divergent Series” of
Hardy we just give a sketch of the proof.
For the Borel summability we must consider the series

(=D By

+o00
al) = ) _3/(1) k+1)! K

k=0

and prove that it defines, by analytic continuation, a function such that the integral
f0+°° e""a(r)dt is convergent. To get a simple expression for this function we use an
integral expression of the derivatives 3*f(1).

Leta < § < 1, by the Cauchy theorem we write

Fray _ 1 [ fuw)
J

k' 2im Js_iso  (u— 1)KL
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Then we get

§+ioo _
“(t)zziln/S £ /(A —u 1)du

—ico Et/(l_u) —1 t

This gives the analytic continuation of the function 7 — a(¢) and we have

+o0 . 1 §+ioco +o0 . 1/(1—M) 1
/0 e a(h)dt = 2i7t/5 f(u)(/o e (er/(l—u) 1 t)dt) du

—ioco

Now we use the formula

400 . 1 1
/0 e (ewtw_ - t)dt = —Log(w) — ¢ (1 + a))

and we get the Borel summability with

B -1 k-HB 1 §+ioco
Zakf(l)( (k)+ 1)1;+1 = /5 S (Log(1 —u) = (2 — u))du
>0 . —ioo
It remains to prove (4.1), that is
R 1 §+ioco
S == [ (osi =0 = @ - w)de

n>1
or equivalently

R | [otioo |
Y f) =f()+ 2m/ Fa) (W —u) —Log(l —w) =~ )du

n>1 §—ioo -
1 §+ioo
— e | = - Log(1 - w)d
It Js—ico
Since by (1.34)

R

1
=W —u)— Log(1 —u)
;u—n

we have to prove that

R
1
Zf(n) = 2in /

n>1 §—ico

§+ioco R 1
F@Q _ du

n>1
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and by the Cauchy theorem it is equivalent to prove that

8+ioo 1 1 §+ioco R 1
d =
Z 2im /5 (u)u —n . 2im /5 f(u)(; u—

—ioo
which is an immediate consequence of Theorem 12 applied to the function
gl u) =fw, ! .0
Remarks

(1) Asitis observed in Hardy’s book “Divergent series”, the result of the preceding
theorem remains valid if the function f is such that | f(z)| < |z|¢ for some ¢ € R.

(2) The preceding theorem is not valid if the function f is only analytic for
Re(z) > 1 and in a neighbourhood of 1.

Take for example

f@= =Y (=D)a—-1*

k>0

Then in the disq D(0, 1) we have f(z) = Z % (=DF(x — 1)%* and the series G(1)
is reduced to

—B+0+0+0+...

thus it is Borel summable and

(=D""Beyr 1

B
k
FO=2 M =,

k>0

But the Borel summability of the series &(1) does not necessarily imply the validity
of (4.1) since we have by (1.34)

: 1 S 1 o
;1—%—(11—1)2 - 2i(;n—(1+i)_;n—(l—i))
1 . . T
= W)=y (=)~
= 0.5058777206

Example Forf(z) = | we getfors # 1

1 1 & B
(9= +2+§(k+1)!s(s+1)...(s+k—1)
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and for s = 1 we have

B
1 Bit1
=_+)
2 kzlk+1

4.2 A Convergent Expansion

4.2.1 Bernoulli Numbers of Second Kind

The Borel summation formula (4.1) is not very practical for numerical evaluation
since the Borel summation of a series Y, . , ax involves analytic continuation of the

function x — a(x) given, near x = 0, by a(x) = Zk 0 k’]i,
To obtain a more useful formula involving convergent series we use in place of
the operator d the difference operator A defined on functions by

Ag(x) = glx+1) — g(x)

The difference equation Rs(x) — Re(x + 1) = f(x) is translated in the form

—ARp =1
which gives formally
Ry = — ! f
A
Now we need an expansion of similar to the expansionof ,” , in term of Bernoulli

numbers. To get such an expansmn we use the fact that A = ¢? — I thus

1
log(I + A) — log(e?)

-1

and

1 1 1
—97! —

A T log+ ) A

we are thus led to the following definition.

Definition We define the Bernoulli numbers of second kind B, by

13" _ IBn+1
10g(1+t) Z rn +Z( +1)' A

n=>0
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We get
:3n+1 n
—7'f + Z 0+ 8
This gives formally
;f( =3 S @ @2)

In the following section we show that this series is often convergent and gives a
numerical evaluation for the Ramanujan summation.

Remark The Bernoulli numbers of second kind B, are given by fp = 1 and the
relation

A D
' n—

prd Kkn—k+1

this gives

1 1 1 19 9 863
B = '32__6"33_4"34__ Bs = g4

We can give a simple integral expression of the Bernoulli numbers of second
kind. It suffices to write

e x(x—=1)...(x—=n+1)
10g(1+t) /(1+t)dx Zr”/o " dx

n>0

thus we get forn > 1

1
,3,,:/ x(x=1)...(x—=n+ l)dx 4.3)
0

4.2.2 Newton Interpolation Formula

By the relations (4.2) and (4.3) we see that the Ramanujan summation can be related
to the Newton interpolation series of the function f. We now turn to the basic
definitions and properties of these series.
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The Newton interpolation series are series of type

Zan(z—l)...(z—n)

n!
n>0

Where we always use the convention: (z—1)...(z—n) = 1ifn = 0.
These series have a “half plane convergence” property given by the following
theorem (No6rlund 1926).

Theorem 1 (of Norlund) Let xo < 1. If the series Y, qa, "0 s

convergent then the series Y, ., dn (Z_l)'r;,'(z_") is uniformly convergent on every

compact of the half plane {Re(z) > xo}. The function
+o0

f(Z):Za (Z—l)...(Z—I’l)

n!
n=0
is analytic for Re(z) > xo and there exists C > 0 such that
F@I < CeFl3 [0+

With the hypothesis of the preceding theorem we see that the coefficients a, are
related to the values f(1),f(2), ...f(k),... of the function f by

k

k
T S e B U R e
=0

n!
n=0

We can invert this relation to get an expression of the coefficients a, in terms of
the values f(1),f(2), ... of the function f, we get

ay =Y _flk+ 1C(=1)""*
k=0
This last formula is related to the A = E — I operator by
A1) = (E=D"(H(1) = Y EXHMCH=D"" =Y flk+ DCi(—=1)"*
k=0 k=0

Thus we have
a, = A"f(1)

This result gives the solution of the interpolation problem of finding an analytic
function f given the values f(1),f(2),...f(k), .. ..
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If these values satisfy the condition that the series

—1)...(xo —
Z Af(1) (o =1) | (x0 = n) is convergent for some xp < 1
n.

n>0

then the analytic function f is defined for z € {Re(z) > x¢} by

+o0
" z=1)...(z—n)
f@=;Am) y (44)

which is the Newton interpolation formula.
The following theorem (No6rlund 1926) gives a simple growth condition on a
function f to obtain the validity of the Newton interpolation formula.

Theorem 2 (of Norlund) Let xo < 1. If a function f is analytic for Re(z) > xo and
verifies

1f(z)| < Cel?lLog(2)

for a constant C > 0, then for Re(z) > sup(xo, 1/2) we have
= @=1)...(z=n)
@) =" A1) o
n=0 :

this series is uniformly convergent for Re(z) > sup(xo, 1/2) + & (¢ > 0).

4.2.3 Evaluation of A"f(1)

To get the expansion of a function f in Newton series we have to evaluate the terms
A"f(1), this can be done by

A"f(1) =) flk+ DCK=1)"* (4.5)
k=0

but it is often more simple to use formal power series and find an explicit expression
of the exponential generating series

" "
AT

n>0
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We have a simple expression of this series, since

oy - (=) it (=D
2 AW, =D D SEHD gy =2 SEE DD,

n>0 n>0 k=0 k>0 >0
thus we get
g i
DAY =€y flk+ 1) (4.6)
n! k!
n>0 k>0

We can also remark that by the Laplace transform of (4.6) we also obtain a simple
expression of the ordinary generating series

DAY

n>0

since we have formally

. 1 [t o
Y A1) = Z/O e zZAf(l)n!dt

n>0 n>0

thus we get
1t . *
Sz = [ e S nyar
Z Jo k!
n>0 k=0
this gives finally
1 z
A = D ofk+n( T (4.7)
=0 z+1 =0 z+1

As a consequence of this relation we have the reciprocity property
ATf(1) = (=1)"¢(n + 1) & A%(1) = (=1)f(n + 1) (4.83)
To prove this relation we observe that

Z V4

= — <:> —
241 zZ+1 . °
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and

D_(D'gln+ D' = Zf( +DC L)
n>0 k=0
is equivalent to

Zg(n 00,7 )= YAk D12

Z+1 0

Remark (Ramanujan’s Interpolation Formula) The formula (4.6) connects the
Newton interpolation formula to an interpolation formula that Ramanujan uses. If
we write

1 +o0
_ _ (1)K —t k—z
z=1D...z—k) =(-1 F(—z+1)/o e 't

then we have formally

(Akf)(l) too — (=D*( Akf)(l)
; —D.Gh = F(z-l-l)/ ; i

Thus by (4.6) the Newton interpolation formula becomes the Ramanujan interpola-
tion formula (see Appendix)

+o00 - ( tk
@=L +1)/ ; Iy (k+1) dt

Examples

(1) If f(x) = ! then

—t —1

n tn —t _ r_ _ 1—6‘
;Af(l)n! ;(k-}-l)'_ t(e h= t
thus
21 (=D
A x(l) = i1 4.9)

(2) Itis easy to get a simple formula relating A”¢;(1) to A”f(1). By definition of
@ we have

Agr(x) = gr(x + 1) —r(x) =f(x + 1)
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thus
Apgp=Ef=E-I+Df =A+f
This gives A%y (1) = f(1) and forn > 1
Agp(1) = Af(1) + A" (1) (4.10)

If we take f(x) = )1{, then we get by (4.9)

n+1
1()— =D forn > 1 4.11)

n(n+1)
There is also a simple formula to evaluate A”(iqof)(l). We have
n k+1

1 1
AC oM =3 (, Zm) )G

k=0

= Y+ ch( " kk+1)

j=0 k=

now it is easy to verify by induction that

" 1 o
Ck -1 n—k = (=1 n_/CJ
T =,

thus we get

1 1
A e = AT (4.12)

If f(x) = ., then by (4.9) we get

aConm= 1 oarlay= T

n+1l x (n+1)? (4.13)

and by the reciprocity property (4.8)

(1)—( 1)( e+ 1) = (1) "“ (4.14)
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(4) Let xf be the function x — xf(x) then
Af) = @+ DfG+ 1) —xf () =x(f(xr+ 1) —f(0) +f(x+ 1)
thus
A(f) = xAf + Ef
and by iteration we get forn > 1
A"Mxf) = xA"f + nEA"'f = (x + n) A"f + nA"\f
This gives A°(xf)(1) = f(1) and for n > 1
A"(xf)(1) = (n + D)A"f(1) + nA"F(1) (4.15)
we deduce the recursion formula for an integer k > 1
A1) = (n+ DA'THA) +nA (D) (4.16)

If we take f(x) = ¢1 we get by (4.12)

Al(pi)(1) =2
and

A'(xg1)(1) = ngl_)l) forn > 2 (4.17)

For f(x) = x*>¢1 we have
1.2 2,2 11
A1) =5, A%(xg1)(1) = )

and

_1\yn—1
A"(xz(/)i)(l) = fl(nl)_ 1)((’;t 2 forn >3 (4.18)

(5) Letz #0,—1,-2,..., then we have

(=1)"n!

1 n 1
_ —1 Ve — P
). +n) _/0 - 1) kEZO:Cn( DL, @)
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thus

o o n! . LT@T@+ 1)
My D=0 ey =D F(”"H&zo)

Iff(x) = 1}(8_1;%) then by the reciprocity formula (4.8) we get

1
Af(1) = (—1)"Z+ \ (4.21)

4.2.4 The Convergent Transformation Formula

Let f be given by the Newton interpolation formula, then for any integer n > 1 we
have

k
f()—Z( N w-n

(remember that by definition we have (n — 1) ...(n —k) = 1 if k = 0)
To evaluate the sum Zgl f(n) we try to prove that

k
Zf()—Z(Af)()Z( =k

n>1 n>1

and use the following lemma:

Lemma 17 We have for any integer k > 0

Bi+1
Ro—1y..—k) = Tt 1()C— D...x—(k+1)+ ket 1

(remember that by definition we have (x — 1) ... (x —k) = 1 ifk = 0).
Thus

= B
Z(n—l)...(n—k):kf:‘l 4.22)
n>1

Proof Note that

x—1D...x—Gk+1D)—x(x—1)...cx—k)=—k+ Dx—1)...(x—k)
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thus
1 1 2
R(x—l)...(x—k) = _k+ 1(x—1)(x—(k+1))+k+ 1 /1 (x—l)...(x—(k+1))dx

and we get
R 1 2
;(n—l)...(n—k)z k+1/1 (x—1)...(x— (k + 1))dx

this gives

12 1 ! _ Bin
k+1/1 (x—l)...(x—(k+1))dx—k+1/0 x(x—l)...(x—k)dx-k_'_1

|

Theorem 18 Let f be analytic for Re(z) > xo with xo < 1, such that there exists
C > 0 with

@] < CeFltes®

If we set for k > 0

1
Bi+1 :/0 x(x—1)...(x—k)dx

and

k
A1) =Y f( + DC(-D

J=0

then the series ) ;. (ff:rll), (AXf)(1) is convergent and

R
> s = Z (kﬁfi),mkf)( )

Proof By (4.22) it suffices to prove that

= )
Z

Ry(x) = Ri—1)...(—k) (4.23)
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By Theorem 2 of Norlund we have the following expansion

k
o= wp

k>0

where this expansion is uniformly convergent in every compact in the half-plane
Re(z) > oy = sup(xg,1/2). Now to prove (4.23) we use the expression of
R(x—1)..(x—k) given in the preceding lemma and we consider the series

k
Z (Af)(l)(x_l)___(x_(k+ 1))

!
= (k+1)!
If we write the general term in the form

(A)(1) (A%)(1)

— x—(k+1)
(i ED GGy = T =D =

k+1 ]

and apply the classical summation by parts then we see that this series is also
convergent for Re(x) > o. Then we can define for Re(x) > «p an analytic function

k
R(x) = — Z((kfl()')( —1)...(x—(k+1))

This function satisfies the difference equation
R(x) —R(x+ 1) =f(x)
and by Theorem 1 of Norlund we have
IR@)| < CeM% x|t

Thus the function R is in O, and the function Ry is given by

2
Rp(x) = R(x) — /1 R(dt

Note that R(1) = 0 and by uniform convergence of the series defining R on the
interval [1, 2], we get

(A% (1) Bi+r1
/MM—Zw+w/bﬂ @wmm—szyVW

|
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Remark Note that for any integer m > 1 and if g(x) = f(x 4+ m), then we have

A"g(1) = Zf(k+m+ DCE(=1)"* = A"f(m + 1)
k=0

and by the shift property

m+1

R
> f) = Zg(n) + Zf(n) fx)dx

n>1 n>1
thus for any integer m > 1 we get

m+1

m +o0
f@de = ) =3 (,f (O 1) = A1)
k=

n=1

which is the classical Laplace integration formula (also called Gregory’s formula)
(Boole 1960).
Replacing m by m — 1 we write this last formula in the form

B
Zf(n) [ Fds = 3 )+ Fom) — Z(k A

n>1

which shows the analogy with the Euler-MacLaurin expansion

k+l
Zf(n) [ reax= ;f(n) + + 3

Examples

(1) If we take f(x) = )lc, then by (4.9) we get

il f( D* Brrr 424)
no =k+1(k+1)! '

n=1

(2) Forf = ¢1 we have f(n) = H,, and we get by (4.11)

R oo (= 1)<+

1 - Br+1
ZH" =, 7 k; k(k 4+ 1) (k + 1)! (4.25)

n>1
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By (3.3) we get

3 R DM By
5V~ Log(¥2r) = ; k(k +1) (k+ 1)!

with (4.24) this gives
= (=D Bk +2) Br
L 2 4.26
0g(v2m) = Z Kk+1)  (k+ 1) (4.26)
Forf = x¢1, we have f(n) = nH,, and we get by (4.17)
D" B
H, 4.27
;" Z/<(k—1)(k+1)! (4.27)
By (3.4) we get
Cel) = Sy Log(am) + 1 +Z°° D% B
1) = — Lo T —
12V T8 24" S k(k—1) (k+ 1)!
With (4.21) and (4.23) this gives
D13k + 11
g“(l)—— Z( ) (13k+11) By
12 k—Dk+1) (k+ 1!
By the same type of calculations we get also
R +o0 k—1
15 -1 k42
anHn _ Z( )Tk +2) Brt 4.28)
= 48 = k(k—1)(k—2) (k+ 1)!

which gives by (3.5)

+00 k—1
D"k +2) B
¢'(=2) = — y+L0g(x/27r)+2§( D-, +;k(k—l)(k—2)(k+l)!

Similar formulas can be obtained for ZZ; n*H,, which gives expansions of
¢’ (—2k), thus of £ (2k + 1) (Coppo and Young 2016).
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(4) By (4.13) we get

Bir1 (=1
Z Z < (k+ D!k + 1)

n>1

And by (4.14)

2 R +o00 k
T 1 —1)*H,
- I Bi+1 (=1)*Hit1
6 Zm n? kzzo k+1) (k+1)

(5) By (4.21) we getforz # 0,—1, -2,
R +
Z F@Im) _ f Bi+1 (—1)*
S Te+n  Z K&+ D! z+k
Since it is immediately verified that for Re(z) > 1 we have

Rrorm =

I(c+x) F'z+x-1) Fz+x-1)

this gives

S T@Tm) 1 2T(z— 1 (R)
Z I'(z+n) Cz—1 _/1 F(z+x—1)dx

n>1

thus we get in this case

Biri _ *T(=DIw
Z(k+1)|( )z+k z—1 /IF(z+x—1)dx

(6) By (4.20) we getforz #0,—1,-2, ...
R
which gives by (2.4)

+o00
_ Br+1 (=D !
Log(z) — ¥ (2) = ; k+Dlzz+1)...(z+ k)

T(z— 1 (x) _/2 INCE NN
1

Bi+1 k!
Zz—1+n Z(k+1)’ z(z+1)...(z+k)
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(4.29)

(4.30)

4.31)

(4.32)

(4.33)
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Remark Letf € O™ and F(x) = | lx [f(t)dt, we have by the shift property

R
> A% ) = Zc% n qu+n)

n>1 n>1

i CH=1( Zf(n) o+ D +fG+ 1D +F(+1D)
= n>1
that is
Y () = —Algr(1) + AYF(1) + AFF(1)
n>1
this gives by (4.10), for k > 1, a formula that generalizes the shift property

R
DA () = A1) + AFF(1) (4.34)

n>1
For f(x) = | we have by (4.19)

(—D)kk!

1
k _
A x(z)_z(z—i-l)...(z—f-k)

thus by (4.9) we have for k > 1

R
R B
;n(n+1)...(n+k) = D + Ao

For k > 1 the series Zn>1 n(n:_l)l) (]; 40 is convergent and since

1 1 k
nm+1) .. itk—1 G+ ...(n+k)  nm+1)...(n+k)

we have

™= 1
; (n+1) (k) k
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Thus for k > 1 we get

k!

+o0o
A*Log(1) = (=D /1 x(x+1)... (x+ k)dx

4.3 Summation of Alternating Series

4.3.1 Euler Summation of Alternating Series

Consider the Euler polynomials E,(x) defined by the generating function

E,(x 2e%
> e i
= e

We define the numbers E, = E,(0)

1 1 1
E(): 15El :_25E2:07E3 = 45E4:07E5: _2’

These numbers are related to the Bernoulli numbers by

2@ -

E, = B,y forn>1
na 1 +1 n>

(we don’t call these numbers “Euler numbers” since the Euler numbers are usually
defined by 2"E,(})).

With the generating function we verify that E,(1 —x) = (—1)"E,(x) forn > 0,
and we define for t € R the functions

en(t) = (=D)(=1)"E, (1 — [1])

We can define the summation of alternating series ), (—1)"f(n) starting from
an analogue of the Euler-MacLaurin formula that is the Euler-Boole summation
formula (cf. Appendix)

FO =@+ G = ) Y
k=0 ’

-1 n—1 ™M
+D Zakf(nﬂ)llf!k

2 k=0

1

n+1 1
+ / em (1) 0" T (1) dt
2 1 m'
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which we can write in the form

m +o00
=t = Y+ [ e @00 d
2, |

(_l)n_l v k Ek
+ ;3f(n+l)k!

— 1/noo ’:l'em (t) am-l—lf(t) dt

2 +1 M.

We see that this formula has the same structure as the Euler-MacLaurin formula,
with the constant term

- ¢ E. 1 [T
=, W+ [ e 0y
2,21 |

which is, by integration by parts, independent of m for m > M.
We can proceed, for an alternating series Zkz (=1)*"'f(k), as in the Ramanujan
summation, defining the Euler summation of this series by

< - 1 E 1 [t
S0 = = Y+ [ e oo
2,2 |

k>1

As in the Ramanujan summation it is useful to give a definition of the Euler
summation not directly dependent on the Euler-Boole summation formula.
If we set

(—1)" m

Ty(n) = )

E 1 [®1 .
P~ / e @) di

k=0

then the Euler-Boole summation formula is
FO) =+ )7 ) = C(f) + Tr(n + 1)
thus
(D)"Y @) = Ty(n + 1) — T(n)
Now if we define the sequence Ay by

A(n) = (~1)"Ty(n)
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we get
Ar(n) + Ar(n+ 1) = f(n) (4.35)
and
S ~
D (=1 m) = C(f) = =Ty (1) = A1) (4.36)
n>1
By (4.23) and (4.24) it is natural to define the Euler summation by

&
D (=D ) = C(f) = Ag(1)

n>1

where
Ar(x) + Ar(x + 1) = f(x)

But this equation does not specify a unique function Ay since we must avoid the
solutions of the equation A(x) + A(x + 1) = 0.

Lemma 19 Iff € O there exists a unique solution Ay € O™ of
Ar(x) + Ar(x + 1) = f(x)

and we have

X x+1
Ar(0) = Rro () = Rreo €, ) (4.37)

Proof Uniqueness of the solution: if a function A € O7 is a solution of the equation
A(x) +A(x+ 1) = 0 then the function R(x) = A(x)e™ is a solution of the equation
R(x)—R(x+1) = 0, and is of exponential type < 27, thus by Lemma 1 the function
R is a constant C and we have A(x) = Ce™™, and A € O implies C = 0.

Existence of the solution: since the function x + f(2x) is in O%", then by
Theorem 1 the function Ryy) € O is a solution of the equation

2
Rf(zx) (x) — Rf(2x) (x+ 1) = f(2x) with / Rf(zx) (x)dx =0
1
If the function Ay is defined by (4.37) then we have

A + A+ 1) = —Rjo () + 1)+ Rran () = £ ).
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Definition 6 If f € O there exists a unique function Ay € O which satisfies
Ar() +Ar(x + 1) = f(x)
and we define the Euler summation of the series ) _ -, (=1)""'f(n) by
£
D =D m) = A(D)

n>1

Remark Note that if f € O, then the function g : x > f(x)e”™ is in O>* and by
Theorem 1 there is a unique function R, € O** which satisfies

Ry(x) = Ry(x + 1) = f(x)e™
Then the function A(x) = e~ R,(x) is a solution of A(x) +A(x+1) = f(x), butA is

not necessarily the function Ay of the preceding definition since it is not necessarily
of exponential type < .

Examples

(1) By the generating function of Euler polynomials E;(x) we verify that

Z Ex(x) + Ex(x+1) ,  2(e¥+ e(x'H)Z) 9t
7' = = e

!
prer k! et +1

thus the Euler polynomials are solutions of
Ei(x) + Ex(x + 1) = 2x* fork >0

and by the preceding theorem we get
1
Au(x) = 2Ek()c) fork>0

We get for example:
£ 1< 1
-1 k—l: _1\k—1 —
YD = YD k=
k=1 k=1

More generally we have

&
. Ek (1 _ 2k+1)
Z(_l) 't = > T k4 Bt

n>1
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thus for any integer k > 1 we have
£
Z(_l)n—lnzk — O
n>1

For f(x) = )lc we have Ry = — and since in this case f(2x) = éf (x) we get
by (4.37)

A = Ry R
1 x+1 X
=T v

Thus A1 is the classical function

1, a1 xRy
po = (w( )—w(z))—;nﬂ
and we have
E -1 too o yp—1
Z ( ln) =p1) = Z ( ln) = Log(2)
n>1 n=1

If f(x) = Log(x) then R¢(x) = —Log(T'(x)) + Log(~/27) — 1, thus
Riog20) = Riog2y — Log(T' (x)) + Log(v/27) — 1
and we get
Riugizn = ()~ Log(2) — Log(T () + Log(x/2) ~ 1
therefore
Ar(x) = ;Log(Z) — Log(I'(x/2)) + Log(I'((x + 1)/2))

Which gives As(1) = }Log(2) — Log(I"(1/2)), thus

&
> (=1)"'Log(n) = ;Log(jzr) (4.38)

n>1



140 4 Transformation Formulas

(4) We have for |z| < 7

eixz 4 ei(x+l)z — eiXZ(l 4 eiZ)

ixz
thus A, = ¢ . and

3 eiz
n—1 jinz __
Z(_l) e = 1 + e

n>1

We deduce that for —7 <t < 7

£ £
1 1 t
—1)"'cos(nt) = _ and —D)" Lsin(nf) = _ tan
Dy costnn = 5 and Y21 i) = an)

Remark Classically the Euler method of summation of a series ) . | a, is defined

by (Hardy 1949)

n>1

& 400 k
1 .
_ J . L
E a, = E Skt E C,aj+1 (when this last series is convergent)

n>1 k=0 j=0
thus if a, = (—1)""'f(n) this gives
> z< 1>"ch( DG +1)—z @)
Pk+1 v 2k+1 '
n>1
To see how this definition is connected with our preceding definition we use the

Newton expansion of the function f. If f is analytic for Re(x) > xg, xo < 1 and such
that

|f)] = Celltes®

for a constant C > 0, then for Re(x) > sup(xo, 1/2) we have by Theorem 2 of
Norlund

+oo
@ =Y gD
k=0 )

If we admit that, as in (4.16) for Ry, we have

Ap(x) = ZAkm) Ao 6o
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then it suffices to evaluate A(—1)..(c—k). This is done by using the immediate result

1 (142!

At = for |z <1

By the binomial expansion of (1 + z)*~! for |z| < 1, and by identification, we get

DR =) .. (=) ,
AG1)..(—k) = (2,(3_1 Z > )j! (=) =2y

Thus
RN ) Ly (x h)
A =Y A, Z (-2y
k=0

and with x = 1 we obtain
+o00 (_ )k
Z( ") = Z et (BN (4.39)

n>1

that is the classical Euler summation of alternating series.

4.3.2 Properties of the Summation

The properties of the Euler summation are very easily deduced from our definition.
(1) Linearity

Since the equation defining Ay is linear we have immediately the property of
linearity

& & £
D (=D Naf () + bgm) = a Y (=)"'f) + b (—=1)""g(n)
n>1 nx1 nxl

(2) The translation property

Let f € O". Since we have

A+ D) + A +2) =fG+ 1)
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we deduce that Ap11)(x) = Ar(x + 1), thus
£
DD T 1) = Ar(2) = f(1) = Ap(1)
n>1
which gives the usual translation property
£ £
D EDT 4 ) =) = (=) () (4.40)
n>1 n>1
More generally, we have for any integer p > 1
Afx+p) +Ax+p+ 1) =fx+p)
thus if we note f(+p) : x = f(x + p) then Ay(4p)(x) = Ar(x + p) and
R P
DD+ p) =A(p + 1) = (1A + (1P Y (=D (k)
nx1 k=1
Since
P
P A (p+ 1) + A1) = Y (=D ' f (k) (4.41)
k=1
we get the usual translation property
R p £
DD+ p) =) (=DRPAR) + (1P Y (=D ()
n>1 k=1 n>1

(3) Relation to usual summation

Letf € O and suppose that the series ) ,(—1)"f(x + n) is convergent for all
Re(x) > 0 and defines the function

gixr> Y (=1)'f(x+n)

n=0

We have

g +gx+1) =Y (=D)'flx+n) =Y (~1)'f(x+n) =f(x)

n=0 n=1
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If g € O7, this function is by Lemma 17, the unique solution of the equation
gx) 4+ g(x+ 1) = f(x). Thus we get

Ar@) =D (=1)"f(x +n)
n=0
and
£ o]
Y =D m) =) (=D )
n>1 n=1

In this case we say briefly that “we are in a case of convergence”.

Example By the translation property we have
£ £
> (=1 Logn+ 1) = =Y _(—=1)""'Log(n)
n>1 n>1

and by (4.38) we get the well known result (Sondow 2005)

+o00
i1 n+1. 4
;—1) (, —Log(" ) =Log( )

Remarks

(1) Since we have ¢r(n + 1) = @p(n) + f(n), we deduce immediately from (4.40)
that

£ £
- 1 n—
2D gy = 3 (=) () (4.42)
n>1 n>1
For example we have

&£
> (=)"'H, = ;Log(Z) (4.43)

n>1
Since

R
¢r(n) = Cr — Ry(n) + f(n) with Gy = Y f(n)

n>1
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and Zle (="' = ], we deduce from (4.42) the following relation with the
Ramanujan summation

R & &
D fm) =2 (=D)"'Rem) = Y (=1 () (4.44)

n>1 n>1 n>1
(2) Letf € O™ and F(x) = [} f(r)dt. We have
x+1 x+2 x+1
/ Af(x)dx—i—/ Ar(x)dx = / f(x)dx
X x+1 X
thus we get
£ ntl 2
> =t / f(x)dx = / As(x)dx
n>1 n 1
and by the translation property this gives

& 1 2
Z(—l)”_lF(n) =-, / As(x)dx (4.45)

n>1 1

4.3.3 Relation with the Ramanujan Summation

The Ramanujan summation of even and odd terms in a divergent series
> _u>1f(n) is simply connected with the Euler summation of the alternating series

s (D ().
Theorem 20 Forf € O™/? we have

R 1 R 1 £
D Q== % f)+ Y (=1)'"f(n)

n>1 n>1 n>1
S e = LS - LS e+ | / oy
n>1 B 2 n>1 2 n>1 2 1

Proof 1Tt is equivalent to prove the following assertions

R R R | 2
S fen=1+ Yofen =Y fm+ ) [ o (4.46)

n=1 n>1 n>1
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and

R R 3 1 [2
Soren-n=Yfem = Y0 m - [ rod @

n=1 n>1 n>1

We have already proved assertion (4.46) which happens to be (2.18).
To prove (4.47) we consider the function g : x > f(2x). By Lemma 19 we have

1
A = R =R )

this gives
£ | R
DT = Re()) = 3 g
n>1 n>1
But Rg(é) is given by (2.2) with x = —;, and we get
£ R 1 R 1
S = Ygt= ) =Yg+ [ gt
n>1 n>1 n>1 1/2
that is

£ R R 1 2
S0 = Yo ren- 1= Y rem + ) [ s

n>1 n>1 n>1

|

Remark For f € O"/? the preceding theorem gives

£ R R 2
S = S -2 fen) + /1 F(tyde
n>1 n>1 n>1

R R
=2) f@n—1)=) f(n)
n>1 n>1

This last formula shows that if f depends on an extra parameter z or ¢, then the
theorems of analyticity and integration of Chap. 2 remains valid.
For example, we know that for Re(z) < 0

& +o00
_ _ In(et+ 1)
n—1 zn _ _1\n—1, _

Y ()" H, =Y (—1)"e"H, = .l

n>1 n>1
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Since this function of z is analytic near 0, by derivation with respect to z, we obtain

g
— " g 4
£ 1
_1 n—l ZHn J——
;( )y 16

As another example, we have for Re(s) > 1
£ 1 +o00 1
D=3 =g -2
n>1 n n>1 n
This function of s is analytic for s # 1, by derivation with respect to s, we have
~ (=D"MLog(n) _ o1 -
> " = ()2 = 1) = {(5)2' " Log(2)
n>1

This gives for any integer k£ > 1 the relation

I
B
D1 Logln) = 21 T Log@) + 2! = 1)Z'(k)
n>1

fork = 1,2 we have

£
1) nLogln) = | Log2) + 3¢ (-1)

n>1

I
S Logn) =7 (-2) = | £G)

n>1

From the translation property we deduce the values of the convergent sums

= 1 11 1

;(—1)"—1<nLog(”Z )= 1) == — Log(2) = Log(r) = 6¢' (1)
= — n+1 1 Log(2) Log(m) , 7
2T Log( ) —nt )= T+ T 6 (<) +,, EG)

n=1
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Examples

(1) We have by (4.38) and the preceding theorem

R 1 1
Log(2n—1) = Log(2) —
> Logan—1) = Log@)~

n>1

thus

R
Z (Log(2n — 1) — Log(2n) — 21’1) = Log(v/27) — ;y

n>1
and, since we are in a case of convergence, we get

+o00

Z (Log(2n— 1) — Log(2n) — 21n) = Log(v/7) — ;y + ;

n=1

Note that for f € O7/2, by the shift property applied to x > f(2x — 1), we
have

R 1 R 1 £ 2
Sof@n =) S+ ) Y0 -+ [ -
n>1 n>1 n>1

In the special case f = Log this gives

R 1 3 3
Y Log(2n+1) = ,Log(2) + Log(3) =

n>1

Thus, if we consider the sum 2,7;1 (Log(2n — 1) 4+ Log(2n + 1)), we get

R R R
Z Log(4n*—1) = Z Log(2n—1)+ Z Log(2n+1) = Log(2)+ ;Log(3) -2

n>1 n>1 n>1
which gives
R

X 1 3 3
Z Log(1— 4n2) = Log(2)+ 2L0g(3)—2—2 Log(4n*) = 2L0g(3)—L0g(27'r)

n>1 n>1
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Since we are in a case of convergence, we get

+00 1 2
> Log(l— ) =Log( )
=l n /4

and by expanding the logarithm this gives

{(Zk) JT
Z s = Hos(y)

If we consider the difference ZZ}ZI Log(2n+ 1) — Zn>l Log(2n — 1) we find

Z Log( — =Log(2)—
and by the use of
I+, X 1 1
Log(. 7)) =
1- 21x g 222k + 1) x2k+1
this gives

+00
t(2k+ 1)
2

— Log(?) —
£ 222k 4 1) 08(2)

Since for s # 1 we have

£ n—
3 VTR _ 1 -2 £ 92" Los2)

n>1

we get by the preceding theorem

R
Y @n—DLog2n—1) = ¢'(-1) + éLog(Z) -

n>1

R
> @n+ DLogn+ 1) = ¢'(-1) + éLog(Z) + ZLog(3) - Z

n>1
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We deduce that

R
ZnLog(4n2 - =01+ éLog(Z) + zLog(3) - é

n>1
This is related to the series

+o00
t2k+1)
; —

+o0o 1
= — Y (4nLog(4n* — 1) — 4nLog(4n?) +
Lk + 1) k§=l( nLog(4n” — 1) —dnLog(4n”) + )

and we obtain

+o00
cQk+1) ) 1
3 =-12¢(-1)—y — ,Log(2) — 1
P 4k + 1) 3

By the same type of calculations we have

R
> @n—1)’Log(2n—1) = 3¢'(-2) - 118

n>1
R 9 27
> @n+1)’Log(2n+ 1) = 37'(-2) + ,Log(3) = o

n>1

We deduce that

R

Z 4n*Log(4n* — 1) = 6¢'(—2) + Log(2) + ;Log(3) — 194
n>1
This gives
v e = _147/(=2) — Log(®) +
D gy =MD - LogD +

k=1

Consider an integer k > 1 and f(x) = L”gj ™ then by the preceding theorem we

easily get an expression of the Stieltjes constants

X, Logk(n)
n=y

n>1
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in terms of alternating series. We have

R R £ n—
Z Log*(2n) _ 1 Z Logk(n) 1 Z (—=1)"'Logk(n) n 1 /2 Logk(x) dx
2n 2 n 2 n 2 N

X
n>1 n>1 n>1

T T, n 2 k+1

n>1

1 2‘5: (—1)"'Logk(n) . 1 Log+'(2)

but the binomial expansion gives

i Log(2n) _ 1 Z (Log(2) + Log(m)* _ Z ClLog(2) i Loi'(n)

2n 2 n
n>1 n=1 n=1

thus (with yp = y) we get

Logk (2n)
Z - Z CrriLog(2)

n>1 1 =0

1" Logh ()

Since we are in a case of convergence for the series ), ., "

obtain

k—1

> CyiLog(2) = 1 (4.48)
Jj=0

where

_ Logt'2) R (=1)"'Logh(n)
Yk = k+1 n

n>1

We have for example

piogy = L8O 5 Vgt
n>1

n>1

+00 n—
YLog'(®) + InLog(2) + IpaLog2) = F4 P -y (T es)

4 n

n>1
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We can easily invert these relations by using the exponential generating
functions

G =) ykf, and G(z) = ) fkf,
k>0 : k>1 :

The relation (4.48) is simply
(@ —1)G(2) = Gz)

thus we have

G@) = e _ 90
This gives Stieltjes constants y; in terms of linear combinations of the constants
Y« involving powers of Log(2) and Bernoulli numbers (Zhang and Williams

1994).

Remark Let g € O™/*, then by applying the formulas of the preceding theorem to
the function x — g(2x + 1), we also get

R 1 R 1 £
Y gan—1) = ) > s@n+ 1)+ 5 Y (=nrlgn+ 1)

n=1 n>1 n>1

R 1 & 1< 1 (2
dn+1) = 2n+1)— )" 'e@2n+1 2+ Ddr

Dttnt 1=, 3 sn+ b=, Y len s 1+ [T

4.3.4 Generalization

Let N be an integer > 1 and
Qy={™"N m=1,...,N—1}

For a root of unity @ € Qy and a function f in O*>*/N we can define a sort of Euler
summation of the series Y, .| ®"~'f(n) by

g(u
D" ) = Ap()
n>1

where Ay is the solution in O /N of the equation

A(Y) —0A(x + 1) = f(x)
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Like in Lemma 19 this unique solution A? € O*"/V is given by

N—1 ¥ + k
AP(x) =) ot Rravo (" ) (4.49)
k=0

(where we use the notation f(Nx) for the function : x — f(Nx)).
Note that if the series anl ®""'f(n + x — 1) is convergent for Re(x) > 0 then
we immediately have

+o00
APy =) " fn+x—1)
n>1
thus in this case
Ew +00
> 0" ) =) 0" ()
n>1 n>1

The relation with the Ramanujan summation is easily obtained by (4.49) since,
fork =0,...,N — 1, we have by (2.2) (withx + 1 = ¥I')

Rf(Nx)( ) = Z f(Nn—N+1+k) — / f(Nx)dx

n>1

thus we deduce from (4.49) that, for € Qy, we have

o N—1 N—1 N
Yol =) o Z f(Nn+k+1—N)+ Z o | f(x)dx
n>1 k=0 n>1 k=0 k+1

Since w € Qy = {*™/N m =1,...,N — 1}, this gives N — 1 equations. There is

a supplementary equation (using (2.16) with f replaced by f(Nx)) that is

N—-1 R

f(n)+/ f@dx=Y">"f(Nn+k+1-N)+ Z/ Fx)dx
1

n> k=0 n>1

Thus we have a system of N equations of type

a, = ZbkeZiﬁmk with m=0,...,N—1
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where

R 1 N
be=Y f(Nn+k+1-N)+ N /mf(x)dx

n>1

Since such a system can be solved by

N—1

b 1 _ 2inmk
k= E e N tap
N

m=0

we deduce that, fork = 0,...,N — 1, we have
g(u

R R
Stk 1= = S+ 3 oY e

n=1 n>1 wEQN n>1

k+1

+ N, f(x)dx

Conclusion
As in Theorem 20 we have, for k = 1, ..., N, the following relation

= Iy 1 —k+1 Lt
> f(Nn+k—N) = NZ S+ > o s w) + N /1 f)dx  (4.50)

n>1 n=1 wEQN

where

Eu
i) =) o"'f(n)

n>1

For example with N = 3 we have

s 1< 1 o 14
2 SBn=2 = 3 fn)+ Ste )+ S5 )
n>1 n>1

s 1S | ISV T
DoGn=1) = 3 f)+ e TSe ) + e TS

n>1 n>1

1 2
+3/1 f(x)dx
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R &
1 1 i i 1 im i
DoFGm =3 fm) e TS ) + e TS )

n>1 n>1
1 3
+ / f(x)dx
34

Remark For k = N we have by (4.50)

R R N
Niywmzzymy+iywm@+[f@ﬂ (4.51)

n>1 n>1 WEQN

If we are in a case of convergence for the series ), , " f(n) then

+o00
oSp(@) =Y o"f(n)
n=1

Therefore (4.51) is
R R +o0 N
VYo rm = Yoo+ 3 Y ot + [ fwds
n>1 n>1 n=1 wey

Thus for every integer N > 1 we have

R R +o0o N
NS rom = Y0+ Y evf o + [ rax (452)
n=1

n>1 n>1
where

en(n) = Z " =N-—1if Nn

WwEQN
— 1 ifN/n

Log(x)

x >

Applying this formula for f(x) = we obtain for every integer N > 1

+o00

n=1
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_ Log’(»)
and for f(x) = " ™, we have

& Logi(n)

| 1
"= g n;szv(n) U 6L0g (N) =, yLog(N)

For example with N = 3, we have Za)€§23 o'=2 cos(z’;”), and we get

= ZnJr Log(n)
Yy = Log(3) Z + Log(3)

1 io:o cos( 2nw ) Log?(n)

"7 Log3) &= 3

1
+ 6Log 3)— yLog(3)



Chapter 5
An Algebraic View on the Summation of Series

The Ramanujan summation differs from the classical summation methods by the
fact that for convergent series it does not give the usual sum. Also there is the shift
property which seems very strange for a summation procedure. Thus it is necessary
to define a general algebraic formalism to unify the Ramanujan summation and the
classical methods of summation of series.

5.1 Introduction

To introduce this formalism we begin with the analysis of the Borel summation. We
have seen in (4.1.2) that the Borel summation is formally given by the formula

B +o00 too M
— —t
E an—/o e (E ann!)dt
n>0 n=0

We now show that this formula is simply related to the resolution of a differential
equation. More precisely let us consider a complex sequence (a,), such that the
series

+o00 ¥
fo =3 a
n=0 .

is convergent for x near 0, then the function f is analytic near O and such that for all
n > 0 we have

an = 0"f(0)

© Springer International Publishing AG 2017 157
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And formally we get

Yoan =Y 3'(0) = (Y d'NO) = (I —)~'f)(0)

n>0 n>0 n>0

Thus }_,.oa, = R(0), where the function R is a solution of the differential
equation

I—R=f

Assume that f has an analytic continuation near [0, +o0[, then this equation has
the general solution

R(x) = —e"/ e 'f()dt + Ke* with K € C
0

To select one solution of this equation we must set a condition on R. We set the
condition

lim e *R(x) =0

x—>—+00

This condition is equivalent to the convergence of the integral f0+°° e 'f(t)dt with

+o00
K = /0 e 'f(n)dt

and gives the unique solution

R(x) =¢€* /+0° e 'f(t)dt

and finally we get formally

+o00
> a, =R(0) = /O e'f(f)dt

n>0

This suggests the following presentation of the Borel summation:

Let E be the space of complex analytic functions f on [0, +oo[ such that for all
n > 0 the function x — ¢7*9"f(x) has a finite limit when x — +o0.

And let’s define the operators

D(f)(x) = 0f (x)
vo(f) = £(0)

Voolf) = lim_e™f()
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We say that a sequence (a,) has the generating function f € E if
an = 9"f(0)

Since f is analytic near 0, then in a small disk D(0, p) we have
+o00 v
f@) = ZO ),
Then, by the preceding calculations, the differential equation
R—0R=f

Voo(f) =0

gives a unique solution Ry given by

R(x) = ¢€* /+0° e 'f(t)dt

And we say that the series ) . @, is Borel summable if the series
x"
Z n n!
n>0 :

is convergent for x near O and defines by analytic continuation a function f € E and
we have

B
Zan - UO(Rf)

n>0

5.2 An Algebraic Formalism

Definition 7 A summation space 7 =(E, D, vy, Vo) is given by a C-vector space E
with a linear operator D : E — E and two linear “evaluation operators” vy : E — C
and Vs : E — C such that:

(*) The solutions of the equation
Dg=g
form a one dimensional subspace of E generated by an element o € E with
Vo) = Voolr) =1

(**)If g € E is such that vo(D"g) = 0 forall n >0 then g =0
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Remark By the property (*) we deduce that if Dg = g and v (g) = 0 then g =0.

Definition 8 Let (a,) be a complex sequence, we say that this sequence is
generated by f € E if

a, = vo(D"f) foralln > 0
Then by (**) this element f € E is unique and is the generator of the sequence
(an).
The constant sequence defined by a, = 1 for every n > 1 is generated by the
element & since D"o = « and vy(x) = 1.

Note that if (a,) is generated by f and (b,,) is generated by g, then for any complex
numbers C, D the sequence (Ca, + Db,) is generated by Cf + Dg.

Summation of a Series

To define the sum ), ., a, we can write formally

Y an =) wD'f) =v()_D'f) = vo((I = D)”'f)

n>0 n>0 n>0

thus we get

Zan = UO(R)

n>0
where R is a solution of the equation
(I—-D)R=f

To have the uniqueness of the sum it suffices to have uniqueness of the solution R
of this equation. By linearity of D this is equivalent to say that:

if DR=RthenR =0
by the preceding remark this is the case if we add the condition
Voo(R) =0
Definition 9 Consider a summation space 7 =(E, D, vy, vso). Let (a,) be a com-
plex sequence generated by an element f € E and let’s assume that there exists

Ry € E which satisfies

Ry — DR; = f with veo(Rf) = 0 (5.1)



5.2 An Algebraic Formalism 161

Then we say that )~ a, is 7-summable and we define the sum Z;FZO a by

T
Zan = UO(Rf)

n>0

Examples
(1) The usual Cauchy summation

Let E be the vector space of convergent complex sequences u = (u,)n>0. Let’s
define the operators

D (ug,uy,ua,...) = (w1, uz,us,...)
Vo - (M(),I/ll,uz,...) = U

Voo © (ug,uy,uy,...) — lim u,
n—>+00

We have the two properties:

(*) The solutions of the equation Dg = g form the one-dimensional subspace of E
generated by the element

a=(1,11,..)

(**) If vo(D"g) = 0 forall n > 0, then g = 0 since vo(D"g) = g, for every
gekEkE.

Let C be this summation space. A complex sequence (a,) is generated by f € E
if vo(D"f) = a, and since vo(D"f) = f, we see that every complex sequence (a,)
has the generating element

f=(an)
To define ZSZO a, we must solve the equation
R—DR=f (5.2)
that is
(Ro,R1,R2,...) —(R1,R2,R3,...) = (ao, a1, a2, ...)
this gives

Ry —Ryy1 = ay
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thus we have

n
Ry+1 = Ro — Z ax
k=0

This gives an infinity of solutions of (5.2) since Ry is undetermined, thus we add
to (5.2) the condition v (R) = 0, that is

lim Rn+l =0

n—>-+00

which is equivalent to say that ) ;_ a; has a finite limit when n — 400 and
n
lim ay = R() = U()(R)

n—-+o00
k=0

Finally we see that the series Y _a, is Cauchy-summable if > ;_;a; has a
finite limit when n — +o0, in this case we say that the series ), _, a, is convergent
and we write simply

C +o00

E a, = E a, = lim ai
n—-+00

n>0 n=0 k=0

that is the usual sum of a convergent series.
(2) The Ramanujan summation

First note that in the preceding chapters we have defined the Ramanujan
summation for series ) ., f(n) indexed by n > 1, these can be seen as series
indexed by n > 0 if we set

Zf(n) = Zan where a, = f(n+ 1)

n>1 n>0

Consider the space E = O and the operators

Df(x) =f(x+ 1)
vo(f) =f(1)

2
voo () = /1 Foydr

We have the two properties:

(*) The solutions of the equation Dg = g are the functions g € O such that

glx+1) =g
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This gives g(n) = g(1) for every integer n > 1 and by Carlson’s theorem this
implies that g is a constant function, thus g is in the one-dimensional subspace of

E generated by the constant function o = 1.

(**) If vo(D"g) = 0 for all n > 0, then by Carlson’s theorem g = O since

vo(D"g) = g(n).

Consider R this summation space. A complex sequence (a,),>0 is generated by

an element f € O7 if for all integer n > 0 we have

an = vo(Df) =f(n+1)
The equation

Ry —DRy = f

is in this case our usual difference equation

Rp(x) = Re(x + 1) = f(x)
and the condition

Voo(Rp) =0

is simply the condition

2
/ Ri()dt =0
1

that we have used in the Ramanujan summation. And we have

R
Zan = UO(Rf) = Rf(l)

n>0

which is the definition used in the preceding chapters.

5.3 Properties of the General Summation

5.3.1 The Linearity Property

For any complex numbers C, D we have

T T T
ZCa,, + Db, = CZan +Dan

n>0 n>0 n>0

which is an immediate consequence of linearity of D, vy, Voo.-

(5.3)
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5.3.2 The Shift Property

Theorem 21 [fthe sequence (a,) is generated by f € E, then for any integer N > 1
we have the shift property

T T N—1 N—1
Zan-i-N = Zan_zan+zvoo(Dkf) (54)
n=0 n>0 n=0 k=0
In the special case N = 1 we get
T T
Y ant1 =) an—ao + voo(f) (5.5)
n>0 n>0

Proof First of all we must prove that the series ), - du+n is T-summable.
If (a,) is generated by f € E then for any integer N > 1 we have

anpn = vo(D"VF) = vo(D*(DVf))

thus the sequence (a,+y) is generated by Df € E. Then the equation Ry — DRy = f
gives

DRy — D(D"Ry) = D"f

but generally we don’t have v, (DY Ry) = 0. Thus we consider
Ty = DVRy — voo (D" Ryt

then we have immediately

Ty — DTy = DVf
Voo (Tn) =0
Thus by Definition 9 we have the 7 -summability of ano ap+y and
T

> ann = vo(Ty) = vo(D" (Ry)) — voo(D"Ry) (5.6)

n>0
Let us now evaluate the expression ZZ;O an — Y V"0 a, in the right side of
Eq. (5.4).

By summation for k from 0 to N — 1 (N > 1) of the relations
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we get
N—1
Ry —D"Ry =) Df
k=0

Since vo(D*f) = ay, this gives

T N—1
> ay =) ar=v(D"Ry) (5.7)
n>0 k=0
And by (5.6) we obtain
T T N—1
Zan-l—N = Zan_zan_voo(DNRf) (58)
n>0 n>0 n=0
To get (5.4) it suffices to note that
N—1 N—1
Voo (DVRy) = Voo Ry — Y _D'f) = = " veo (DY)
k=0 k=0

O
Remark Note that if in Definition 7 we set the additional property:
(***) If voo(g) = 0 then veo(Dg) =0

then voo(Ry) = 0 gives voo (DVRy) = 0 for all positive integer N, thus (5.8) gives
the usual property

T T N—1
D v = a=) a
n>0 n>0 n=0

This property is verified for most summations but not for the Ramanujan
summation.

5.3.3 The Associated Algebraic Limit

To define an algebraic notion of limit in a summation space 7 we start with the
following simple remark concerning the case of the usual Cauchy summation:
consider a complex sequence (a,).>0, then for every integer N > 0 we have

N
Y (@ — 1) = ag—an+i

n>0
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thus the series Zﬁ;o(an — ay+1) is convergent if and only if lim,,—, y o @, exists and
we have

+o00
lim a, = ap— Z(an — apt1)
n—>-+00
n>0

Similarly if the series ) _,a, is 7-summable it is natural to define the
generalized limit of the sequence (a,) by

-
li%nan =ay— Z(an —apt1)

n>0

Then by the shift property (5.5) we see that the 7 -limit of a sequence (a,) with
generator f € E is simply

li}rnan = Voo (f)

Now it remains to prove that like the Cauchy-summation the 7 -summation is
related to the 7 -limit of the sequence of partial sums defined by

n—1
so(a) = 0 and s,(a) = Zak =0forn>1 (5.9
k=0

If the series ), - a, is T-summable we define the sequence (r,(a)) of remainders
of this series by

T n—1
ro(a) = Zan and r,,(a) = ro(a) — Zak forn > 1 (5.10)
n>0 k=0

Since we have ry(a) = vo(Ry) and by (5.7) for any integer n > 1
ra(a) = vo(D"Ry) (5.11)
therefore we see that the sequence (r,(a)) is generated by Ry. Thus we have
li7I’n (@) = Voo(Rr) =0
Since s, (a) = ro(a) — r,(a), then the sequence (s,(a)) is generated by the element

ro(@)a — Ry € E
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and we have
n—1 T
lim ay) = Veo(ro(a)ae — Ry) = ro(a) = a,
T(; ¥ = vos(ro(@)a = Ry) = ro(a) XZ;

Remark In the case of the Ramanujan summation we have seen that a sequence
(an)n>0 is generated by f € O™ if a, = f(n + 1) for every integer n > 0. Thus

n—1 n—1 n
i@ = ar=Y flk+1)=> fk) =g¢r(n)
k=0 k=0 k=1
Since we have

¢r(n) = ¢r(n+1) =f(n + 1)

we see that the generating function of the sequence (s, (a)) is ¢y — f.
Thus in the general case it is natural to define ¢r by

¢r = ro(@)a — Ry + f

it is the generating element of the sequence (s,+1(a) = > _;_, ax). Note that

n T
11%11(2 @) = Voo (@) = Y _ an + Voo(f)
k=0

n>0

5.3.4 Sum of Products

We suppose now that for certain elements f, g in the 7 -summation space E we can
define a product

(f.9) >fgek

which has the usual properties of associativity, commutativity and distributivity. And
we suppose that for the evaluation operator vy we have

vo(f.g) = vo(f)vo(g)

Suppose that for f, g in E we have

D(f.g) = Df.Dg (5.12)
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by induction we get forn > 1

D'(f.g) = (D")).(D"g)

If (a,) is generated by f and (b,) is generated by g then the sequence (a,b,) is
generated by f.g, since

anbn = vo(D"f)vo(D"g) = vo((D"f).(D"g)) = vo(D"(f.8))
To get a formula for ZZ;O a,b, we observe that
Rp-Ry — D(Ry.Ry) = Ry.Ry — D(Ry).D(Ry)
= (R — D(Ry).Ry + D(Ry).(Rg — D(Ry)
=fRy+gR—fg
thus if Ry R, f.R,, and g.Ry are in E we get

Rf.Rg+g.Rf—f.g = Rf.Rg — Uoo(Rf.Rg) (513)

Since Ry is the generator of the sequence of remainders (r,(a)) and R, is the
generator of (r,(b)) then by (5.10) we get

T T T T T
D awby =Y awra(b) + Y bara(@) = Y an Y by + voo(Ry.Ry)
n>0 n>0 n>0 n>0 n>0

This is the formula we encounter in the proof of Theorem 2 since in the case of the
Ramanujan summation we have R¢(n + 1) = r,(a) if f(n 4+ 1) = a,. Note that the
additional term veo (Ry.R,) disappears in the case of the Cauchy summation, since
in this case

Voo(Rr.Ry) = Voo (Rp)Voo(Rg) =0

Remark More generally we can define a convolution product of the sequences (a,)
and (b,) by

(axb)y = vo(D"(f.8))

that is the sequence with f.g as generator.
For example if we suppose that for f and g in E we have

D(f.g) = (Df).g +f.(Dg)
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then by induction we get for n > 1
D'(f.g) = Y CiD'f).(D"*g)
k=0

In this case we get

(axb), = Z Charby—
=0

5.4 Examples

(1) The Cesaro summation

Let E be the vector space of complex sequences u = (u,),>0 such that

. uo+ ...+ Up—1 . .
lim " is finite
n—-+o00 n

And let’s consider the operators

D : (up) = (u1,uz,u3,...)

Vo - (Mn) = U

. g+ ...+ up—
Voo : (uy) — lim
n——+00 n
A sequence (a,) € E is generated by
f=(an)

The equation R — DR = f is Ry — Ry+1 = ay, thus

n—1
R()—Rn = Zak = Sp
k=0
By taking the sum of the equations
R() — R1 = 51
R() — R2 = 85

Ro—R, = s,
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we get

Ri+...+R, ST+ ..o+,
Ro = n - n

Thus R = (R,) € E if and only if S‘+'r'l'+s” has a finite limit when n — +o00. The
condition v, (R) = 0 is equivalent to lim,— 4 o R‘+"'1'+R” = 0, this gives

. s1+...+s
R(): lim §
n—-+00 n

Thus the series ), a, is Cesaro-summable if the sequence (‘”+'y'l'+‘v”) has a finite
limit when n — 400, and we write

C
Ya=w® =Ry= tm T
n=0

n—>-+00 n

(2) The Euler summation
Let E be the vector space of complex sequences u = (u,),>0 such that
. Up . .
lim is finite
n—>+oo 21
And let’s consider the operators
D : (un) = (tnt1 — un)
Vo (un) > uo

Voo : (uy) — lim
* (n) n—+oo 2"

Letf = (fu)n>0, we have foralln > 0

n

vo(D'f) =Y Chfi=1)"*

k=0
We deduce that a complex sequence (a,) is generated by f if and only if
ay =y _ Cri(=1)"*
k=0
and by inversion of this relation we get

n

fo=>_aC;

k=0
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The equation R — DR = f is

2R — Rit+1 = fx
this gives

Ry = 1R + 1f

0= Rt o
IR _ lR n lf
2 1 = 22 2 22.1
1 1 1
pRe= Rt o f

By taking the sum of these equations we get

1 1 1
Ro = zfo + fl 2n+1f on

n

We have R € E if and only if the sequence (1;;’) has a finite limit, which is equivalent
to say that

1
Z ot Ju 1s convergent

n>0

The condition

1

n——+oo 21

gives

1
Ro = n—lir—iloo Zﬁ) + fl 2n+1f

In conclusion we see that the series ) . @, is Euler summable if the series
1 n
k
Z on+1 (Z akcn)
k>0 k=0
is convergent and in this case we have

+o00

&
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(3) The Abel summation

Let E be the vector space of analytic functions on | — 1, 1] such that

lin%(l — x)f (x) is finite
Let’s consider the operators
f(x) =£(0)
X

Df(x) = if x # 0 and Df(0) = f'(0)

%(f) =£(0)
Voo(f) = lim(1 =0 ()

Since f € E is analyticon ] — 1, 1[ we can write

= 3"1(0)
flx) = Z a,x” with o, = !

m=0

and we have
+o00
Df@) =) oy 12"
m=0
By induction we get for alln > 0
+o00
D"f(x) = Z [
m=0

thus

w (@) =y = "1
n.

Let’s consider a complex sequence (a,) and assume that the series

+o00
) =) an”
n=0

is convergent for x €] — 1, 1] and defines a function f € E.
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Then
a"f (0
= O o)
n.
and the sequence (a,) is generated by f.
The equation R — DR = f is
R(o — K ;R(O) = f(x)ifx # 0 (5.14)
R(0) — R'(0) = £(0) (5.15)

By (5.14) this gives

ROO= | (RO) = () ifx 0

Thus R is analytic on |—1, 1[ and (5.15) is automatically verified. We see that R € E
if and only if lim,—,; f(x) is finite and the condition v (R) = 0 gives

R(0) = lim f(x)

In conclusion we see that if the series ano a,x" is convergent for all x € [—1, 1]
and, if lim,—1 Y2 @,x" is finite, then f € E and Y n>0@n is Abel-summable

A +o00
z_%a,, = vo(R) = R(0) = lim Z_(:)anx"

Note that in this example we have for f, g in E

D(f.g) = (Df).g + vo(f)Dg

then by induction we get for n > 1

n—1
D'(f.g) = (D"f).g + > vo(Df)D"*g

k=0

Thus the convolution product of the sequences (a,) and (b,) is given by

n—1 n
(ax )y = vo(D"(f-8) = vo(D"f).v0(8) + Y vo(Df)vo(D"g) = D abu—s
k=0 k=0

that is the usual Cauchy product of sequences.



Appendix A
Euler-MacLaurin and Euler-Boole Formulas

A.1 A Taylor Formula

The classical Taylor formula
m xk X _Am
s =Yooy, + [ o
= k! o m!

can be generalized if we replace the polynomial 7: by other polynomials (Viskov
1988; Bourbaki 1959).

Definition If y is a linear form on C°(R) such that u(1) = 1, we define the
polynomials (P,) by:

Py=1
oP, = P,—1, u(P,) =0forn>1

The Generating Function ) _, ., Px (x)zk

We have formally

0D P = Y P9 =2 P07

k>0 k>1 k>0
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thus

Y P = C@)e”

k>0

To evaluate C(z) we use the notation p, for y and by definition of (P,) we can write

(Y P)) = Y (P =1

k=0 k>0
(Y Pl = 1(CER)e%) = C@pa(e™)
k=0
this gives C(z) = " ( o) Thus the generating function of the sequence (P,) is

Y Pu = €% /M,(2)

where the function M, is defined by M,,(z) = p.(e*).

Examples

M) p(f) =10). Pa@) =7 . My(2) = 1. 3,20 Pa)" = €*
@) w(f) = fy fOdt, Pa) = 5 Myu(2) = [y edx = (e = 1)

B,(x) , ze¥
2 7=
n! et —1
n>0
The B,(x) are the Bernoulli polynomials and the B, = B,(0) the Bernoulli
numbers. With the generating function we verify that By = 1, By = —1/2,
By =0ifn>1,B,(1 —x) = (—1)"B,(x).
3) 1) = 3 (fO) +£(1) . Pa(x) = 57

E,(x) , 2e*
> =
n! e+ 1

n>0

The E,(x) are the Euler polynomials and we set E, = E,(0).
With the generating function we verify that £y = 1,E; = —1/2ifn > 1,
E,(1—x) = (=1)"Ea(x).
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The Taylor Formula

Let f be a function in C*°(R), then we have

FO) =) + / 0Py (x + y — Df ()dr
s

and by integration by parts we get for every m > 1

F0) = 1)+ Y (Pe@FF(y) — Pu(1)3 (x))

k=1

+ / Pulx 4y — DI (i
y

Applying p to this function as a function of y gives a general Taylor formula:
foreverym > 0

0= 3 m@FONP) + s / Po(x 4y — 00" f ()

k=0

A.2 The Euler-MacLaurin Formula

We can transform the Taylor formula to get a summation formula. Taking x = 0 we
get

0 = 3 1y @FNPO) — sy [ 2ty =03+

k=0

In the case of @ f folf(t)dt we have

m

L opey —
ro =3 ey [P0 e ranay

Replacing m by 2m and with B; = —1/2 and By+; = 0, we get

£0) = / Fodi+ ) (70) - f(1)>+Z SCamiil

BZm(y m
/ / 2m)! 82 e (0)dn)dy

(2k)!
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The last integral can easily be evaluated by Fubini’s theorem, we get

By

in? b

1 1 =
70 = [ s+ 70 )+ 3

! B2m+1(t) 2m+1
+/0 (2m+1)!8 f(r)dt

Let j be a positive integer, by replacing f by x + f(j + x) in the last formula, we
have

j+1 m
= [ fod+ GGG+ Y
k=1

J

Bok ok jjt1
an® 1Y

i+l b2m+l(t) 2m+1
+[ 2m + 1)!8 f(t)dt

where byyt1(1) = Ba1(t — [1]).
Summing these relations for j from 1 to n — 1, we get for f € C*°(]0, o) the
Euler-MacLaurin formula

+f(n)

fM+...+f(n) = /1 f(x)dx+f(1) )

m

B 2k—1 p1n
+k=1(2k)![a S

" b2m+1(x) 2m+1
+/1 m+ 1)!3 f(x)dx

A.3 The Euler-Boole Formula
In the case of the Euler polynomials, the formula
S k ! 1
£O) = 3 iy (9)P0) — iy /0 Poly — 00" (1))
k=0
gives

_ — 1 k E. 1 Y (=D)"En(1) g
rO =3 650+ asany - [0 o
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Let j be a positive integer, by replacing f by x + f(j + x) in the last formula we
obtain

| E,
FG) = @D + 3G+ D))
k=0 :
1 Jj+1 —1)"E,
_2/ ( zl'E (t _J) am-l—lf(t) dt
! !

Let’s define

en(t) = (=DI(=1)"E,, (t — [1])

we obtain by summation on j the Euler-Boole summation formula

1 m
FO =@+ G = ) Yk
k=0 :

D" & Ey
+ Zakf(n+1)k!

k=0

1

n+1 1
+ / em (1) 0" T (1) dt
2 1 m'



Appendix B
Ramanujan’s Interpolation Formula
and Carlson’s Theorem

We give a proof of the following theorem.

Carlson’s Theorem Let f be an analytic function in the half-plane Re(z) > —d
where 0 < d < 1. Let’s assume there exist a > 0 and b <  such that

lf(@)] < aeblzlfor every z with Re(z) > —d

Then the conditionf(n) = 0 forn =0,1,2, ..., implies f = 0.

We prove this theorem by the use of an interpolation formula which is related to
Ramanujan’s interpolation formula.

First in Theorem 1 below we get an integral formula for the function

+o00
gix Zf(n)(—l)"x"
n=0

which is

1 c+ioco T B
= [ fw
i J.

ico  Sin(mu)

Then in Theorem 2 we prove the interpolation formula

Qi +o00
f) = m“”/ wdx
T 0

Since for the definition of the function g we only need to know the values
f(m), n=20,1,2,...., we see that this interpolation formula determines the function
f in the half-plane Re(z) < —d when we only know the values f(0),f(1),f(2),...,
thus we have a proof of Carlson’s theorem.
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Theorem 1 Let f be an analytic function in the half-plane Re(z) > —d where
0 < d < 1. Let’s assume there exist a > 0 and b < 1 such that

|l f2)| < aeblzlfor every z with Re(z) > —d
Then the series ano f(n)(—1)"x" is convergent in
DO0,e?)={xeC,|x| <e™®
and defines an analytic function g in D(0, e™").

This function g has an analytic continuation in S, = {|Arg(z)| < @ — b} which
is defined by

1 c+ioo T
g 7> / f(—u)z "du

207t Jo—ioo sin(mwu)
Proof For0 < a < ¢~? we have
|£(n)(=1)"x"| < ae”a"

Thus the series ano f(n)(—=1)"x" is normally convergent in D(0, @) and defines a
function g : z > Y120 f(n)(—1)"z" that is analytic in D(0, e ™).

For0 < x < e”and 0 < ¢ < d, the function u > f(—u)x™" is analytic in the
half-plane Re(u) < d, and we consider the integral

1 b4 —u
2im /VN sin(nu)f(_u)x du

where py is the path

iN
-N-1/2 9 c
-iN
The function u — Sinfw) f(—u)x™" has simple poles at 0, —1,—2,...,—n,...

with

Res( ;—n) = (—1)"f(n)x"

T
sin(mwu)
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thus we get

1 b4 N
/ Fleupxdu = 3 (1)
YN

2im sin(ru) =

Lemma 1 When N — 400 we have for 0 <x < e~
1 T 1 c+ioco T
—u)x "d —u)x""d,
2im /W sin(:ru)f( upx"du — 2im /L._,-oo sin(nu)f( ux " du

By the preceding lemma we get for 0 < x < e~

1 c+iN T
1' _ _Md — 1 _ _le
N—lr}rloo 2ir /),N sin(nu)f( upx " du N—lr—{-loo 2im /C_iN sin(nu)f( upx " du

Thus we have for0 < x < e

+oo 1 c+ioo T

S = [ T A

= iT Je—ico sin(mu)
Lemma 2 For 0 < ¢ < d, the function

c+ioo T
g f(=w)z "du

c—ioo sin(nu)
is defined and analytic in S, = {|Arg(z)| < m — b}.
The function
+00
e Y (=1
n=0

is defined and analytic in D(0,e™?) = {|z] < e~} and is equal to g in the interval
[0, e]. By analytic continuation we get

+o0 . 1
>z = |

p oo Sin(1)

c+ioo

f(=u)z "duif z € D(0,e7?) N S,

|

The Mellin Inversion We now show that the formula

1 c+ioco
g(2) = ZiJr/ y f(—u)z "du

ico  Sin(mu)
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can be inverted to give

+o0
flea) = / (O dx

sm(nz)

Theorem 2 Let f be an analytic function in the half-plane Re(z) > —d where
0 < d < 1. Let’s assume there exist a > 0 and b < 7 such that

lf(@)] < aeblzlfor every z with Re(z) > —d

For 0 < Re(z) < d we get

+o0
flea) = / (v dx

sm(nz)

where g is the analytic continuation of the function 7 — Z;:g f()(=1)'7" in
Sp = {|Arg(z)| <7 —b}.
We have in the half-plane Re(z) > —d the interpolation formula

Qi +o00
fo =" /0 vl

Proof We consider 0 < ¢; < ¢; < d, and z such that ¢; <Re(z) < c».
(a) First we evaluate fol g(x)x* " dx.
We have

/O g dx = / i / T e

|—ico  Sin(ru)

— 1 _ c1—it ‘s —1
_/0 Gr | f (e =i ey + i F

Since

Tx ¢l —irxz—l
sin(m(cy + ir))

L _ 1
< 2maexrRe@—1 bl | )
pinCl o=t _ p—incy pnt

‘f(_cl — it)

with Re(z) —c; — 1 > —1 we get the integrability for (¢, x) € R x [0, 1].
Thus by Fubini’s theorem we get

1 1 c1+ioco T 1
xz—ld — _ —M+Z—ld d
/g(x) = / N ”)(/0 ¥ ) du

0 2im Jej—ico  SIN(wU)

1 c1+ioo -1
e [ e 0
c Uu—=z

2im Jej—ico  Sin(mwu)
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(b) Then we evaluate || 1+°° g(x)x* " dx.
This is

o0 +oo cr+ico P
—1 _ . —u —1
[ e[| F (e ) d

2im Jey—ico  Sin(mwu)

As in (a) we see that for Re(z) — c2 — 1 < —1 we can apply Fubini’s theorem to
get

+o00 - 1 cyt+ioo T +o0 —
/ g dx = )y / f(—u)(/ x T dx)du
| i J. 1

—ico  SIN(TuU)

1 c2+ioo 1
/ i f(=u) du
c uUu—=z

 2im —ico  SIN(TU)

Finally we have for ¢; <Re(z) < ¢»

+o0 c2+i00
/0 g0)x* ldx = ! / i f(=u) ! du

2im Jey—ico  SiN(TU) u—z
1 c1+ioo T 1
e | 0,
2im Je—ico  Sin(mu) u—7z

We then apply Cauchy’s formula with the path

G |q

to get
+o00
A s lae= T f(o)

By the preceding result we have for —d <Re(z) < 0

s +o00
7@ =" [ g as
T 0

7
sin(mz)

where g is the analytic continuation of the function z — Z:jg (n)(—1)"z".
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The function
_qi +o0
. sin(mz) / 20 dx
T 0
is defined and analytic in the half-plane Re(z) > —d since by the integral formula

for g(x) (x > 0) we can write

1

eince—nt _ e—iﬂeﬂt

< 2mae’x e

f(—c—it)x—"

i
sin(7 (¢ + it))
to get g(x) = O(x™°) for x - 400, for0 < ¢ < d.

Thus by analytic continuation we get the interpolation formula in the half-plane
Re(z) > —d

o +o00
fy = o /0 vl

Remark: Ramanujan’s Interpolation Formula

Let’s consider the functionf : x > |, (x1+ 1 This function is analytic in the half-plane

Re(z) > —1. The function g defined by the analytic continuation of
+o00 o
e Z(_l)n nl
n=0

is simply the function z +— e7%. Thus by the preceding theorem we get for
0 <Re(z) <1

T 1

+o0 e
sin(nz)F(l—z):/o e dr=T0@)

With T'(z)I'(1 —z) = . 7 | we get for 0 <Re(z) < d

sin(7rz)

+o0
/ (¥ ldx = TET(1 - 2 (—2)
0
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Let’s take h(z) = f(z)T'(z + 1). We have

+o00 ¥
g =) hm(=D"
n=0
and we get Ramanujan’s interpolation formula

_ 1 +o0 -
h(—z) = ') /0 gx)x*dx

Proofs of the Lemmas

Lemma 1 When N — +o00 we have for0 < x < e

1 1 c+ioco
/ o f(=u)x"du — 2i71/ i f(—u)x"du
YN c

2im sin(wu) —ico  SiN(u)

Proof (a) The integral on the vertical line through —N — ; is

N 1 N+1_ 4
/ fIN+ _ —inxNt27i L idt
N 2 sin(m (=N — , +it))
since
T . 2w (=N F!
sin(m(~=N — ) +ir) e +e
we get
N N+ —ir N b(N+1) bl
1 2 2
/ FON+ =i T idr] < 2 / ae e
N 2 sin(w (=N — , + it)) -y e+ e

Since b < 7 we have

N blt| 400 blt|
e e
/;N eﬂt + e—ﬂt dt - /;OO eﬂt + e—ﬂt dt

For 0 < x < ¢~ we have b + Log(x) < 0 thus

PN N4y JN+5)b+Log() _
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dt
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Thus the integral on the vertical line through —N — ; tends to 0 when
N — +o0.
(b) The integral on the horizontal segment from ¢ 4 iN to —N — ; + iN is

c 2i
. LT
— _ o —t—iN
IN - /—N—éf( ! lN)'x e—JTNeiﬂt _ eﬂNe—int dt
and we have
F—t — iN)x—N 2im < gebtHN) 21
e—ﬂNeiﬂt _ enNe—int - eﬂN _ e—nN

thus

2 ¢ _
|IN| < aebN et(b Log(x))dt
eﬂN _ e—nN —N—é

since 0 < x < e~ we have b — Log(x) > 2b > 0 thus

c c
/ pib—Log) gy / oi(b—Log() g
—N— ; —0o0

And e? _,>"_ ., — Osince b < .
(c) For the integral on the horizontal segment from —N — ; —iN to ¢ —iN the proof

is similar to the preceding one. [J

Lemma 2 Let’s take 0 < ¢ < d, the function

c+ioco

T
g1 . f(=w)z "du
c—ico  SIN(7TU)

is defined and analytic in S, = {|Arg(z)| < w — b}.
Proof For this integral on the vertical line through ¢ we can write
—c—it

. nZ
Je=i0 e + iny)

1

i| < 2mae’|z|etlletre@ | ,
elT[Ce_T[T — e_lT[CeT[T

For z in any compact K of S, we have

1

eb|t|etArg(Z) ‘ '
emce—ﬂt _ e—mcent

< k(r)

where t +— k(7) is an integrable function independent of z € K since
|Arg(z)| < w — b’ withb < b’ < 7.
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The function

g

2> flme—ing™ sin(z(c + it))i

is analytic for all ¢, thus we get the analyticity of the function defined by the
integral. O
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