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STOCHASTIC REGULARIZATION IN A NUTSHELL

The following slides are based on the lecture notes of Franco Flandoli (2015)
and on his St. Flour lecture Notes "Random Perturbation of PDEs and Fluid
Dynamic Models" (2010).
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A FIRST EXAMPLE

• Let ϕ : Rd → R be a non smooth bounded measurable map

• Perturb it by adding a Brownian motion (Bt)t as:

ϕ(x + Bt)

• Take expectation and set:

u(t, x) := E [ϕ(x + Bt)]

The map u is smooth and solves the Heat equation:

∂u
∂t

=
1
2

∆u, u(0, ·) = ϕ(·),

and
u(t, x) =

∫
Rd

Pheat
t (x− y)ϕ(y)dy.
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A SECOND EXAMPLE

• Consider the following ODE:

dXt = b(t,Xt)dt, X0 = x0,

for some b : [0,T]× Rd → Rd.

• When b is not smooth, uniqueness may fail...

• Take for instance d = 1 and b(t, x) := b(x) := 2sgn(x)
√
|x| and x0 := 0,

then every function of the form

Xt := ±(t− t0)
21t≥t0 , t0 ≥ 0

is solution.

What is then a good solution?
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A SECOND EXAMPLE

• Add some noise:

dXt = b(t,Xt)dt + σdBt, X0 = x0,

where (Bt)t is a Brownian motion and σ > 0.

• Why is it useful?

• Selection of solutions: Assume that for any σ there exists a unique so-
lution, then let Pσ denotes its law. Then prove that (Pσ)σ>0 is tight and
converges in law (as σ tends to 0) to some measure supported on the set
of solutions to the ODE.

• For instance, Bafico and Baldi (81’) proved that for b(x) = 2sgn(x)
√
|x|

and x0 = 0 it converges to:

1
2
δ+t2 +

1
2
δ−t2 .
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A SECOND EXAMPLE

• Add some noise:

dXt = b(t,Xt)dt + σdBt, X0 = x0,

where (Bt)t is a Brownian motion and σ > 0.

• (Veretennikov 81’) If b is bounded then the equation admits pathwise
uniqueness.

• (Krylov-Röckner 05’) If b belongs to Lq([0,T]; Lp(Rd)) with d
p + 2

q < 1
(p, q ≥ 2) then the equation admits pathwise uniqueness.

• How does it work?
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A SECOND EXAMPLE

• Recall that:

Xt = x0 +

∫ t

0
b(s,Xs)ds + σBt

We try to get regularity of the blue term using the Itô-Tanaka Trick.

• Example: use the celebrated Itô-Tanaka formula for b = δa and for B:∫ t

0
δa(Bs)ds = |Bt − a| − |a| −

∫ t

0
sgn(Bs − a)dBs.

• Idea: to express
∫ t

0 b(s,Xs)ds by means of more regular objects
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THE ITÔ-TANAKA TRICK

• Apply Itô’s formula with a smooth mapping U:

U(t,Xt) = U(T,XT)−
∫ T

t

(
∂U
∂t

+ b · ∇U +
1
2
σ2∆U

)
(s,Xs)ds

− σ
∫ T

t
∇U(s,Xs)dBs

• So if U is solution to the Fokker-Planck (Backward) PDE

∂U
∂t

+ b · ∇U +
σ2

2
∆U = −b, U(T, x) = 0,

then

Théorème (Itô-Tanaka Trick)∫ T

0
f (s,Xs)ds = −U(0,X0)−

∫ T

0
∇U(s,Xs)dBs, P− a.s..

and so

Xt = x0 + U(0, x0)−U(t,Xt) + σ

∫ t

0
(∇U(s,Xs) + Id.)dBs.
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APPLICATIONS OF THE ITÔ-TANAKA TRICK TO SPDES

• The Itô-Tanaka Trick can be used to obtain new results in linear transport
equations by introducing a stochastic perturbation (see Flandoli, Gubinelli,
Priola; 10’; Invent. Math.).

• Limitation to other problems: (Flandoli et al.)

"The generalization to nonlinear transport equations, where b depends on u it-
self, would be a major next step for applications to fluid dynamics but it turns
out to be a difficult problem. Specifically there are already some difficulties in
dealing with a vector field b which depends itself on the random perturbation
W. There is no obvious extension of the Itô-Tanaka trick to integrals of the form∫ T

0 f (ω, s,Xx
s (ω))ds with random f ."

25 / 35



Stochastic regularization Itô-Wentzell-Tanaka trick

APPLICATIONS OF THE ITÔ-TANAKA TRICK TO SPDES

• The Itô-Tanaka Trick can be used to obtain new results in linear transport
equations by introducing a stochastic perturbation (see Flandoli, Gubinelli,
Priola; 10’; Invent. Math.).
• Limitation to other problems: (Flandoli et al.)

"The generalization to nonlinear transport equations, where b depends on u it-
self, would be a major next step for applications to fluid dynamics but it turns
out to be a difficult problem. Specifically there are already some difficulties in
dealing with a vector field b which depends itself on the random perturbation
W. There is no obvious extension of the Itô-Tanaka trick to integrals of the form∫ T

0 f (ω, s,Xx
s (ω))ds with random f ."

26 / 35



Stochastic regularization Itô-Wentzell-Tanaka trick

Stochastic regularization

Itô-Wentzell-Tanaka trick

27 / 35



Stochastic regularization Itô-Wentzell-Tanaka trick

GENERALIZATIONS TO RANDOM MAPPINGS

The problem pointed out previously is to provide an expression for:∫ T

0
f (s, ω,Xs)ds,

where f is now random (previously we had f = b where b was deterministic)
in a predictable way.

• If we reproduce the ideas before we need to consider the Fokker-Planck
SPDE:

U(t, x) = −
∫ T

t

(
1
2

∆ + b(s, ω, x) · ∇
)

U(s, x)ds−
∫ T

t
f (s, ω, x)ds.

• But: in that case U(t, x) is not adapted (even if the data b, f are adapted)
so you can not use classical Itô calculus and the previous approach fails.
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GENERALIZATIONS TO RANDOM MAPPINGS

• Idea: make it adapted, and consider rather the following Fokker-Planck
BSPDE:

Ua(t, x) = −
∫ T

t
LsUa(s, x)ds−

∫ T

t
f (s, ω, x)ds−

∫ T

t
Z(s, x)dBs,

with Ls := 1
2 ∆ + b(s, ω, x) · ∇.

If solvable, Ua and Z are two predictable processes.
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ITÔ-WENTZELL-TANAKA TRICK

Théorème (Duboscq, R.)

Assume that Ua and Z exist and are regular enough, then∫ T

0
f (s, ω,Xs)ds =−Ua(0,X0)−

∫ T

0

(
∇Ua(s,Xs) + Z(s,Xs)

)
dBs

−
∫ T

0
∇Z(s,Xs)ds, P− a.s..

Now we need to study the BSPDE and the regularity of (Ua,Z).

To this end, we make use of the Malliavin calculus.
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SOME ELEMENTS OF MALLIAVIN CALUCLUS

We consider S the set of simple random fields F:

F : Ω× Rd → R

F(ω, x) := ϕ (Bt1 (ω), · · · ,Btn (ω), x) , ϕ ∈ C∞(Rn+d), n ≥ 1, ti ∈ [0,T].

For any such F we set:

DF : Ω× Rd → Lp([0,T], dt)

defined as

DtF :=

n∑
i=1

∂iϕ (Bt1 , · · · ,Btn , x) 1t≤ti , t ∈ [0,T].

D1,m,p := closure of S with respect to the Malliavin-Sobolev semi-norm:

‖F‖p
D1,m,p := E

[
‖F‖p

Wm,p(Rd)

]
+

∫ T

0
E
[
‖DθF‖p

Wm,p(Rd)

]
dθ.
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ANALYSIS OF THE BSPDE

Théorème (Duboscq, R.)

Let p, q ≥ 2. Assume that b, f are adapted and belong to Lq([0,T];D1,0,p)
(+additional properties on Db, Df ). There exists a unique strong (predictable)
solution to the Fokker-Planck BSPDE∫ T

0
E[‖Ua(t, ·)‖W2,p(Rd ]

q/p + E[‖Z(t, ·)‖W2,p(Rd ]
q/pdt < +∞

Futhermore, we have the following representation of Ua

Ua(t, x) = E
[
−
∫ T

t
PX

t,rf (r, x)dr
∣∣∣Ft

]
. (1)

In addition, for a.e. (t, x), Ua(t, x) is Malliavin differentiable
(
∫ T

0 ‖U
a(t, ·)‖q

D1,2,p dt < +∞), and for a.e. x ∈ Rd, a version of the process
(Z(t, x))t∈[0,T] is given by

Z(t, x) = DtUa(t, x) = E
[
−
∫ T

t
DtPX

t,rf (r, x)dr
∣∣∣Ft

]
. (2)

...
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ANALYSIS OF THE BSPDE

Théorème (Duboscq, R.)

... Finally, Ua admits the following mild (a.k.a. Duhamel’s formula)
representation

Ua(t, x) = −
∫ T

t
PX

t,rf (r, x)dr−
∫ T

t
PX

t,rZ(r, x)dBr, (3)

where PXφ is the unique solution to:

PX
s,tφ(x) = φ(x)−

∫ t

s
LrPX

r,tφ(x)dr, 0 ≤ s ≤ t.
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ANALYSIS OF THE BSPDE

Remarques

• We are not working in L2

• We provide an explicit representation which is a counterpart of the one
for linear BSDEs (no reversibility of the semigroup)

• Malliavin differentiability in Lp−Lq spaces is not completely trivial...there
are catches

• Duhamel’s formula in that context is new
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