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Preliminaries Main results

We consider the stochastic PDE{
u(0) = u0

(∂t −∆)u = f (u) · ξ on (0,∞)× T2,
(gPAM)

where f ∈ C∞, u0 ∈ L∞, and ξ = ξ(x) is spatial white noise on the torus.

In this talk I will present results on the Malliavin differentiability of u,
and as an application prove that the value at a fixed point u(t, x) admits
a density wrt the Lebesgue measure.
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(gPAM) is a singular SPDE

(∂t −∆)u = f (u) · ξ on (0,∞)× T2, u(0) = u0 (gPAM)

Basic problem when trying to solve this equation :

ξ has Hölder regularity α = −1− ε. By properties of (∂t −∆), u
(hence f (u)) will have regularity (at best) α + 2.

For the product f (u) · ξ to make sense, one would need α + (α + 2) > 0,
which is not true, hence the equation is ill-posed.

Nevertheless, this problem has been solved by Hairer and
Gubinelli-Imkeller-Perkowski, giving a good notion of solution for this
PDE. (And many other singular SPDEs, such as (KPZ), (Φ4

3), ...)
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Why consider gPAM ?

The linear case (f (u) = u) is the classical Parabolic Anderson Model

(∂t −∆)u = u · ξ.

It has been extensively studied when either the state space is
discrete (Z2), or the noise is smooth. The case of white noise can
then appear as limit of such models.

It is the simplest example of PDE which can (and should) be solved
by the theory of regularity structures. (Simple here means fewer
nonlinear terms to give sense to.) It is therefore natural to start
there...
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Malliavin calculus and rough paths

Previous works using Malliavin calculus with T.Lyons’ rough path theory
in the case of ordinary (stochastic/rough) differential equations.
Extend the usual results for SDEs

dYt =
∑
i

V i (Yt)dXt

to a large class of Gaussian driving signals (fractional Brownian
motion,...)

Cass-Friz (2010) : Existence of a density under Hörmander’s Lie
bracket condition,

Cass-Hairer-Litterer-Tindel (2015) : Smoothness of densities.

One should then also be able to combine pathwise techniques for partial
differential equations (i.e. regularity structures or paracontrolled
distributions) with Malliavin calculus.



Preliminaries Main results

Outline

1 Preliminaries
Solution theory for gPAM (regularity structures)
Malliavin calculus

2 Main results
Malliavin differentiability : the extended regularity structure
Application : density for value at fixed point



Preliminaries Main results

Outline

1 Preliminaries
Solution theory for gPAM (regularity structures)
Malliavin calculus

2 Main results
Malliavin differentiability : the extended regularity structure
Application : density for value at fixed point



Preliminaries Main results

Solution theory for gPAM (regularity structures)

We want to solve the equation

(∂t −∆)u = f (u) · ξ on (0,∞)× T2, u(0) = u0 (gPAM)

where ξ = ξ(x) is spatial white noise.
Problem : what is meant by the product f (u) · ξ ?

Theorem (Hairer, Gubinelli-Imkeller-Perkowski (2013))

Assume f ∈ C 4. Let ξε be smooth approximations of ξ. Then there
exists constants Cε such that if uε solves

(∂t −∆)uε = f (uε) · ξε − Cεf (uε)f ′(uε), uε(0) = u0

P-a.s. there exists a (random) time T > 0 such that uε →ε→0 u on
[0,T )× T2. In addition, the limit u does not depend on the choice of
approximations ξε.
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Solution theory for gPAM (regularity structures)

General idea

We first rewrite

(∂t −∆)u = f (u) · ξ on (0,∞)× T2, u(0) = u0

in integral form as

u = K ∗ (f (u) · ξ) + Gu0 on (0,∞)× T2,

where K is the heat kernel, and Gu0(t, ·) = Kt ∗ u0.
Now the idea of the theory of regularity structures (applied to (gPAM))
can be summarized as follows:

1 We make the ansatz that locally, u admits a Taylor-like expansion
(of order 1 + ε) in function of usual polynomials 1, xi , and of K ∗ ξ,

2 In order to make sense of f (u) · ξ, it then suffices (at least locally)
to make sense of (K ∗ ξ) · ξ.
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Solution theory for gPAM (regularity structures)

Basic ingredients of the theory

The regularity structure T . Vector space generated by symbols
(∼ abstract monomials) :

usual monomials 1,Xi , . . .

additional symbols : Ξ, IΞ,Ξ · IΞ,Ξ · Xi , . . .

T is equipped with a grading

|1| = 0, |X | = 1, . . . , |Ξ| = α, |Ξ · IΞ| = 2 + 2α, . . .

(α = −1− κ).
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Solution theory for gPAM (regularity structures)

Basic ingredients of the theory

The model : Π ∈ M.

Π : (x , τ) ∈ R+ × T2 × T 7→ Πxτ ∈ S ′

Gives a concrete meaning to symbols

Πx1 = 1, (ΠxX )(y) = (y − x), ...

ΠΞ↔ ξ, Π(Ξ · IΞ)↔ (K ∗ ξ) · ξ,

must satisfy analytic conditions, namely if τ is a symbol,

Πx(τ) of ”order” |τ | at x ,

and some algebraic conditions, such as

ΠxΞ = ΠyΞ(≡ ξ)

Πx(Ξ · IΞ)− Πy (Ξ · IΞ) = (K ∗ ξ(x)− K ∗ ξ(y))ξ, . . .

M is a complete (nonlinear) metric space.



Preliminaries Main results

Solution theory for gPAM (regularity structures)

Basic ingredients of the theory

Recall

f ∈ Cγ ⇔ f (x) = f (y)+Df (y)·(x−y)+. . .+
Dbγcf (y)

bγc!
(y−x)⊗bγc+O(|x−y |γ).

Modelled distributions : U ∈ Dγ = Dγ(Π).
Functions : (R+ × T2)→ T satisfying some Hölder-type conditions.
For instance (writing U(x) =

∑
τ∈F Uτ (x)τ) :

U1(x) =U1(x) + UXi (y)(xi − yi ) + . . .

+ UIΞ(y)(K ∗ ξ(x)− K ∗ ξ(y)) + . . .+ O(|x − y |γ)

UΞ(x) =UΞ(y) + ((K ∗ ξ)(x)− (K ∗ ξ)(y))UΞ·IΞ(y)

+ . . .+ O(|x − y |γ−α).

Dγ is a Banach space.
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Solution theory for gPAM (regularity structures)

Solving the equation

We can then solve the equation in two steps :

1 Probabilistic step : The models Πε given by

ΠεΞ = ξε, Πε(Ξ · IΞ) = (K ∗ ξε)ξε − Cε

converge to a model Π as ε→ 0, P-almost surely.

2 Analytic step Given a model Π, we solve for U ∈ Dγ

U = K(F (U) · Ξ) + Gu0,

and the map (Π, u0) 7→ U is continuous.
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Solution theory for gPAM (regularity structures)

Summary

Π ∈M × Cη Dγ 3 U

ξ ∈ Ω × Cη

3

u0

C θ 3 u

R

SR

SC
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Malliavin calculus

Malliavin calculus

P a Gaussian measure on Ω, with Cameron-Martin space H (⊂ Ω).

(In our case : we can take P as a measure on Ω = Cα(T2), and
H = L2(T2).)

We then say that a r.v. F : Ω→ RN is in C1
H−loc on Ω0 if for P-a.e.

ω ∈ Ω0,

h 7→ F (ω + h) is Frechet-differentiable in a neighbourhood of 0.

We then call DF (ω) (∈ H) the derivative at 0.

Theorem (Bouleau-Hirsch criterion)

Assume that F is in C1
H−loc , and that

P− a.e. ω, the map h ∈ H 7→ 〈DF (ω), h〉 ∈ RN is surjective.

Then F admits a density w.r.t. the Lebesgue measure (on RN).



Preliminaries Main results

Outline

1 Preliminaries
Solution theory for gPAM (regularity structures)
Malliavin calculus

2 Main results
Malliavin differentiability : the extended regularity structure
Application : density for value at fixed point



Preliminaries Main results

Malliavin differentiability : the extended regularity structure

The result

Theorem (Cannizzaro-Friz-G.)

Let u be the solution to (gPAM), with explosion time T∞. Fix
(t, x) ∈ (0,∞)× T2. Then F = u(t, x) is C1

H−loc on {t < T∞}, with
derivative given by

〈DF , h〉 = vh(t, x), where vh = lim
ε

vh
ε ,

(∂t−∆)vh
ε = f (uε)hε+vh

ε

(
f ′(uε)ξε − Cε(ff ′′ + (f ′)2)(uε))

)
, vh

ε (0) = 0.

(Recall that u = limε uε, where (∂t −∆)uε = f (uε) · ξε − Cεf (uε)f ′(uε).)
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Malliavin differentiability : the extended regularity structure

Extended regularity structure

Idea of the argument:

Given a noise ξ(= ω) and h ∈ H, we want to make sense at the same
time of (gPAM), and of

(∂t −∆)uh = f (uh)(ξ + h),

(∂t −∆)vh = f (u)h + vhf ′(u)ξ.

In order to do so we expand our regularity structure : TH (⊃ T ) now
contains all symbols where instances of Ξ may be replaced by H, i.e.

Ξ,H,Ξ · IH,H · IΞ,H · IH, . . .
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Malliavin differentiability : the extended regularity structure

Extended model

Proposition

Given a model Π on T and h ∈ H, there exists a unique model Πh on
TH such that :

Πh = Π on T , Πh(H) = h, Πh(HIΞ) = h · Π(IΞ), ...

Idea of proof :
Comes from the fact that multiplication is well-defined on Cβ × Hγ

(resp. Hölder and Sobolev spaces), provided β + γ > 0, with suitable
Hölder-type estimates, such as :

ξ ∈ Cα,K ∗ h ∈ H2

⇒ ξ · (K ∗ h − (K ∗ h)(x)) of order α + 2− d

2
− ε( > 2α + 2) at x .
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Malliavin differentiability : the extended regularity structure

And then letting Uh, V be the solutions to

Uh = K(F (Uh) · (Ξ + H)) + Ku0,

V h = K
(
F (U) · H + V h · F ′(U) · Ξ

)
,

(depending continuously on (Π, h, u0)),
one proves that

P− a.e. ξ,∀h,Uh(Π(ξ)) = U(Π(ξ + h)),

and for u = RU, uh = RUh , vh = RV h,∥∥uh − u − vh
∥∥
Cθ = o (‖h‖H) .
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Application : density for value at fixed point

Application : density for value at fixed point

We obtain the following absolute continuity result :

Theorem (Cannizzaro-Friz-G.)

Assume f > 0, and f (u0) is not identically 0.
Then for each (t, x) ∈ (0,∞)× T2, the law of u(t, x) conditionally on
{t < T∞} is absolutely continuous with respect to the Lebesgue measure.

Proof :
It is enough to show that P-a.e., for some h ∈ H,
〈D(u(t, x)), h〉 = vh(t, x) 6= 0.
In fact : we show that if h is such that f (u)h > 0 and is not identically 0,
then vh(t, x) > 0.

One notes that vh(t, x) =
∫ t

0
w s(t, x)ds, with

w s(s, x) = f (u(s, x))h(x), (∂t −∆)w s = w s(f ′(u)ξ) on (s,T )× T2.
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Application : density for value at fixed point

We conclude with a strong maximum principle :

Proposition

Let w be the solution to a linear heat equation

(∂t −∆)w = w ξ̃, w(0, ·) = w0

where ξ̃ is such that the theory of regularity structures applies. Then

w0 > 0, w0 not identically 0 ⇒ w(t, ·) > 0 for all t > 0.

Proof follows an idea due to Mueller : write in integral form

w = K ∗ (w ξ̃) + Kw0,

and using the estimates from the theory, the first term is negligible for
small t. Then iterate...
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Application : density for value at fixed point

Conclusion

It is possible to combine the tools of regularity structures and
Malliavin calculus.

This is only a first result, much more left to do :

treat more general SPDEs (i.e. go beyond ”level 2”),
density for N-dimensional marginals,
smoothness of densities,
. . .


	Preliminaries
	Solution theory for gPAM (regularity structures)
	Malliavin calculus

	Main results
	Malliavin differentiability : the extended regularity structure
	Application : density for value at fixed point


