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Main reference

The main reference for this talk is my recent article:

A note on some alternating series involving zeta and multiple zeta values
Journal of Mathematical Analysis and Applications, 475 (2019),
1831–1841.

Available on my website: math.unice.fr/∼coppo/
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Euler’s constant

The famous Euler-Mascheroni constant

γ := lim
n→∞


n∑

j=1

1
j − ln n

 = 0.5772156649 . . .

was first introduced by Euler and has been computed with high accuracy
since the middle of the 18th century.

One of the main reasons of the importance of this constant lies in its close
relation with the Riemann zeta function.
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Stieltjes constants

The Riemann zeta-function

ζ(s) :=
∞∑

n=1
n−s , <(s) > 1

is a meromorphic function in the entire complex plane with one simple
pole at s = 1. The Laurent expansion of the Riemann zeta-function at
s = 1 is given by

ζ(s) = 1
s − 1 + γ +

∞∑
k=1

(−1)k(s − 1)k

k! γk

The numbers γk are called Stieltjes constants.
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Stieltjes constants

A classical expression of the Stieltjes constants is the following:

γk = lim
n→∞


n∑

j=1

lnk j
j − lnk+1 n

k + 1


In the specific case k = 1, we have

γ1 = lim
n→∞


n∑

j=1

ln j
j −

1
2 ln2 n

 = −0.07281584548 . . .

The constant γ1 will reappear at the end of this presentation.
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Euler’s and Mascheroni’s series for γ

A conditionally convergent series representation of γ is the following:

γ =
∞∑

n=2
(−1)n ζ(n)

n

(Euler, 1735)

An absolutely convergent series representation of γ is the following:

γ =
∞∑

n=1

|bn|
n = 1

2 + 1
24 + 1

72 + 19
2880 + 3

800 + 863
362 880 + · · ·

(Mascheroni, 1790)
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Bernoulli numbers of the second kind

The numbers bn are the Bernoulli numbers of the second kind (also called
Gregory coefficients). The numbers cn = n!bn are the Cauchy numbers.
The sequence {bn}n can be computed recursively by b0 = 1 and

n∑
k=0

(−1)kbk
n − k + 1 = 0 for n ≥ 1 ,

or explicitly by

bn = 1
n!

1∫
0

x (x − 1) (x − 2) · · · (x − n + 1) dx , n = 1, 2, 3, . . .
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Bernoulli numbers of the second kind

The Bernoulli numbers of the second kind alternate in sign. The first one
are

b1 = 1
2 , b2 = −112 , b3 = 1

24 , b4 = −19720 , b5 = 3
160 , b6 = −863

60 480 , . . .

Asymptotically, they behave as

|bn| ∼
1

n (ln n)2 , n→ +∞
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Bernoulli numbers of the second kind

A remark on the Mascheroni’s series: if the absolute values are removed in
the series, it may be shown that the sum

∞∑
n=1

bn
n = li(2)− γ = 0.46794811521 . . .

where li(x) is the logarithmic integral function.
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The sequence {νk}

For each integer k with k > −1, we now consider the shifted series

νk :=
∞∑

n=2
(−1)n ζ(n)

n + k .

They form a sequence {νk}k of conditionally convergent series
parametrized by k. In particular, we have

ν0 = γ .
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Suryanarayana’s formula

A quite simple formula for ν1 is

ν1 = γ

2 −
1
2 ln(2π) + 1

(Suryanarayana, 1974)

A short proof of this formula is given by Singh and Verma (Yokohama
Mathematical Journal, 31 (1983)).
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The case k ≥ 1

For any integer k ≥ 1, it can be shown that a general formula for νk is

νk = γ

k + 1 −
1
2 ln(2π) +

k−1∑
j=1

(−1)j
(

k
j

)
ζ ′(−j) + Ck

where Ck is a positive rational number whose explicit expression is given by

Ck = 1
k +

k−1∑
j=1

(
k
j

)
Bj+1 Hj
j + 1

In this expression, {Hn}n are the harmonic numbers,

Hn := 1 + 1
2 + · · ·+ 1

n

and {Bn}n are the Bernoulli numbers.
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Bernoulli numbers

The Bernoulli numbers are defined by their generative function

x
ex − 1 =

∞∑
n=0

Bn
xn

n! (|x | < 2π)

They can be computed recursively by B0 = 1 and

n∑
k=0

Bk
k!(n − k + 1)! = 0

The first one are

B1 = −12 , B2 = 1
6 , B3 = 0, B4 = −130 , B5 = 0, B6 = 1

42, etc.
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Generalized Glaisher-Kinkelin constants

An equivalent expression for νk in the case k ≥ 1 is the following:

νk = γ

k + 1 + 1
k −

k−1∑
j=0

(−1)j
(

k
j

)
ln(Aj)

where Ak are the generalized Glaisher-Kinkelin constants defined by

ln(Ak) = Bk+1 Hk
k + 1 − ζ ′(−k) for k ≥ 0

In particular, A0 =
√
2π is the Stirling constant and A1 = A is the the

Glaisher-Kinkelin constant

A = e
1
12−ζ

′(−1) = 1.282427129 . . .
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The case k = −1

The case k = −1 is a special case of particular interest. By definition, we
have

ν−1 :=
∞∑

k=1
(−1)k−1 ζ(k + 1)

k = 1.2577468869 . . .

This constant admits the following expressions:

• ν−1 =
∞∑

n=1

1
n ln

(
1 + 1

n

)

• ν−1 = −
∞∑

n=2
ζ ′(n)

• ν−1 =
∫ +∞

−∞

ζ(3
2 + ix)

(1 + 2ix) cosh(πx) dx

This last formula is due to Blagouchine and can be easily proved by the
residue theorem.
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Higher Gregory coefficients

We consider now the Gregory coefficients of higher order defined by

G(k)
n := 1

n!

n∑
j=1

s(n, j)
j + k (k ≥ 0, n ≥ 1)

In this formula, s(n, j) denotes the Stirling numbers of the first kind.
The Gregory coefficients of higher order are representable by the integral

G(k)
n = (−1)n+1

n!

∫ 1

0
xk(1− x)(2− x) · · · (n − 1− x) dx

In the specific case k = 1, we recover the ordinary Gregory coefficients
since

G(1)
n = bn .
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Higher Gregory coefficients

As for the bn, the Gregory coefficients G(k)
n alternate in sign.

G(k)
n = (−1)n+1|G(k)

n |

It can be shown shown that

νk−1 =
∞∑

n=1

|G(k)
n |
n (k ≥ 0)

In the specific case k = 1, we recover the Mascheroni series for γ.
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Multizeta values

For integers p ≥ 0 and k ≥ −1, we consider now the more general
alternating series

νk,p :=
∞∑

n=2

(−1)n

n + k ζ(n, 1, . . . , 1︸ ︷︷ ︸
p

)

where
ζ(s1, s2, · · · , sk) =

∑
n1>n2>···>nk≥1

1
ns1

1 ns2
2 · · · n

sk
k

In the specific case p = 0, we have

νk,0 = νk .
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Multizeta values

It can be shown that for all integers p ≥ 0 and k ≥ −1, we have

νk,p =
∞∑

n=1

|G(k+1)
n |
np+1

In the specific case k = 0, we get

ν0,p =
∞∑

n=2

(−1)n

n ζ(n, 1, . . . , 1︸ ︷︷ ︸
p

) =
∞∑

n=1

|bn|
np+1
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The case p = 1

In particular, for p = 1,

ν0,1 =
∞∑

n=2

(−1)n

n ζ(n, 1) =
∞∑

n=1

|bn|
n2 = 0.5290529699 . . .

We have the following nice relation

ν0,1 = ν−1 + γ1 + 1
2γ

2 − 1
2ζ(2)

where γ1 is the first Stieltjes constant.
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Link with the harmonic zeta function

The Apostol-Vu harmonic zeta function ζH defined for <(s) > 1 by

ζH(s) :=
∞∑

n=1

Hn
ns

is an analytic function in the half-plane <(s) > 1 which can be extended
meromorphically in the whole complex plane with a double pole at s = 1
and an infinity of simple poles at the integers 0,−1,−3,−5,−7,−9, . . ..
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Link with the harmonic zeta function

The special values of the harmonic zeta function at negative even integers
are ζH(−2k) = −B2k/4k + B2k/2. The special values at positive integers
are given by

2ζH(n) = (n + 2)ζ(n + 1)−
n−2∑
r=1

ζ(r + 1)ζ(n − r) (n ≥ 2).

This last formula was first obtained by Euler in a famous article dated
1775 and several times rediscovered afterwards.
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Link with the harmonic zeta function

It can be shown that
∞∑

n=2
(−1)n ζH(n)

n = γ1 + 1
2γ

2 + 1
2ζ(2) = 0.916240149 . . .

where γ1 is the first Stieltjes constant.

Furthermore, in a neighborhood of s = 1, we have the expansion

ζH(s) = 1
(s − 1)2 + γ

(s − 1) + 1
2γ

2 + 1
2ζ(2) + O(s − 1) .
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