L1MD – feuille 4 3 mars 2014

1. Construction d'ensembles

On rappelle ici brièvement quatre des règles classiques de formation des ensembles (voir cours) :

- 1. $\{a, b\}$: paire a, b,
- 2. $\cup X$: réunion des éléments de X,
- 3. $\mathcal{P}(X)$ ensemble des parties de X,
- 4. $\{x \in X | P(x)\}$: ensemble des éléments de X vérifiant la propriété P.

Lesquelles de ces règles utilise t-on pour former les ensembles suivant ? (Détailler.)

- a. $\{a,b,c,d\}$, $\{\{\{a\}\},\{a,b\},a,b,c\}$ pour a,b,c,d des objets (des ensembles dans la théorie des ensembles).
- b. $A \cup B$, $A \cup B \cup C$ pour A, B, C des ensembles.
- c. $\bigcup_{i \in I} X_i$ pour $(X_i)_{i \in I}$ une famille d'ensembles indexée par l'ensemble I.
- d. $A \cap B$, $A \setminus B$ (complémentaire de B dans A) pour A, B deux ensembles.
- e. $\cap_{i \in I} X_i$ pour $(X_i)_{i \in I}$ une famille d'ensembles.
- f. f(A) ou Im(f), $f^{-1}(C)$ pour $f:A\to B$ une fonction et C une partie de B.
- 2. Formaliser puis donner la négation de l'énoncé formalisé avec les notations (ou type) indiqués pour certains objets et les résumés indiqués pour certains énoncés :
 - a. "L'image d'un intervalle par une fonction continue $\mathbb{R} \to \mathbb{R}$ est un intervalle" avec le type $\mathbb{R} \to \mathbb{R}$ pour les fonctions de \mathbb{R} dans \mathbb{R} et les résumés "f est continue" pour $f: \mathbb{R} \to \mathbb{R}$ et "E est un intervalle" pour E une partie de \mathbb{R} .
 - b. "Toute suite croissante et majorée de nombres réels est convergente" avec $\mathbb{R}^{\mathbb{N}}$ pour le type (ou ensemble) "suite de nombre réel" et le résumé " (u_n) est convergente" pour (u_n) une suite de nombres réels.
 - c. " (u_n) est une suite convergente" pour (u_n) une suite de nombre réel avec la notation (ou résumé) [a,b] pour le segment de \mathbb{R} de bornes a et b.
 - d. "Toute suite à valeur dans I admet une sous-suite convergente dans I" pour I un intervalle de \mathbb{R} , avec $\mathbb{R}^{\mathbb{N}}$ comme notation pour l'ensemble des suites numériques et le résumé " (u_n) converge vers l" pour (u_n) une suite de nombres réelsn et l un nombre réel.
- ${f 3.}$ Que disent les énoncés suivants dans le contexte spécifié ? Connaissez vous la valeur de vérité de ces énoncés ?
 - a. " $\forall a, b \in \mathbb{R}, \ a < b \Rightarrow a^2 < b^2$ ".
 - b. " $\exists y \in E, \ \forall x \in E, \ y \geq x$ " où E est une partie de \mathbb{R} .
 - c. " $\forall x \in E, \exists y \in E, y > x$ " où E est une partie de \mathbb{R} .
 - d. " $\exists y \in E, \ \forall x \in E, \ y > x$ " où E est une partie de \mathbb{R} .
 - e. " $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$ " où (u_n) est une suite numérique.
 - f. " $\forall n \in \mathbb{N}, \exists m \in \mathbb{N}, m > n \text{ et } u_m > u_n$ " où (u_n) est une suite de nombres compris entre 0 et 1.
 - g. " $\forall n \in \mathbb{N}, \ \exists p,q \in \mathbb{N}, \ q > p > n \text{ et } u_q > u_p$ " où (u_n) est une suite de nombres compris entre 0 et 1.
 - h. " $\forall n \in \mathbb{N}, \exists m \in \mathbb{N}, m \geq n \text{ et } u_m \leq u_n$ " où (u_n) est une suite de nombres compris entre 0 et 1.