Continuité de certaines fonctionnelles du mouvement brownien fractionnaire en fonction du paramètre de Hurst

Alexandre Richard
Tosca, INRIA Sophia-Antipolis

Colloque franco-maghrébin d'analyse stochastique Nice, 24 novembre 2015

Plan

Introduction

Regularity of the fractional Brownian field

Continuity in H of the law of the hitting times of fBm

Fractional Brownian motion (fBm)

Fractional Brownian motion of Hurst parameter $H \in(0,1)$ can either be defined as:

1. the centred Gaussian process with covariance:

$$
R_{H}(t, s)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right), s, t \in \mathbb{R}
$$

2. a H-self-similar with stationary increments Gaussian process.

Discovered by [Kolmogorov 40] (in relation with turbulent fluid dynamics). For $H \neq 1 / 2$, an integral representation was given by [Mandelbrot \& Van Ness 68]:

Fractional Brownian motion (fBm)

Fractional Brownian motion of Hurst parameter $H \in(0,1)$ can either be defined as:

1. the centred Gaussian process with covariance:

$$
R_{H}(t, s)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right), s, t \in \mathbb{R} .
$$

2. a H-self-similar with stationary increments Gaussian process.

Discovered by [Kolmogorov 40] (in relation with turbulent fluid
dynamics). For $H \neq 1 / 2$, an integral representation was given by
[Mandelbrot \& Van Ness 68]:

Fractional Brownian motion (fBm)

Fractional Brownian motion of Hurst parameter $H \in(0,1)$ can either be defined as:

1. the centred Gaussian process with covariance:

$$
R_{H}(t, s)=\frac{1}{2}\left(|t|^{2 H}+|s|^{2 H}-|t-s|^{2 H}\right), s, t \in \mathbb{R}
$$

2. a H-self-similar with stationary increments Gaussian process.

Discovered by [Kolmogorov 40] (in relation with turbulent fluid dynamics). For $H \neq 1 / 2$, an integral representation was given by [Mandelbrot \& Van Ness 68]:

$$
B_{t}^{H}=c_{H} \int_{\mathbb{R}}\left((t-s)_{+}^{H-1 / 2}-(-s)_{+}^{H-1 / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

Few properties of the fBm

- Hölder continuity of the sample paths:

- For $H \neq 1 / 2, \mathrm{fBm}$ is neither a Markov process, nor a semimartingale.
- For $H>1 / 2$, the noise is long-range dependent:

$$
\sum_{k=0}^{\infty} \mathbb{E}\left(B_{1}^{H}\left(B_{1+k}^{H}-B_{k}^{H}\right)\right)=\infty
$$

Few properties of the fBm

- Hölder continuity of the sample paths:

- For $H \neq 1 / 2, \mathrm{fBm}$ is neither a Markov process, nor a semimartingale.
- For $H>1 / 2$, the noise is long-range dependent:

Few properties of the fBm

- Hölder continuity of the sample paths:

- For $H \neq 1 / 2, \mathrm{fBm}$ is neither a Markov process, nor a semimartingale.
- For $H>1 / 2$, the noise is long-range dependent:

$$
\sum_{k=0}^{\infty} \mathbb{E}\left(B_{1}^{H}\left(B_{1+k}^{H}-B_{k}^{H}\right)\right)=\infty
$$

Sensitivity in the Hurst parameter

Several authors have studied this problem for:

- the convergence in law of the Russo-Valois symmetric integral:

$$
\int u_{s}^{H} d B_{s}^{H} \underset{H \rightarrow H_{0}}{\Longrightarrow} \int u_{s}^{H_{0}} d B_{s}^{H_{0}}, \quad[\text { Jolis \& Viles 10]; }
$$

- idem for the multiple Wiener-Ito integrals [Jolis \& Viles 07];
- the local time of fBm, and Gaussian random fields [Wu \& Xiao 09].
"These kinds of results justify the use of B^{H} as a model in applied situations where the true value of the Hurst parameter is unknown and \hat{H} is some estimation of it." [Jolis \& Viles 10]

Remark
We can see at least two problems arising:

- the first one mentioned in [Wu \& Xiao 09]: these problems are more difficult for random fields;
- what about discontinuous functionals of the sample paths? (e.g. hitting times)

Sensitivity in the Hurst parameter

Several authors have studied this problem for:

- the convergence in law of the Russo-Valois symmetric integral:

$$
\int u_{s}^{H} d B_{s}^{H} \underset{H \rightarrow H_{0}}{\Longrightarrow} \int u_{s}^{H_{0}} d B_{s}^{H_{0}}, \quad[\text { Jolis \& Viles 10]; }
$$

- idem for the multiple Wiener-Ito integrals [Jolis \& Viles 07];
- the local time of fBm, and Gaussian random fields [Wu \& Xiao 09].
"These kinds of results justify the use of $B^{\hat{H}}$ as a model in applied situations where the true value of the Hurst parameter is unknown and \hat{H} is some estimation of it." [Jolis \& Viles 10]

We can see at least two problems arising:

- the first one mentioned in [Wu \& Xiao 09]: these problems are more difficult for random fields;
- what about discontinuous functionals of the sample paths?
\square

Sensitivity in the Hurst parameter

Several authors have studied this problem for:

- the convergence in law of the Russo-Valois symmetric integral:

$$
\int u_{s}^{H} d B_{s}^{H} \underset{H \rightarrow H_{0}}{\Longrightarrow} \int u_{s}^{H_{0}} d B_{s}^{H_{0}}, \quad[\text { Jolis \& Viles 10]; }
$$

- idem for the multiple Wiener-Ito integrals [Jolis \& Viles 07];
- the local time of fBm, and Gaussian random fields [Wu \& Xiao 09].
"These kinds of results justify the use of $B^{\hat{H}}$ as a model in applied situations where the true value of the Hurst parameter is unknown and \hat{H} is some estimation of it." [Jolis \& Viles 10]

Remark

We can see at least two problems arising:

- the first one mentioned in [Wu \& Xiao 09]: these problems are more difficult for random fields;
- what about discontinuous functionals of the sample paths? (e.g. hitting times)

Question (1)
On a bounded open domain $U \subset \mathbb{R}^{N}$ with smooth boundary, let $h \in(0,1)^{N}$ and consider equation:

$$
\Delta u=\mathbb{W}^{(h)} \quad \text { on } U,
$$

with condition $u=0$ on ∂U.
u depends on h. \Rightarrow How does the law of u evolve subject to a small perturbation $h+\delta h$?

Question (2)
The law of the hitting times of the fractional Brownian motion:

$$
\tau_{H}=\inf \left\{t \geq 0: B_{t}^{H}=1\right\}
$$

is unknown (and expected to be hard to obtain...).
What is the deviation from the law of the HT for Brownian motion:

Question (1)

On a bounded open domain $U \subset \mathbb{R}^{N}$ with smooth boundary, let $h \in(0,1)^{N}$ and consider equation:

$$
\Delta u=\dot{\mathbb{W}}^{(h)} \quad \text { on } U,
$$

with condition $u=0$ on ∂U.
u depends on h. \Rightarrow How does the law of u evolve subject to a small perturbation $h+\delta h$?

Question (2)
The law of the hitting times of the fractional Brownian motion:
is unknown (and expected to be hard to obtain...).
What is the deviation from the law of the HT for Brownian motion:
\square

Question (1)

On a bounded open domain $U \subset \mathbb{R}^{N}$ with smooth boundary, let $h \in(0,1)^{N}$ and consider equation:

$$
\Delta u=\dot{\mathbb{W}}^{(h)} \quad \text { on } U
$$

with condition $u=0$ on ∂U.
u depends on h. \Rightarrow How does the law of u evolve subject to a small perturbation $h+\delta h$?

Question (2)
The law of the hitting times of the fractional Brownian motion:

$$
\tau_{H}=\inf \left\{t \geq 0: B_{t}^{H}=1\right\}
$$

is unknown (and expected to be hard to obtain...).
What is the deviation from the law of the HT for Brownian motion:

$$
\left|\mathbb{E}\left(e^{-\lambda \tau_{H}}\right)-\mathbb{E}\left(e^{-\lambda \tau_{1 / 2}}\right)\right|, \lambda \in \mathbb{R}_{+} ?
$$

Plan

Introduction

Regularity of the fractional Brownian field

Continuity in H of the law of the hitting times of fBm

Fractional Brownian fields

Consider the integral representation of a H - fBm :

$$
B_{t}^{H}=c_{H} \int_{\mathbb{R}}\left(|t-s|^{H-1 / 2}-|s|^{H-1 / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

What is the regularity of $H \mapsto B_{t}^{H}$?
One has, for any $H, H^{\prime} \in(0,1)$:

$$
\mathbb{E}\left(\left(B_{H, t}-B_{H^{\prime}, t}\right)^{2}\right) \leq C\left(H-H^{\prime}\right)^{2} .
$$

Fractional Brownian fields

Consider the integral representation of a H - fBm :

$$
B_{t}^{H}=c_{H} \int_{\mathbb{R}}\left(|t-s|^{H-1 / 2}-|s|^{H-1 / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

What is the regularity of $H \mapsto B_{t}^{H}$?
One has, for any $H, H^{\prime} \in(0,1)$:

$$
\mathbb{E}\left(\left(B_{H, t}-B_{H^{\prime}, t}\right)^{2}\right) \leq C\left(H-H^{\prime}\right)^{2}
$$

Fractional Brownian fields

Consider the integral representation of a H - fBm :

$$
B_{t}^{H}=c_{H} \int_{\mathbb{R}}\left(|t-s|^{H-1 / 2}-|s|^{H-1 / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

What is the regularity of $H \mapsto B_{t}^{H}$?
One has, for any $H, H^{\prime} \in(0,1)$:

$$
\mathbb{E}\left(\left(B_{H, t}-B_{H^{\prime}, t}\right)^{2}\right) \leq C\left(H-H^{\prime}\right)^{2}
$$

Multiparameter extensions

How does fBm extend to $t \in \mathbb{R}^{N}$?

Multiparameter extensions

How does fBm extend to $t \in \mathbb{R}^{N}$?

- Lévy fractional Brownian motion: $H \in(0,1), s, t \in \mathbb{R}_{+}^{N}$,

$$
\mathbb{E}\left(X_{s}^{H} X_{t}^{H}\right)=\frac{1}{2}\left(\|s\|^{2 H}+\|t\|^{2 H}-\|s-t\|^{2 H}\right)
$$

- Fractional Brownian sheet ([Kamont '96]): for

$$
\begin{aligned}
& H=\left(H_{1}, \ldots, H_{N}\right) \in(0,1)^{N}, s, t \in \mathbb{R}_{+}^{N} \\
& \mathbb{E}\left(W_{s}^{H} W_{t}^{H}\right)=\frac{1}{2^{N}} \prod_{k=1}^{N}\left(\left|s_{k}\right|^{2 H_{k}}+\left|t_{k}\right|^{2 H_{k}}-\left|t_{k}-s_{k}\right|^{2 H_{k}}\right)
\end{aligned}
$$

- The multiparameter fBm [Herbin \& Merzbach '06]: $H \in(0,1 / 2], s, t \in \mathbb{R}_{+}^{N}$,
$\mathbb{E}\left(B_{s}^{H} B_{t}^{H}\right)=\frac{1}{2}\left(\lambda([0, s])^{2 H}+\lambda([0, t])^{2 H}-\lambda([0, s] \triangle[0, t])^{2 H}\right)$.

Multiparameter extensions

How does fBm extend to $t \in \mathbb{R}^{N}$?

- Lévy fractional Brownian motion: $H \in(0,1), s, t \in \mathbb{R}_{+}^{N}$,

$$
X_{t}^{H}=C_{X, H} \int_{\mathbb{R}^{N}}\left(\|t-s\|^{H-N / 2}-\|s\|^{H-N / 2}\right) \mathrm{d} \mathbb{W}_{s}
$$

- Fractional Brownian sheet ([Kamont '96]): for

$$
\begin{aligned}
& H=\left(H_{1}, \ldots, H_{N}\right) \in(0,1)^{N}, s, t \in \mathbb{R}_{+}^{N} \\
& W_{t}^{H}=C_{W, H} \int_{\mathbb{R}^{N}} \prod_{k=1}^{N}\left(\left|t_{k}-s_{k}\right|^{H_{k}-1 / 2}-\left|s_{k}\right|^{H_{k}-1 / 2}\right) \mathrm{d} \mathbb{W}_{s}
\end{aligned}
$$

- The multiparameter fBm [Herbin \& Merzbach '06].

Multiparameter extensions of fBm

All the aforementionned processes have a covariance of the form:

$$
(s, t) \in \mathbb{R}^{N} \mapsto \frac{1}{2}\left(\mu\left(U_{t}\right)^{2 H}+\mu\left(U_{s}\right)^{2 H}-\mu\left(U_{s} \triangle U_{t}\right)^{2 H}\right)
$$

for some measure μ and parametric family $t \in \mathbb{R}^{N} \mapsto U_{t} \in \mathcal{B}\left(\mathbb{R}^{N}\right)$.

Example (Brownian sheet)

$$
\begin{aligned}
k_{1 / 2}^{(N)} & =\frac{1}{2}(\lambda([0, t])+\lambda([0, s])-\lambda([0, t] \triangle[0, s])) \\
& =\lambda([0, t] \cap[0, s])
\end{aligned}
$$

Example (Lévy fractional Brownian motion (Centsov's construction))
S_{N} the unit sphere of $\mathbb{R}^{N}, S=S_{N} \times(0, \infty)$,
μ the product measure of the uniform measure on S_{N} with the Lebesgue measure on $(0, \infty)$.

$$
\mathbb{E}\left(X_{t}^{H} X_{s}^{H}\right)=\frac{1}{2}\left(\mu\left(U_{t}\right)^{2 H}+\mu\left(U_{s}\right)^{2 H}-\mu\left(U_{s} \triangle U_{t}\right)^{2 H}\right)
$$

where for any $t \in \mathbb{R}^{N}$,

$$
U_{t}=\{(s, r) \in S: r<\langle s, t\rangle\} .
$$

The L^{2}-fractional Brownian motion

Let (T, \mathcal{T}, m) be a measurable space, $f, g \in L^{2}(T, m), h \in(0,1 / 2]$:

$$
\begin{aligned}
k_{h}:(f, g) \mapsto & \frac{1}{2}\left(m\left(f^{2}\right)^{2 h}+m\left(g^{2}\right)^{2 h}-m\left((f-g)^{2}\right)^{2 h}\right) \\
& =\frac{1}{2}\left(\|f\|_{L^{2}(T, m)}^{4 h}+\|g\|_{L^{2}(T, m)}^{4 h}-\|f-g\|_{L^{2}(T, m)}^{4 h}\right)
\end{aligned}
$$

is positive definite.
$\Rightarrow \boldsymbol{B}^{h}$ the centred Gaussian process with covariance k_{h}.
Includes the SIfBm, the fractional Brownian sheet, the Lévy fBm, and many other Gaussian processes.

The L^{2}-fractional Brownian motion

Let (T, \mathcal{T}, m) be a measurable space, $f, g \in L^{2}(T, m), h \in(0,1 / 2]$:

$$
\begin{aligned}
k_{h}:(f, g) \mapsto & \frac{1}{2}\left(m\left(f^{2}\right)^{2 h}+m\left(g^{2}\right)^{2 h}-m\left((f-g)^{2}\right)^{2 h}\right) \\
& =\frac{1}{2}\left(\|f\|_{L^{2}(T, m)}^{4 h}+\|g\|_{L^{2}(T, m)}^{4 h}-\|f-g\|_{L^{2}(T, m)}^{4 h}\right)
\end{aligned}
$$

is positive definite.
$\Rightarrow \boldsymbol{B}^{h}$ the centred Gaussian process with covariance k_{h}.
Includes the SIfBm, the fractional Brownian sheet, the Lévy fBm, and many other Gaussian processes.

The L^{2}-fractional Brownian motion

Let (T, \mathcal{T}, m) be a measurable space, $f, g \in L^{2}(T, m), h \in(0,1 / 2]$:

$$
\begin{aligned}
k_{h}:(f, g) \mapsto & \frac{1}{2}\left(m\left(f^{2}\right)^{2 h}+m\left(g^{2}\right)^{2 h}-m\left((f-g)^{2}\right)^{2 h}\right) \\
& =\frac{1}{2}\left(\|f\|_{L^{2}(T, m)}^{4 h}+\|g\|_{L^{2}(T, m)}^{4 h}-\|f-g\|_{L^{2}(T, m)}^{4 h}\right)
\end{aligned}
$$

is positive definite.
$\Rightarrow \boldsymbol{B}^{h}$ the centred Gaussian process with covariance k_{h}.
Includes the SIfBm, the fractional Brownian sheet, the Lévy fBm , and many other Gaussian processes.

Abstract Wiener spaces

Definition ([Gross '67])
Given a separable Hilbert space \mathcal{H}, a Banach space E and a measure μ on E, we say that (\mathcal{H}, E, μ) is an abstract Wiener space if:

- \mathcal{H} is densely and continuously embedded into E (which we denote by $\mathcal{H} \hookrightarrow E$); denote by $S: E^{*} \rightarrow \mathcal{H}$ the canonical injection:

$$
E^{*} \stackrel{S}{\hookrightarrow} \mathcal{H}^{*} \equiv \mathcal{H} \stackrel{S^{*}}{\hookrightarrow} E ;
$$

- and

$$
\hat{\mu}(\xi)=\int_{E} e^{i\langle\xi, x\rangle} \mu(\mathrm{d} x)=e^{-\frac{1}{2}\|S \xi\|_{\mathcal{H}}^{2}}, \quad \forall \xi \in E^{*}
$$

Proposition (see e.g. [Stroock '10])

Let \mathcal{H} and \mathcal{H}_{μ} be two separable Hilbert spaces, \mathcal{H}_{μ} being endowed with a Wiener space structure $\left(\mathcal{H}_{\mu}, E, \mu\right)$. \mathcal{H} can also be endowed with such a structure by isometry, i.e. if $u: \mathcal{H}_{\mu} \rightarrow \mathcal{H}$ is a linear isometry, $\left(\mathcal{H}, \tilde{u}(E), \tilde{u}_{*} \mu\right)$ is a Wiener space.

Proposition (see e.g. [Stroock '10])

Let \mathcal{H} and \mathcal{H}_{μ} be two separable Hilbert spaces, \mathcal{H}_{μ} being endowed with a Wiener space structure $\left(\mathcal{H}_{\mu}, E, \mu\right)$. \mathcal{H} can also be endowed with such a structure by isometry, i.e. if $u: \mathcal{H}_{\mu} \rightarrow \mathcal{H}$ is a linear isometry, $\left(\mathcal{H}, \tilde{u}(E), \tilde{u}_{*} \mu\right)$ is a Wiener space.

$$
\begin{array}{ccc}
\left(\mathcal{H}_{\mu},\right. & E, & \mu) \\
u \downarrow & \tilde{u} \mid & \downarrow \tilde{u}_{*} \\
\downarrow & \downarrow & \\
(\mathcal{H}, & \tilde{u}(E), & \left.\tilde{u}_{*} \mu\right)
\end{array}
$$

Wiener space of the fBm

- For any $h \in(0,1)$, the Wiener space of the fBm is given by [Decreusefond \& Üstünel '99]:

$$
(\underbrace{\mathcal{I}_{0+}^{h+1 / 2}\left(L^{2}[0,1]\right)}_{\left(\mathcal{H}_{h},(\cdot, \cdot)_{\mathcal{H}_{h}}\right)}, C_{0}([0,1]), \mathcal{W}_{h}) .
$$

- B will be the white noise on $C_{0}([0,1])$ of control measure $\forall U, V \in \mathcal{B}\left(C_{0}([0,1])\right)$,

Wiener space of the fBm

- For any $h \in(0,1)$, the Wiener space of the fBm is given by [Decreusefond \& Üstünel '99]:

$$
(\underbrace{\mathcal{I}_{0+}^{h+1 / 2}\left(L^{2}[0,1]\right)}_{\left(\mathcal{H}_{h},(\cdot, \cdot)_{\mathcal{H}_{h}}\right)}, C_{0}([0,1]), \mathcal{W}_{h}) .
$$

- \boldsymbol{B} will be the white noise on $C_{0}([0,1])$ of control measure $\mathcal{W}_{1 / 2}$:
$\forall U, V \in \mathcal{B}\left(C_{0}([0,1])\right), \quad \mathbb{E}(\boldsymbol{B}(U) \boldsymbol{B}(V))=\mathcal{W}_{1 / 2}(U \cap V)$.

Proposition ([R. '15])
For any $h \in(0,1)$, there exists a linear map $\mathcal{K}_{h}: \mathcal{H}_{h} \rightarrow C_{0}([0,1])^{*}$ such that:

$$
R_{h}(s, t)=\int_{C_{0}([0,1])}\left\langle\mathcal{K}_{h} R_{h}(\cdot, s), x\right\rangle\left\langle\mathcal{K}_{h} R_{h}(\cdot, t), x\right\rangle d \mathcal{N}(x) .
$$

As a consequence, the process:

is a fractional Brownian field on $(0,1) \times[0,1]$.

Proposition ([R. '15])

For any $h \in(0,1)$, there exists a linear map $\mathcal{K}_{h}: \mathcal{H}_{h} \rightarrow C_{0}([0,1])^{*}$ such that:

$$
R_{h}(s, t)=\int_{C_{0}([0,1])}\left\langle\mathcal{K}_{h} R_{h}(\cdot, s), x\right\rangle\left\langle\mathcal{K}_{h} R_{h}(\cdot, t), x\right\rangle d \mathcal{W}(x) .
$$

As a consequence, the process:

$$
B_{h, t}=\int_{C_{0}([0,1])}\left\langle\mathcal{K}_{h} R_{h}(\cdot, t), x\right\rangle \mathrm{d} \boldsymbol{B}_{x},
$$

is a fractional Brownian field on $(0,1) \times[0,1]$.

- Denote $\mathcal{H}\left(k_{h}\right)$ the Reproducing kernel Hilbert space (RKHS) of the kernel $k_{h}: L^{2}(T, m) \times L^{2}(T, m) \rightarrow \mathbb{R}$;
- For any $h \in(0,1 / 2]$, let u_{h} be a linear isometry between \mathcal{H}_{h} and $\mathcal{H}\left(k_{h}\right)$:

$$
\left(\mathcal{H}\left(k_{h}\right), E_{h}, \mu_{h}\right):=\left(\mathcal{H}\left(k_{h}\right), \tilde{u}_{h}\left(C_{0}[0,1]\right),\left(\tilde{u}_{h}\right) * \mathcal{W}_{h}\right)
$$

This defines a family of $\operatorname{AWS}\left(\mathcal{H}\left(k_{h}\right), E_{h}, \mu_{h}\right), h \in(0,1 / 2]$;

- Denote $\mathcal{H}\left(k_{h}\right)$ the Reproducing kernel Hilbert space (RKHS) of the kernel $k_{h}: L^{2}(T, m) \times L^{2}(T, m) \rightarrow \mathbb{R}$;
- For any $h \in(0,1 / 2]$, let u_{h} be a linear isometry between \mathcal{H}_{h} and $\mathcal{H}\left(k_{h}\right)$:

$$
\left(\mathcal{H}\left(k_{h}\right), E_{h}, \mu_{h}\right):=\left(\mathcal{H}\left(k_{h}\right), \tilde{u}_{h}\left(C_{0}[0,1]\right),\left(\tilde{u}_{h}\right)_{*} \mathcal{W}_{h}\right) .
$$

This defines a family of $\operatorname{AWS}\left(\mathcal{H}\left(k_{h}\right), E_{h}, \mu_{h}\right), h \in(0,1 / 2]$;

- Denote $\mathcal{H}\left(k_{h}\right)$ the Reproducing kernel Hilbert space (RKHS) of the kernel $k_{h}: L^{2}(T, m) \times L^{2}(T, m) \rightarrow \mathbb{R}$;
- For any $h \in(0,1 / 2]$, let u_{h} be a linear isometry between \mathcal{H}_{h} and $\mathcal{H}\left(k_{h}\right)$:

$$
\left(\mathcal{H}\left(k_{h}\right), E_{h}, \mu_{h}\right):=\left(\mathcal{H}\left(k_{h}\right), \tilde{u}_{h}\left(C_{0}[0,1]\right),\left(\tilde{u}_{h}\right)_{*} \mathcal{W}_{h}\right) .
$$

This defines a family of $\operatorname{AWS}\left(\mathcal{H}\left(k_{h}\right), E_{h}, \mu_{h}\right), h \in(0,1 / 2]$;

- $\tilde{\mathcal{K}}_{h}=\tilde{u}_{1 / 2}^{-T} \circ \mathcal{K}_{h} \circ u_{h}^{-1}$ maps $\mathcal{H}\left(k_{h}\right)$ into $E_{1 / 2}^{*}$.
- Denote $\mathcal{H}\left(k_{h}\right)$ the Reproducing kernel Hilbert space (RKHS) of the kernel $k_{h}: L^{2}(T, m) \times L^{2}(T, m) \rightarrow \mathbb{R}$;
- For any $h \in(0,1 / 2]$, let u_{h} be a linear isometry between \mathcal{H}_{h} and $\mathcal{H}\left(k_{h}\right)$:

$$
\left(\mathcal{H}\left(k_{h}\right), E_{h}, \mu_{h}\right):=\left(\mathcal{H}\left(k_{h}\right), \tilde{u}_{h}\left(C_{0}[0,1]\right),\left(\tilde{u}_{h}\right)_{*} \mathcal{W}_{h}\right) .
$$

This defines a family of $\operatorname{AWS}\left(\mathcal{H}\left(k_{h}\right), E_{h}, \mu_{h}\right), h \in(0,1 / 2]$;

- $\tilde{\mathcal{K}}_{h}=\tilde{u}_{1 / 2}^{-T} \circ \mathcal{K}_{h} \circ u_{h}^{-1}$ maps $\mathcal{H}\left(k_{h}\right)$ into $E_{1 / 2}^{*}$.

\boldsymbol{B} is now a white noise on $E_{1 / 2}$ with control measure $\left(\tilde{u}_{1 / 2}\right)_{*} \mathcal{W}$.
Proposition ([R. '15])
With the previous notations,

$$
k_{h}(f, g)=\int_{E_{1 / 2}}\left\langle\tilde{\mathcal{K}}_{h} k_{h_{h}}(f, \cdot), x\right\rangle\left\langle\tilde{\mathcal{K}}_{h} k_{k_{h}}(g, \cdot), x\right\rangle \mu_{1 / 2}(d x)
$$

and

$$
\boldsymbol{B}_{h, f}=\int_{E_{1 / 2}}\left\langle\tilde{\mathcal{K}}_{h} k_{h}(f, \cdot), x\right\rangle \mathrm{d} \boldsymbol{B}_{x}
$$

is a fractional Brownian field on $(0,1 / 2] \times L^{2}(T, m)$, i.e. for any fixed $h,\left\{\boldsymbol{B}_{h, f}, f \in L^{2}\right\}$ has covariance k_{h}.
\boldsymbol{B} is now a white noise on $E_{1 / 2}$ with control measure $\left(\tilde{u}_{1 / 2}\right)_{*} \mathcal{W}$.
Proposition ([R. '15])
With the previous notations,

$$
k_{h}(f, g)=\int_{E_{1 / 2}}\left\langle\tilde{\mathcal{K}}_{h} k_{h}(f, \cdot), x\right\rangle\left\langle\tilde{\mathcal{K}}_{h} k_{h}(g, \cdot), x\right\rangle \mu_{1 / 2}(d x)
$$

and

$$
\boldsymbol{B}_{h, f}=\int_{E_{1 / 2}}\left\langle\tilde{\mathcal{K}}_{h} k_{h}(f, \cdot), x\right\rangle \mathrm{d} \boldsymbol{B}_{x}
$$

is a fractional Brownian field on $(0,1 / 2] \times L^{2}(T, m)$, i.e. for any fixed $h,\left\{\boldsymbol{B}_{h, f}, f \in L^{2}\right\}$ has covariance k_{h}.
\boldsymbol{B} is now a white noise on $E_{1 / 2}$ with control measure $\left(\tilde{u}_{1 / 2}\right)_{*} \mathcal{W}$. Proposition ([R. '15])
With the previous notations,

$$
k_{h}(f, g)=\int_{E_{1 / 2}}\left\langle\tilde{\mathcal{K}}_{h} k_{h}(f, \cdot), x\right\rangle\left\langle\tilde{\mathcal{K}}_{h} k_{h}(g, \cdot), x\right\rangle \mu_{1 / 2}(d x)
$$

and

$$
\boldsymbol{B}_{h, f}=\int_{E_{1 / 2}}\left\langle\tilde{\mathcal{K}}_{h} k_{h}(f, \cdot), x\right\rangle \mathrm{d} \boldsymbol{B}_{x}
$$

is a fractional Brownian field on $(0,1 / 2] \times L^{2}(T, m)$, i.e. for any fixed $h,\left\{\boldsymbol{B}_{h, f}, f \in L^{2}\right\}$ has covariance k_{h}.

Regularity of the increments

Theorem ([R. '15])
There exists a fractional Brownian field \boldsymbol{B} indexed over $(0,1 / 2] \times L^{2}(T, m)$ whose covariance satisfies:

Regularity of the increments

Theorem ([R. '15])
There exists a fractional Brownian field \boldsymbol{B} indexed over $(0,1 / 2] \times L^{2}(T, m)$ whose covariance satisfies:
$\forall \eta \in(0,1 / 4)$ and any compact subset D of $L^{2}(T, m)$, $\exists C_{\eta, D} \equiv C>0$ such that for any $f, f^{\prime} \in D$, and any $h, h^{\prime} \in[\eta, 1 / 2-\eta]$,

Regularity of the increments

Theorem ([R. '15])
There exists a fractional Brownian field \boldsymbol{B} indexed over $(0,1 / 2] \times L^{2}(T, m)$ whose covariance satisfies:
$\forall \eta \in(0,1 / 4)$ and any compact subset D of $L^{2}(T, m)$, $\exists C_{\eta, D} \equiv C>0$ such that for any $f, f^{\prime} \in D$, and any $h, h^{\prime} \in[\eta, 1 / 2-\eta]$,

$$
\mathbb{E}\left(\boldsymbol{B}_{h, f}-\boldsymbol{B}_{h^{\prime}, f^{\prime}}\right)^{2} \leq C\left\{\left(h-h^{\prime}\right)^{2-\epsilon}+m\left(\left(f-f^{\prime}\right)^{2}\right)^{2\left(h \wedge h^{\prime}\right)}\right\}
$$

Application to solutions of an SPDE

On a bounded open domain $U \subset[0,1]^{N}$ with smooth boundary:

$$
\begin{equation*}
\Delta u=\dot{\mathbb{W}}^{h} \quad \text { on } U \tag{h}
\end{equation*}
$$

and with the condition that $u=0$ on ∂U.
Proposition ([R. '15])
Let u_{h} and $u_{h^{\prime}}$ be the mild solutions to $\left(\mathcal{L}_{h}\right)$ and $\left(\mathcal{L}_{h^{\prime}}\right)$ respectively. Then, for all $\varphi \in C_{c}^{\infty}(U)$,

$$
\mathbb{E}\left(\left\langle u_{h}, \varphi\right\rangle-\left\langle u_{h^{\prime}}, \varphi\right\rangle\right)^{2} \leq M_{\eta}\|\varphi\|_{\mathcal{H}}^{2}\left(h-h^{\prime}\right)^{2} L\left(h-h^{\prime}\right)^{2} .
$$

Plan

Introduction

Regularity of the fractional Brownian field

Continuity in H of the law of the hitting times of fBm

Example: the Leaky Integrate-and-Fire model

Figure : Membrane potential of a neuron

Example: the Leaky Integrate-and-Fire model

Figure: Membrane potential of a neuron

Let $\theta_{1}=\inf \left\{t>0: V_{t}=1\right\}$ and

$$
\left\{\begin{aligned}
\mathrm{d} V_{t} & =\left(I_{t}-\lambda V_{t}\right) \mathrm{d} t+\sigma \mathrm{d} B_{t} \\
V_{\theta_{k}^{+}} & =0 \\
\theta_{k+1} & =\inf \left\{t>\theta_{k}: \quad V_{t}=1\right\} .
\end{aligned}\right.
$$

Hitting times of the fractional Brownian motion - a few properties

Joint work with Denis Talay.

$$
\tau_{H}=\inf \left\{t \geq 0: B_{t}^{H}=1\right\}
$$

- Laplace transform: [Decreusefond and Nualart 08], for $H \geq 1 / 2$,

$$
\mathbb{E}\left(e^{-\lambda \tau_{H}^{2 H}}\right) \leq e^{-\sqrt{2 \lambda}}, \forall \lambda \geq 0
$$

and for $H \leq 1 / 2$,

$$
\mathbb{E}\left(e^{-\lambda \tau_{H}^{2 H}}\right) \geq e^{-\sqrt{2 \lambda}}, \forall \lambda \geq 0
$$

- Asymptotic behaviour: [Molchan 99] $\log \mathbb{P}\left(\tau_{H}>t\right)=-(1-H) \log (t)(1+o(1))$, lorsque $t \rightarrow \infty$.

Hitting times of the fBm

- The previous bounds are not sharp, in fact ([R. \& Talay '15]):
- Molchan's estimate and a Tauberian theorem yields:

$$
H \in(1 / 3,1) \Rightarrow \mathbb{E}\left(\exp \left(-\lambda \tau_{H}^{2 H}\right)\right) \sim 1-C \lambda^{\frac{(1-H)}{2 H}}, \lambda \rightarrow 0 ;
$$

- from $\mathbb{P}\left(\tau_{H}^{2 H} \leq \epsilon\right) \underset{\epsilon \rightarrow 0}{\sim} \Psi\left(\epsilon^{-1 / 2}\right)$, where Ψ is the Gaussian tail distribution function, and De Bruijn's Tauberian theorem:

$$
-\log \mathbb{E}\left(\exp \left(-\lambda \tau_{H}^{2 H}\right)\right) \sim \sqrt{2 \lambda}, \quad \lambda \rightarrow \infty
$$

Similarly,

Hitting times of the fBm

- The previous bounds are not sharp, in fact ([R. \& Talay '15]):
- Molchan's estimate and a Tauberian theorem yields:

$$
H \in(1 / 3,1) \Rightarrow \mathbb{E}\left(\exp \left(-\lambda \tau_{H}^{2 H}\right)\right) \sim 1-C \lambda^{\frac{(1-H)}{2 H}}, \lambda \rightarrow 0
$$

- from $\mathbb{P}\left(\tau_{H}^{2 H} \leq \epsilon\right) \underset{\epsilon \rightarrow 0}{\sim} \Psi\left(\epsilon^{-1 / 2}\right)$, where Ψ is the Gaussian tail distribution function, and De Bruijn's Tauberian theorem:

$$
-\log \mathbb{E}\left(\exp \left(-\lambda \tau_{H}^{2 H}\right)\right) \sim \sqrt{2 \lambda}, \quad \lambda \rightarrow \infty
$$

Similarly,

$$
\begin{aligned}
\mathbb{E}\left(\exp \left(-\lambda \tau_{H}\right)\right) & \sim 1-C \lambda^{1-H} \quad \text { as } \lambda \rightarrow 0 \\
-\log \mathbb{E}\left(\exp \left(-\lambda \tau_{H}\right)\right) & \sim\left(1+\frac{1}{2 H}\right) H^{\frac{1}{(2 H+1)}} \lambda^{\frac{2 H}{2 H+1}} \quad \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

Main results

Theorem ([R. \& Talay '15])
There exists a constant $\alpha>0$ such that for any $\epsilon>0$ small, there is $c_{\epsilon}>0$ satisfying: for any $\lambda \geq 0$ and any $H \in[1 / 2,1)$,

$$
\left|\mathbb{E}\left(e^{-\lambda \tau_{H}}\right)-\mathbb{E}\left(e^{-\lambda \tau_{1 / 2}}\right)\right| \leq c_{\epsilon}(H-1 / 2)^{1 / 3-\epsilon} e^{-\alpha \sqrt{\lambda}}
$$

Consider the fractional SDE, for $H \geq 1 / 2$:

$$
\begin{equation*}
\mathrm{d} X_{t}^{H}=b\left(X_{t}^{H}\right) \mathrm{d} t+\sigma\left(X_{t}^{H}\right) \mathrm{d} B_{t}^{H} \tag{H}
\end{equation*}
$$

(Young integral for $H>1 / 2$, Stratonovich for $H=1 / 2$).

Assumption (\mathcal{H})

1. $b, \sigma \in C_{b}^{1}(\mathbb{R})$;
2. $\exists \sigma_{\text {min }}>0$ such that $\inf _{x \in \mathbb{R}}|\sigma(x)| \geq \sigma_{\text {min }}$.
Theorem ([R. \& Talay '15])

Consider the fractional SDE, for $H \geq 1 / 2$:

$$
\begin{equation*}
\mathrm{d} X_{t}^{H}=b\left(X_{t}^{H}\right) \mathrm{d} t+\sigma\left(X_{t}^{H}\right) \mathrm{d} B_{t}^{H} \tag{H}
\end{equation*}
$$

(Young integral for $H>1 / 2$, Stratonovich for $H=1 / 2$).
Assumption (\mathcal{H})

1. $b, \sigma \in C_{b}^{1}(\mathbb{R})$;
2. $\exists \sigma_{\text {min }}>0$ such that $\inf _{x \in \mathbb{R}}|\sigma(x)| \geq \sigma_{\text {min }}$.

Theorem ([R. \& Talay '15])

Let X^{H} (resp. $X^{1 / 2}$) be solution to $\left(\mathcal{E}_{H}\right)$ (resp. $\left(\mathcal{E}_{1 / 2}\right)$), with b and σ satisfying (\mathcal{H}). There exist constants $\alpha, \lambda_{0}>0$ such that for any $\epsilon>0$ small, there is $c_{\epsilon}>0$ satisfying: for any $\lambda \geq \lambda_{0}$ and any $H \in[1 / 2,1)$,

$$
\left|\mathbb{E}\left(e^{-\lambda \tau_{H}^{X}}\right)-\mathbb{E}\left(e^{-\lambda \tau_{1 / 2}^{X}}\right)\right| \leq c_{\epsilon}(H-1 / 2)^{1 / 3-\epsilon} e^{-\alpha \sqrt{\lambda}} .
$$

Divergence operator of fBm

Let $T>0$ be a time horizon and \mathcal{H}_{H} denote the Cameron-Martin of the fBm .
For $H>1 / 2$,

$$
K_{H}(\theta, \sigma):=c_{H}(H-1 / 2) \sigma^{1 / 2-H} \int_{\sigma}^{\theta} u^{H-1 / 2}(u-\sigma)^{H-3 / 2} \mathrm{~d} u
$$

Set $\tilde{c}_{H}=(H-1 / 2) c_{H}$ and, for $H>1 / 2$,

$$
\begin{aligned}
K_{H}^{*} u(s) & =\int_{s}^{T} \frac{\partial K_{H}}{\partial \theta}(\theta, s) u(\theta) \mathrm{d} \theta \\
& =\tilde{c}_{H} \int_{s}^{T}\left(\frac{\theta}{s}\right)^{H-1 / 2}(\theta-s)^{H-3 / 2} u(\theta) \mathrm{d} \theta
\end{aligned}
$$

Let $\delta_{H}\left(\right.$ resp. δ) be the Skorokhod integral on \mathcal{H}_{H} (resp. $\mathcal{H}_{1 / 2}$). For any u such that $K_{H}^{*} u \in \operatorname{dom} \delta$,

$$
\delta_{H}(u)=\delta\left(K_{H}^{*} u\right) .
$$

Sketch of proof (HT of fBm)

By Ito's formula for fractional Brownian motion:

$$
\begin{aligned}
\mathbb{E}\left(e^{-\lambda \tau_{H}}\right)-\mathbb{E}\left(e^{-\lambda \tau_{1 / 2}}\right)=\mathbb{E} & {\left[\lambda \int_{0}^{\tau_{H}}\left(2 H s^{2 H-1}-1\right) u_{\lambda}\left(B_{s}^{H}\right) e^{-\lambda s} \mathrm{~d} s\right] } \\
& +\mathbb{E}\left[\left.\sqrt{\lambda} \delta_{H}\left(\mathbf{1}_{[0, t]} u_{\lambda}\left(B_{\cdot}^{H}\right) e^{-\lambda \cdot}\right)\right|_{t=\tau_{H}}\right]
\end{aligned}
$$

where $u_{\lambda}(x)=\mathbb{E}^{x}\left(e^{-\lambda \tau_{1 / 2}}\right)$.

1. The first integral is easy;
2. for the last one, no Doob's stopping theorem;
3. hence, control its supremum using Garsia-Rodemich-Rumsey's lemma and control on the moments:

where $\bar{X}_{z}(v)=\left\{K_{H}^{*}-\operatorname{Id}\right\}\left(\mathbf{1}_{[n, z)}\right.$

Sketch of proof (HT of fBm)

By Ito's formula for fractional Brownian motion:

$$
\begin{aligned}
\mathbb{E}\left(e^{-\lambda \tau_{H}}\right)-\mathbb{E}\left(e^{-\lambda \tau_{1 / 2}}\right)=\mathbb{E} & {\left[\lambda \int_{0}^{\tau_{H}}\left(2 H s^{2 H-1}-1\right) u_{\lambda}\left(B_{s}^{H}\right) e^{-\lambda s} \mathrm{~d} s\right] } \\
& +\mathbb{E}\left[\left.\sqrt{\lambda} \delta_{H}\left(\mathbf{1}_{[0, t]} u_{\lambda}\left(B_{\cdot}^{H}\right) e^{-\lambda \cdot}\right)\right|_{t=\tau_{H}}\right]
\end{aligned}
$$

where $u_{\lambda}(x)=\mathbb{E}^{x}\left(e^{-\lambda \tau_{1 / 2}}\right)$.

1. The first integral is easy;
2. for the last one, no Doob's stopping theorem;
3. hence, control its supremum using Garsia-Rodemich-Rumsey's lemma and control on the moments:

$$
\begin{aligned}
& \mathbb{E}\left\|D \cdot\left(\bar{X}_{s}(\cdot)-\bar{X}_{t}(\cdot)\right)\right\|_{L^{2}[0, T]^{2}}^{2} \lesssim(H-1 / 2)^{2}(t-s)^{-} e^{-2 \alpha \sqrt{\lambda}}, \\
& \text { where } \bar{X}_{z}(v)=\left\{K_{H}^{*}-\operatorname{Id}\right\}\left(\mathbf{1}_{[n, z)} u_{\lambda}\left(B_{\cdot}^{H}\right) \phi_{\eta}\left(B_{\cdot}^{H}\right) e^{-\lambda \cdot}\right)(v)
\end{aligned}
$$

Sketch of proof (HT of fractional SDE)

More terms in $\mathbb{E}\left(e^{-\lambda \tau_{H}^{X}}\right)-\mathbb{E}\left(e^{-\lambda \tau_{1 / 2}^{X}}\right)$.

Additional ingredients:

1. A bound on $\mathbb{E}\left(\sup _{t \in[0, T]}\left|X_{t}^{H}-X_{t}^{1 / 2}\right|\right)$;
2. A good (Gaussian-type) estimate of the density $p_{t}^{X^{H}}(x)$: $\forall t \in(0, \infty), \forall x \in \mathbb{R}$

$$
p_{t}^{X^{H}}(x) \leq \frac{C}{\sqrt{2 \pi t^{2 H}}} \exp \left(-\frac{\left(x-x_{0}\right)^{2}}{2 t^{2 H}}\right) e^{C t^{2-2 H}}
$$

where C depends only on b, σ (not H, t).

Perspectives

- In the first part, treat more general SPDEs than $\Delta u=\dot{\mathbb{W}}^{h}$ (e.g. multiplicative noise);
- In the second part, remove the condition $\lambda \geq \lambda_{0}$, possibly by adding a kind of ergodicity condition on b, σ;
- Treat $H \leq 1 / 2$ (rough paths), ...

References I

L. Decreusefond and D. Nualart.

Hitting times for Gaussian processes.
Ann. Probab., 36(1):319-330, 2008.
L. Decreusefond and A.S. Üstünel.

Stochastic Analysis of the Fractional Brownian Motion.
Potential Anal., 411:177-214, 1999.
L. Gross.

Abstract Wiener spaces.
Fifth Berkeley symposium on Math. Statist. and Prob., 1967, pp. 31-42.
E. Herbin and E. Merzbach.

A Set-indexed Fractional Brownian Motion.
J. Theoret. Probab., 19(2):337-364, 2006.
M. Jolis and N. Viles.

Continuity in Law with Respect to the Hurst Parameter of the Local Time of the Fractional Brownian Motion.
J. Theoret. Probab., 20: 133-152, 2007.
M. Jolis and N. Viles.

Continuity of the Hurst parameter of the law of the symmetric integral with respect to the fractional Brownian motion.
Stochastic Proc. Appl., 120: 1651-1679, 2010.
A. Kamont

On the fractional anisotropic wiener field.
Probability and mathematical statistics, 16(1):85-98, 1996.
A.N. Kolmogorov

Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum.
CR (Dokl.) Acad. Sci. URSS, 1940.

References II

B. B. Mandelbrot and J. W. Van Ness.

Fractional brownian motions, fractional noises and applications.
SIAM review, 10(4):422-437, 1968.
G. M. Molchan.

Maximum of a fractional Brownian motion: probabilities of small values.
Comm. Math. Phys., 205(1):97-111, 1999.
D. Nualart.

The Malliavin calculus and related topics.
Springer, 2006.
A. Richard.

A fractional Brownian field indexed by L^{2} and a varying Hurst parameter.
Stochastic Process. Appl., 125:1394-1425, 2015.
A. Richard and D. Talay.

On deviations between the law of the hitting time of Brownian motion and fractional Brownian motion.
In preparation, 2015.
D. W. Stroock.

Gaussian measures on a Banach space, 2010.
Available at http://math.mit.edu/~dws/177/prob08.pdf.
D. Wu, and Y. Xiao.

Continuity in the Hurst index of the local times of anisotropic Gaussian random fields.
Stochastic Process. Appl., 119(6):1823-1844, 2009.

Measuring the Hurst parameter

For a time series $\left\{\theta_{k}\right\}_{k \geq 0}$, the R / S statistics is given by:

$$
R S(n)=\frac{\max _{0 \leq k \leq n}\left(\theta_{k}-k \theta_{n} / n\right)-\min _{0 \leq k \leq n}\left(\theta_{k}-k \theta_{n} / n\right)}{\sqrt{\frac{1}{n} \sum_{k=1}^{n}\left(\theta_{k}-\theta_{k-1}-\theta_{n} / n\right)^{2}}}, n \geq 1
$$

Measuring the Hurst parameter

For a time series $\left\{\theta_{k}\right\}_{k \geq 0}$, the R / S statistics is given by:

$$
R S(n)=\frac{\max _{0 \leq k \leq n}\left(\theta_{k}-k \theta_{n} / n\right)-\min _{0 \leq k \leq n}\left(\theta_{k}-k \theta_{n} / n\right)}{\sqrt{\frac{1}{n} \sum_{k=1}^{n}\left(\theta_{k}-\theta_{k-1}-\theta_{n} / n\right)^{2}}}, n \geq 1
$$

Example
Replacing θ_{k} with B_{k}^{H},

$$
n^{-H} R S(n) \Rightarrow \sup _{t \leq 1}\left(B_{t}^{H}-t B_{1}^{H}\right)-\inf _{t \leq 1}\left(B_{t}^{H}-t B_{1}^{H}\right)
$$

Reproducing Kernel Hilbert Space

Definition

Let (T, m) be a complete separable metric space and R a continuous covariance function on $T \times T$. There exists a unique Hilbert space $H(R)$ such that:

1. $H(R)$ is a space of functions from $T \rightarrow \mathbb{R}$, and for all $t \in T$, $R(\cdot, t) \in H(R) ;$
2. the scalar product is given by: $\forall t \in T, \forall f \in H(R)$,

$$
(f, R(\cdot, t))_{H(R)}=f(t)
$$

This is a separable Hilbert space. It satisfies
$H(R)=\overline{\operatorname{Span}\{R(\cdot, t), t \in T\}}{ }^{\|\cdot\|_{H(R)}}$.

