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Dynamics of large population of interacting neurons

e Consider a population a N interacting neurons, each of them described by its
action potential V;, and possibly by others variables (eg. gating variables, etc.)
— possibly very complex dynamics

e The graph of interaction is unknown, random and a priori very complex too.
Common assumption : interaction on the complete graph <+ mean-field models
Two main types of models :

o Models of interacting diffusions (Hodgkin-Huxley, FitzHugh-Nagumo [Baladron,
Fasoli, Faugeras, Touboul, *12, Faugeras, MacLaurin, '14, etc.]),

e Jump processes (integrate-and-fire [Delarue, Inglis, Rubenthaler, Tanré, 15, Inglis, Talay,
'15.], Hawkes processes [Brémaud-Massoulié, '96, Reynaud-Bouret, Rivoirard, Grammont,
Tuleau-Malot, '14., Chevallier, 15])

Eric Lugon Neurones avec interactions spatiales 24 Nov 2015 2/28



Mean-field diffusions within random environment

We consider the system of N stochastic differential equations

1 N
d8;; = c(8;, w;)dr + ~ (6;,0;,6;,,0;)dt+dB;;, i=1,---,N,
=]

¢(+) : local dynamics of the particle 6;

I'() : interaction kernel between two particles,

{B;}; : IID standard Brownian motions (thermal noise).

{®; }; : 1ID random variables with law x (local inhomogeneity of the particles,
random environment), independent with the thermal noise.
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Example 1 : The Kuramoto model

e 0; € S:=R/2xn (phase oscillators),
e ¢(6,0) =0,
e I'(6,0,0,®) = Ksin(6—0)

d6;; = o;dr + Zsm it —0iy)dt +odB;;, i=1,---,N,

Remarks

e The real parameter of the model is K/Gz. In the following we take 6 = 1.

¢ The model is invariant by rotation : if {8;(¢)} j—1...v is solution, so is
{8;(t) +y}j=1.n, forally €S.

e When o; = 0, the process is reversible under the invariant measure Ty x
(Hamiltonian Mean-Field model, HMF or XY model)

vk (d6) uexp( Z cos(6, ) do

i,j=1

Eric Lugon Neurones avec interactions spatiales

24 Nov 2015

4/28



Example 2 : FitzHugh-Nagumo oscillators for neuronal dynamics

e Dynamics of one neuron 8 = (V,W) € R? :

Lv-v3/3+w+1
C(V’W):<( aW +bV, )>

V : membrane potential, W recovery variable. |- Berglund, Gentz - 2007, Berglund,
Landon 2012]

e Random environment ® = (a,b) : inhomogeneous discrimination between
inhibited/excited neurons.

e " : synaptic coupling between neurons [ Baladron, Fasoli, Faugeras, Touboul - 2012]

Main features
e The dynamics c is not globally-Lipschitz
e Dynamics with polynomial bounds
e But ¢ is monotone :

(c(6,0) —c(B,0),0—8) < —C|l0—8|’.
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Depending on the values of the local disorder @ = (a,b), one obtains two different
behaviors

o Excitation :
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Propagation of chaos and large population behavior

All the statistical information is contained in the disordered empirical measure of the
system
1 N
VN = N Z 8(9/_.1_’0)!_), t€[0,T]
j=1

The system can be rewritten as

de,-_,, = c(e,-7,7co,-)dt +/F(9,',t,(.()i797(0)\’1\/7t(d9, d(l)) dr + dB,'J, i=1,---,N.

Taking formally the limit as N — o (i.e. suppose that 8; — 0 and vy — V), one
obtains (propagation of chaos) the nonlinear process|=: Sznitman '91] :

d6; = c(6;,w)dr + /r(ét, ®,0,®)v;(d6, d@®)dr + dB;.
with v, = law of (6;,®).

Writing v;(d0, dw) = ¢;(0, ®) dBu(dw), it is the weak solution of the McKean-Vlasov
equation

9:¢:(0,0) = %Aq,(e,m) —divg (q,(e,m) (c(e,(o) +/r(e,m,é,m)q,(é,cb) dé,u(d(?)))) )
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Known results

© Quenched and averaged law of large numbers [« Gartner, Oelschiager ‘87, Dai Pra, den
Hollander '96, L. '11],

® Quenched and averaged fluctuations of vy around its mean-field limit :
Fernandez, Méléard '97], [L. '11]

©® Averaged large deviations as N — oo : [ Dai Pra, den Hollander '96]
@ Linear and nonlinear stability results of the Kuramoto model [« Bertini Giacomin

Pakdaman ’10], [Giacomin, Pakdaman, Pellegrin, Poquet, *12], [Giacomin, Pakdaman, Pellegrin, *12],
[Giacomin, L. Poquet, '14]

® Long-time dynamics for the Kuramoto model and effect of quenched disorder
Bertini, Giacomin, Poquet, '13], [L. Poquet, '15]
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Generalization to spatially-extended mean-field systems

Motivation : understand the behavior as N — o of similar systems where :
e the interaction no longer follows the complete graph (random graphs), or

e the interaction is still mean-field but the strength of interaction is not uniform
along the population

Intuition

If each particle has enough connections, one should keep the same mean-field
properties (law of large numbers, fluctuations, large deviations).
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Mean-field diffusions with spatial interaction

Each particle 6; has a fixed position x; in 0;
]Rd, (2 ,
LI €A (
M= 2N’ ! N Y 0 N
Ay :={-N,....N}. i

The interaction between 6; and 6
depends on a spatial kernel ¥ (x;,x;).

Ay c Z? N
1
dew = c(ew,ﬁ)i)dt +— Z F(ei,,,wi,9j7,,mj) ‘P(xi,xj)dt+ dBiJ,
|AN| jeAN
J#i

with a (possibly irregular) spatial kernel ¥(-, -).

Remark
It is possible to impose periodic boundary conditions on Ay. J
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Existing models

© Kuramoto-type oscillators with phase-lag and space : I'(8,6) = sin(6 — 0+ o)
with regular kernels [ Kuramoto, Battogtokh, '02]

W(x,y) o< exp (—K|x—yl),
W(x,y) o< 14+Acos(x—y).

[%» Abrams, Strogatz - Int. Journ. Bifurc. Chaos, '06] or general kernels [%. O. Omel'chenko -
Nonlin., "13], [M. Wolfrum, O. Omel’chenko, S. Yanchuk, Y. Maistrenko, Chaos, '11], [O. Omel'chenko, M.
Wolfrum, C. Laing, Chaos '14], etc.

® P-nearest neighbor model : each particle interacts only with a fixed-proportion
RN (with R €]0, 1]) of its nearest neighbors :

1
P(x,y) = Fl[fR,R]d“x_yD'

[% 1. Omelchenko, B. Riemenschneider, P. Hovel, Y. Maistrenko, E. Schéll, Phys. Rev E, '12] (Réssler
system), [ A. Viillings, J. Hizanidis, I. Omelchenko, P. Hével, '14] (FitzHughNagumo
oscillators), and many others. ..

©® Kuramoto oscillators with polynomial decay (o-Hamiltonian Mean-Field model,
o-HMF)

1

\P(.X,y) = o

lx =yl

[* Gupta, Potters, Ruffo - Phys. Rev. E '12], [Gupta, Campa, Ruffo - '12], [Gupta, Campa, Ruffo -
Kuramoto model of synchronization : equilibrium and nonequilibrium aspects, '14]
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Large population behavior of spatially-extended systems

We focus here on the rigorous derivation of the large population behavior for spatially
extended models, with special attention given to the singular spatial kernels, namely
the P-nearest neighbor model and the model with polynomial decay.

© Law of large numbers for the empirical measure and propagation of chaos ?
® Well-posedness of the McKean-Vlasov equation ?
® Fluctuations around its limit ?
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The empirical measure and the McKean-Vlasov equation

Look at

de,',t = C(ei,t, (.Oi)dl‘ Z I (6,-7,70),-79j,t, (.Oj) \P(X,',Xj) dr + dB,'J.
JEAN
J#i

L
|An]

The empirical measure of the system is given by
\ 1 Yy 8
Np = 0ir,0;,%;) "
it |AN|i€AN ( ;,X;)
Its natural limit is given by v;(d6, do, dx) = ¢;(0, ®,x) dOu(dw) dx where g solves
1 . = N B N B 1A 4o
0rgr = EAS% —divg (Qt {C() +/F(-,G,(D)‘P(-,x)q,(ﬁ,(o,x) de,u(O))dx})

Problem : is (the weak formulation of) this equation well-posed (¢ unbounded, ¥
possibly singular) ?
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Law of large numbers in P-nearest neighbor case : ¥(x,y) = '(,l‘x,y‘ <R

RI
Theorem (L., Stannat - 2014)
Foralld > 1, R €]0, 1], under some regularity assumptions on ¢ and I" and some
moments hypothesis on the initial condition and the disorder,
o The weak formulation of the McKean-Vlasov equation with space is well-posed,

e The empirical measure vy converges in law as N — oo, in
C([0,T], My (R™ x R™ x [—1/2,1/2]¢)) to the unique solution v to the
McKean-Vlasov equation.

Moreover, there exists a constant C (depending only on T, R, ¢ and I") such that

sup d(vN,hvl) < Ind?
0<t<T NINg

for some distance d of Wasserstein type.

Remarks
o The same estimates holds for any regular spatial weight ‘¥,
e In small dimension (1 < d < 2), we obtain the Gaussian scaling Ng,

e In higher dimension (d > 3), the speed of convergence is governed by the
spatial constraints.
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Law of large numbers in the polynomial case : ¥(x,y) = —, (0 < d)

fr— }\
Theorem (L., Stannat - 2014)

Foralld > 1, o < d, under some regularity assumptions on ¢ and I" and some
moments hypothesis on the initial condition and the disorder, one has a similar result
concerning the well-posedness of the McKean-Vlasov equation and the convergence
of the empirical measure.

Moreover, one has the following estimate : for allo. < v < %,

1 : d
NT» IfOCE [O,j),
sup d(vy,vi) < CQ B, ifa=4,
0<1<T N2

InN_
N‘},a, ifoue (%,d).

for some distance d of Wasserstein type.

Remark

For small spatial constraints (o0 < %), we retrieve (approximately) the Gaussian
scaling, whereas for strong spatial contraints, a nontrivial scaling appears.

Question : Are the scaling found the correct ones ?

<
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Idea of proof

Introduce the nonlinear process associated to the particle system
d6, = c(6,, ) di + / T'(6,,0,8,3)¥(x,y)V: (d8, d, dy) + dB,.
and define its propagator

P51/ (6,0,x) :=Eg —g(f (61, 0,x)).

P ; satisfies a Backward Kolmogorov equation which enables to get rid of the second
derivative :

(f.vni—=vr)=(Posf,VNo— V0>+ |Z/ 99 (Ps,1 f) (B, @y, Xy ) By

+ m ) /0 3 Pyt ) (B> 01, 31) (T (B, g, ¥ (g, ), Viv.s — Vi) ds.

Key point : find a space C of regular (Lipschitz) functions that is stable under Py ; +
Gronwall Lemma.
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Fluctuations of the order parameter in the Kuramoto model

The correct order parameter in the Kuramoto model is
L& e 0
R 10 N ]
TNyt = N]E:le TS Nyoo T1 1= /e q:(d6, dw).

Log-log computation of (E(ry, — r¢)?) V2 it N
a=0 a=0.9

—— log-log logog
- = -linear it 81 - - -linearfit

log(Var(i)
!
)
log(Var(rN))
&
n

-86

-7
a5 5 55 6 6.5 7
log(N)

25 5 55 6 65 7
log(N)

Result : decay as ~ 0.481 Result : decay as ~ 0.134
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Fluctuations around the limit |

Suppose for simplicity d = 1. Looking at the fluctuations of the empirical measure vy
around its limit v is to look at the (distribution-valued) process

nwn :aN(VN—V).

For which renormalization ay ?
One wants to compute the speed of convergence of the particle system

d6;; = (84, 0;)dr + —— Y T(6;,0,0;,,0;) ¥(x;,x;)dt + dBj,

| N| JEAN
J#

to the nonlinear process 0, = 0, (®, x)

d6; = c(6;,w)dr +/r (67, ®,6,®) ¥(x,%)v,(d6, d®, d¥)dr + dB;,
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Fluctuations around the limit I

One has two scales of convergence :

e The convergence of the empirical distribution of the empirical measure of the
Brownian motion and the initial condition : typical scale is /N

e The convergence with respect to the space variable :
/1/2 1
7 N—s00 og
172 x|

It is related to the speed of convergence of the Riemann sum related to x —

1

me

EAN

1
[x[*
towards the corresponding integral : typical scale is N' .
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Phase transition (d = 1)

One should take the smallest renormalization in all cases
e ForO < a< % the proper renormalization is ay := /N,

e For % < o < 1, the proper renormalization is ay := N~

Intuition

e When a < % the spatial constraints are too weak, the randomness should
prevail and everything should happen like we were in the full mean-field case
(o = 0) : the limit of Ny should be random (Gaussian),

e The case o > % corresponds to a strong spatial attenuation. What we see at first
order should not be the Gaussian fluctuations but the constraints due to the
spatial kernel : the limit of nx should be deterministic.

Remark

This scaling was first noticed by [Firpo, Ruffo - J Phys A, 2001] in the case of the
o-Hamiltonian Mean-Field model.
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Fluctuation process

Question : is it the right scaling ? Do we have an actual Central Limit Theorem ? Let us
go back to Ny = ay(vy — V). Strategy to study Ny :

© Write a semi-martingale decomposition for ny,

® Prove tightness of the process 1y in a certain Sobolev space of regularity of
type H ¥,

® Identify and prove uniqueness of the limit.

[ Fernandez, Méléard - SPA, 1997], [Meleard, Roelly - SPA, 1987], [Jourdain, Méléard - Ann. IHP 1998],
[Oelschlager, 1987], [L. 2011]

Problem : here, if one looks at y only, we need to consider test functions

(6,m,x) — f(0,m,x) that are singular w.r.t. the space variable x (in order to capture
singularities such as x — #).

This does not work w.r.t the usual tightness criteria.
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Two-particle fluctuation process

Idea : build an auxiliary fluctuation process that carries the singularity in space. This
process takes into account the mutual fluctuations of two particles (6;,0;) instead of

one.

<}6V,l ’ g> =
ay (12 Y Wlx))e0in,0) — o Y [k (e,”e)dv,)
|AN| i | Nl €Ay

i, JEAN

Now, it is the process itself that carries the singularity in space, not the test functions.

Remark
This process gives the correct renormalization in space : if g = 1, it boils down to

an (12 Z W(x;,xj) — |A | Z /‘P Xi, X )

IAN" i jehy Ay

which is exactly of order 1, when o > %
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Semi-martingale decomposition of (1, Hy)

Proposition (L., Stannat - 2015)
One has the following decomposition :

t t
() = (o 19+ [ (s LEOF) dsot [ (s, 011)) ds+ 24 7.

<’{]-6V.,t7 > <%]07g>+/ 38 S)g dS+/ FngdS+M[\(It)g7

where LY and L(?) are explicit linear operators, with smooth coefficients.
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Sub-critical fluctuations (o < %)

Theorem (L., Stannat - 2015)

Suppose o < % Under regularity assumptions ¢ and I and moment conditions on the
disorder and initial condition, there exist a Sobolev space H such that ny converges
as N — o0 in C(]0,T],H) to the unique solution of the following linear stochastic
partial differential equation

1
N :no+/0 iV neds+ ™ 1 efo,T],

where 0y and M M) are independent Gaussian processes.

Remarks

e Inthe case o < % the process Hy vanishes as N — o,

e This generalizes the result of [ Fernandez, Méléard - SPA, 1997, [L. 2011] where the case
o = 0 was considered.

e This is an averaged result. A quenched result is also true (see [L. 2011]).
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Supercritical fluctuations (o > %)

Theorem (L. Stannat - 2015)

Suppose o > % Under regularity assumptions on ¢ and I" and moment condiitions on
the disorder and initial condition, there exist Sobolev spaces (H;,H,) such that the
couple (Ny, Hy) converges in law in C([0,T],H; & H,) to the unique solution of the
system of coupled PDEs

. to
nt:/o Ly nsd5+/() O* H ds,

= Ho+ / L 34 ds,

t te [O’T]7
0

where Hj is explicit.

Remark
Unfortunately, our assumptions do not cover the FitzHugh-Nagumo case.
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On the dynamical properties of the continuous Kuramoto model with space
Look at the stationary states of the Kuramoto equation with space
1 ~ ~ ~
0= Ea%q(e,x) — Koy (q(e,x) / sin(0 — 0)¥(x,x)g(0,%)do df) .
[%» Gupta, Campa, Ruffo - 2014] : introduce magnetization parameters at position x

my (x) = / cos(8)q(8,x)d8, my (x) = / 5in(8)¢(6,x)do,
and their spatial transform

iy /‘I‘xymx( dy, iy (x /‘nymy
Then, any stationary solution can be written as

4(6,) = —— exp(e2K0s(Ox (1) +2K sin(B)y (x))

Z(x)

where the magnetization parameters satisfy the consistency relation
2 2_h 2.4 5 2
my (x)% +my (x)? = T 2K/ g (x)% + iy (x)2 ) .
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Conclusion

e Foro > % what is the next term in the asymptotic development of vy ?
o What if one chooses positions x randomly ? Positions depending on time ?

o What are the dynamical properties of the Kuramoto model with space ?
Synchronisation ? Stability of synchronized profiles ? Chimera states ?

e What about random graphs ? Is there a mean-field limit for the empirical
measure too ?
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Merci de votre attention !

e E. Lugon and W. Stannat. Mean field limit for disordered diffusions with singular
interactions. Ann. Appl. Probab., 24(5) :1946-1993, 2014.

e E.Lugon and W. Stannat. Transition from Gaussian to non-Gaussian fluctuations
for mean-field diffusions in spatial interaction, arXiv : 1502.00532, 2015.
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