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Plan of the talk

1. Isentropic Euler system with stochastic forcing and shallow water
equations

2. Invariant measure: system and equation

3. Martingale solutions to the stochastic Isentropic Euler system

3.a. Parabolic Approximation: uniqueness, a priori bounds
3.b. Time splitting approximation
3.c. From the parabolic to the hyperbolic system.
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Isentropic Euler system with stochastic forcing

Let (2, F, P, (F), (Bi(t))) be a stochastic basis, let T be the

one-dimensional torus, let 7" > 0 and set Q7 := T x (0,7"). We study the
system

dp + (pu)edt = 0, inQr.  (la)
d(pu) + (pu® + p(p))adt = ®(p, u)dW (t), in Qr, (1b)
p=po, pu= polo, in T x {0}, (1c)

where p follows the ~-law

02
pu— ’y —_— — — —
pp)=r m=— 0=15 )

for v > 1, W is a cylindrical Wiener process and ®(p = 0,u) = 0.
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References

e Deterministic equations, [Di Perna 83, Lions, Perthame, Tadmor 94
and Lions, Perthame, Souganidis 96] in particular.

@ Scalar stochastic first-order equations, [Hofmanovd 13] in particular.

@ Stochastic compressible Navier Stokes: [Feireisl, Maslowski, Novotny
13, Breit Hofmanova 14, Breit Feireisl Hofmanova 15, Smith 15].

@ Stochastic first-order systems of conservation laws: [Kim 2011, On
the stochastic quasi-linear symmetric hyperbolic system|, [Audusse,
Boyaval, Goutal, Jodeau, Ung 2015, Numerical simulation of the
dynamics of sedimentary river beds with a stochastic Exner equation|
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Stochastic forcing term

Our hypotheses on the stochastic forcing term ®(p, w)W (t) are the
following ones. We assume that W = ", ., fre;, where the ), are
independent brownian processes and (ej);>1 is a complete orthonormal
system in a Hilbert space . For each p > 0,u € R, ®(p,u): tl — L*(T)
is defined by

®(p,u)er, = ox (-, pyu) = PUZ(‘,P, u), (3)

where (-, p,u) is a 1-periodic continuous function on R. More precisely,
we assume o} € C(T, x Ry x R) and the bound

1/2 1/
G(z,p,u): <Zlokxp, ) éAop{1+u2+p29} O
k>1

x €T, p>0,ueR, where Ay is some non-negative constant
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Example: shallow water equations with stochastic
topography
(Deterministic) evolution of shallow water flow described in terms of the

height h(z) of the water above = and the speed u(z) of a column of

water:
ht + 4z = 07

2 2
q h
+|—+9g— ) +ghZ,=0.
q <h 92>$ g 0

Here ¢ := hu is the charge of the colum of water, ¢ is the acceleration of
the gravity and = +— Z(x) a parametrization of the graph of the bottom.

- free surface
- — 0

I(z)

7y
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Example: shallow water equations with stochastic
topography
Stochastic evolution:

ht+q$:07

q2 h2
dq + (h + gz> dt + ghdZ, = 0,

with

Z(x,t) = Z o (cos(Qka)ﬁ,Z(t) + sin(27rk:x)ﬂ£(t)> :

k
— fluid dynamics forced via the motion of the ground

_ free surface
—

h(x)

e
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Energy evolution

Stochastic evolution:
h’t + 4z = 07

q2 h2
dq + (h + 92> dt + ghdZ, = 0.

Energy:

For smooth (C'!) solutions:

d 1
th/Te(x,t)dx = 2|]0||Z2Q(N)E/Th(:1:,t)dx = Cst.

— Input of energy by noise VS Dissipation in shocks
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Large-time behaviour and invariant measure
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Example: shallow water equations with stochastic
topography

Choose the initial condition (hg, qo) to

ht+Qx:07
2 2

h
dg + (qh + 92> dt + ghdZ, = 0,

at random according to a law 1 (this a probability measure on a space of
functions T — R x R).

@ Question 1: how to choose 1 such that, for all ¢ > 0,
pe = Law(h, q1) = po

(i.e. po invariant measure) ?

@ Question 2: what is y for large t?
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Deterministic case

Total height and total charge are the characteristic parameters of the
invariant measure (a Dirac mass here).

Theorem [Chen Frid 99] Let p,u € L>(Ry x T) such that U = (Z) is a

weak entropy solution to the isentropic Euler system. Then, for every
1 <p< 4o,
1

T
. - o - p _
TLITOOT/U 1U(t) — UPdt = 0,

where U is the constant state (Z) characterized by
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Stochastic shallow water equation

Integrate over T x (0, 1)

{ i h(z,t)de = [ h(z,0)d,
Jra(zt

t)dzr = [pq(zx, 0 dz —
which gives

fo Jp ghdZ,(z,t)dz,
{ Jxh

a}tdx—fT

(z,0)dz,
EfT l‘tdl‘—Equ:L‘Od{L‘
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Numerical experiment

Observation of the scalar function

1 T
T _
= T /0 <:uta90>dt7

2 h2
¢(h,q) = energy = gh Y

for

and four sets of data, different realizations.
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Numerical experiment
Test

Energy evolution, Tfinal=10

0.8
0.78 o
0.76
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D.En—-
0.58 ]
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0.54—-

0.52 o

0.5 ; .
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Data
Test 1 and 2: fol ho(x)dz =1, fol qo(x)dx =
Test 3 and 4: fo ho(z)dz =1, fo qo(z)dx = 0.

Energy evolution, Trinal=10
0.8

0.78 |
0754
0.74 4
0.72 4

g 07

E 058

£ 086 ]

5

g 0644

5 062
£ 06
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Data
Test 1 and 2: fO ho dl’ =1, fO qO = %
Test 3 and 4: fo ho(z)dz =1, fo qo(z)dx = 0.

Energy evolution, Trinal=10

— Proof?7?
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Large time behavior in scalar conservation laws with
stochasting forcing
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First-order scalar conservation law with stochastic forcing

Scalar equation in dimension V:

Opu + divy (A(u)) = f(x,t),

f = time white-noise
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First-order scalar conservation law with stochastic forcing

Scalar equation in dimension N:

Ou + divy(A(u)) = f(x,t), f = time white-noise

Example: the periodic stochastic inviscid Burgers Equation

Opu + 9, (u*/2) = Re Z 02 B (1),
k

where the By (t)'s are independent Brownian motions on C ~ R?.
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First-order scalar conservation law with stochastic forcing

Resolution of the Cauchy Problem

@ Dimension NV = 1, Burgers Equation, additive noise, E, Khanin,
Mazel, Sinai 2000,

Dimension N = 1, additive noise, Kim 2003,

Dimension N = 1, multiplicative noise, Feng-Nualart 2008,
Dimension N > 1, additive noise, Vallet-Wittbold 2009,
Dimension N > 1, multiplicative noise, Debussche-Vovelle 2010,

Dimension N > 1, multiplicative noise, Chen-Ding-Karlsen 2012,

Dimension N = 1, Burgers Equation, additive noise, Fractionnal
Brownian Motion, Sausserau-Stoica 2012,

@ Dimension N > 1, multiplicative noise, Bauzet-Vallet-Wittbold, 2012,
2014.
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First-order scalar conservation law with stochastic forcing

Invariant Measure

E, Khanin, Mazel, Sinai, Annals of maths. 2000,
Sausserau-Stoica 2012,

Boritchev 2013,

Debussche-Vovelle, PTRF 2014, (N > 1, “general” fluxes).
Dirr-Souganidis (Hamilton-Jacobi with stochastic forcing) 2005.

Non-compact setting (z € R) : Bakhtin, Cator, Khanin 2014, Bakhtin
2014 (Poisson Noise)
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First-order scalar conservation law with rough flux

Equation

du+divy(A(z,u)odz) =0, z=(z1,...,2q) rough path.

@ Lions, Perthame, Souganidis 2013, 2014,
@ Gess Souganidis 2014,
e Hofmanova 2015 du + div,(A(z,u) o dz) = g(z, u)dW (t).

Note also: Lions, Perthame, Souganidis 2013, averaging lemma for

8tf(t7x7§) + B(t) © fof(t,a:,ﬁ) - g(t,%,f).
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Large-time behavior

Stochastic scalar first-order conservation law
du(t) + div(A(u(t)))dt = ®(x)dW (t),
under the condition (non-stationarity of a := A’)

sup  H{EeRi|a+B-a(§)| <e} =0
a€cR,peSN-1

and the structure condition (this ensures the conservation of mass)

B(2)dW (£) = diva(-).
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Existence of invariant measure for sub-cubic fluxes

For m € R, let L}, := {u € L(TV); [;n u(z)dz = m} .
Theorem (Debussche-Vovelle 14)

Under the condition (non-stationarity of a := A’)

sup  [{€ER;|a+B-a(d)|<e} <€,
a€R,peSN -1

and (sub-cubic flux)
|a'(©)] < C(1+[€)),

there exists an invariant measure i, on L} . It is supported in LP(T")
forp<2+% if N =1andp< % if N > 1.
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Uniqueness for sub-quadratic fluxes

Theorem (Debussche-Vovelle, 14)

Assume (sub-quadratic flux)
|a'(§)] < C,

then the invariant measure is unique and ergodic on L}, .
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Entropy solutions to the isentropic Euler system
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Entropy

A couple (n, H): Ry x R — R of continuous functions is an entropy -
entropy flux pair if 7 is convex and

Vn(U)*DF(U) = VH(U)*, YU € R’ xR.
Formally, by the It Formula, solutions to (1) satisfy
1
dEn(U) +EH(U),dt = §E8§qn(U)G2(U)dt, (5)

for all entropy - entropy flux pair (1, H)
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Entropy for isentropic Euler

cf. Lions, Perthame, Tadmor 1994: let g € C?(IR) be a convex function,
let

n(U) = /Rg(é)x(p,&—U)d&,
H(U) = /IR 9(£)166 + (1 — O)ulx(p, € — u)d,

where

3—
(O = i A== o= ()

Then (n, H) is an entropy - entropy flux pair.
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Pathwise entropy solution
Definition Let po,uo € L?(T) satisfy py > 0 a.e. and

/po(l +ud + p3?)dr < +oo.

A predictable process U € L?(Q; C([0,T]; W~22(T))) is said to be a
(pathwise-) weak entropy solution to (1) if

E ess-sup /p(a:,t)(l + u(z,t)? + p(x, )?)dr < +o00
0<t<T JT

and if, for every g-entropy-entropy flux (7, H) pair associated to a convex
subquadratic function g, P-almost surely, for all non-negative ¢ € C'(Q7)
such that p =0on T x {t =T},

[ (V) + H(0)0s) dadr + JRCHEDE

T

/ [ Ow@pdav e+ [ Gtz 0
T

Berthelin and Debussche and Vovelle Nice 2015 26 / 56



Martingale solution

Definition A sextuplet
(Qaﬁv (ﬁt)7fp7 Wa ﬁ)
is a martingale weak entropy solution to (1) if, after the substitution

(QF, (F),P,W) « (Q,F, (F),P,W), (6)

U is a pathwise weak entropy solution to (1).
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Martingale solution

Theorem Let p € N satisfy p > 4 + %. Let

Po: T—>R+7

q: T —R
satisfy

/ po(1 +ulf + piPVdz < 4o00.
T

Then there exists a martingale solution to (1).
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Parabolic approximation
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Viscous isentropic Euler system

For £ > 0, the (non-physical...) regularization of (1) is

dU. + 0,F(U.)dt = e0*U.dt + ¥ (U,)dW (t), (7a)

Ue|t:0 = Ugo. (7b)

where U, F(U), ¥*(U) are defined by

U= (g) . F(U)= ( fp(p))  HU)= (@f?U)) |
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Singularities

Note that the flux F(U) is singular at p = 0 and (strictly) superlinear with
respect to p and gq.

For R > 1, let Dp denote the set of U € Ry x R such that

R'<p<R, |q<R

For a random function U(z,¢) with values in U € R, x R, we say that
U € Dg w.h.p. ("with high probability”) if, for all & > 0, there exists
R > 0 such that the event "U(z,t) € Dp for all (x,t)" has probability
greater then 1 — a.
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Pathwise solution

Definition Let Uy € L°(T) satisfy pg > ¢p a.e. in T, where ¢y > 0. Let
T > 0. A process (U(t));c[0,7] with values in (L*(T))? is said to be a
bounded solution to (7) if it is a predictable process such that

@ almost surely, U € C([0,7]; L*(T)),
Q@ Ue€ Di w.hp.

© almost surely, for all ¢ € [0, T, for all test function ¢ € C?(T;RR?),
the following equation is satisfied:

(U(1), @) = (U, ) + /O (F(U), 0p) + (U, %) ds

+/ (®=(U) dW(s), ¢). (8)
0
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e-Noise

For each given U, [®°(U)ey| () = o}.(z, U) where ;. is a continuous
function of its arguments. We assume

1/2 1/2
G*(2,U) = <Z |05 (z, U)\Z) < Aop [1 +u® + pﬂ ,
k>1

forall z € T,U € Ry x R. We will also assume that G° is supported in
an invariant region: there exists s.. > 0 such that

supp(G®) C Ty x A,

where
A, ={UeRi xR;j—» < z<w< s},

where z,w are the Riemann invariants, w = u + p’, z = u — p’.
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e-Noise 2

Eventually, we will assume that the following Lipschitz condition is
satisfied:

> loi (2, Us) = oz, Us)|* < C(e, R)|UL — Uy,
k>1

forall z € T,Uy,U; € Dp.
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Existence- Uniqueness

Theorem Let U, € W22(T) satisfy p-, > co a.e. in T, for a positive
constant ¢g. Then the problem (7) admits a unique bounded solution U..
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Existence- Uniqueness

Theorem Let U, € W22(T) satisfy p-, > co a.e. in T, for a positive
constant ¢g. Then the problem (7) admits a unique bounded solution U..

Uniqueness: mild formulation and property U. € Dr w.h.p. More
precisely, we show that two bounded solutions U!, U? satisfy

E sup |ULtATE") = UZ(tATE)[72(r) < Cle, R, T)|[ UL,

U?O || %2 (T) )
te[0,T

where 7'}272 is the stopping time

7% = inf {t € [0,T); U(t) or U(t) ¢ Dr}.
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Existence- Uniqueness

Theorem Let U, € W22(T) satisfy p-, > co a.e. in T, for a positive
constant ¢g. Then the problem (7) admits a unique bounded solution U..

Uniqueness: mild formulation and property U. € Dr w.h.p. More
precisely, we show that two bounded solutions U!, U? satisfy

E sup |ULtATE") = UZ(tATE)[72(r) < Cle, R, T)|[ UL,

U?O || %2 (T) )
te[0,T

where 7'}272 is the stopping time

7% = inf {t € [0,T); U(t) or U(t) ¢ Dr}.

Existence...
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A priori bounds for bounded solutions to the Parabolic
approximation
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Improved regularity

Proposition Let U,y € W2(T) satisfy p-, > ¢ a.e. in T, for a positive
constant ¢p. Then, for all & € [0,1/4), s € [0,1), U.(- A 7r) has a
modification whose trajectories are almost surely in C*([0,77]; L*(T)) and
such that

E|Ue(- ATR) G o 1ys0201y) < C(Ro€, T 0, Usg),
sup E[[Uc(t A 7R)[[fyszm) < C(R,e, T, s, Us),
t€[0,7]

where 7 is the exit time from Dg,
Tr = inf {t S [O,T];U(t) ¢ DR},

and C(R,e,T,a,U.y) and C(R,e,T,s,U.q) are constants depending on
R, T, e, |[Usllyr2(m) and a/s respectively.

Berthelin and Debussche and Vovelle Nice 2015 37 / 56



Entropy bounds (independent on ¢)

Set

r(0) = [ n(U@)ds

Proposition Let U,y € W?2(T) satisfy p-, > co a.e. in T, for a positive
constant ¢g. For m € N, let 7, denote the entropy associated to
& €2 Then for all m € N,

B sup [ (|ucP™ + 0" peds = O(),
t€(0,7]JT

where O(1) depends on 7', 7y, on the constant Ay, on m and on
ET',(Ugg) for n € {no, n2m}-
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Weighted gradient bounds (independent on ¢)

Proposition Let U,y € W?22(T) satisfy p-, > co a.e. in T, for a positive
constant ¢g. Then for all m € N,

cE // <\u€]2m + pg"w) pz_2|8xp5]2dxdt =0(1),
Qr

and
ek // (]uEIQm + pgme) pg\azug\Qda:dt = 0O(1),
T

where O(1) depends on 7', -y, on the constant Ay, on m and on
EI',(Ugg) for n € {no, n2m+2}-
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L*>-bounds (dependent on »¢.)

Proposition: the region A,._ is an invariant region for (7): if Uy € A.._,
then almost surely, for all ¢t € [0,7], U.(¢) € A.._. In particular, almost
surely,

1| oo (@r) < 2725 1% NG () < 25%-
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Positivity of p.
Theorem Let m > 6. Let u € L™(Qr) N L%(0,T; H(T)) and py € L*(T).
Let p € C([0,T]; L?(T)) be the generalized solution of the problem

Oip + Ou(pu) — Dop = 0'in Qr, (9)

with initial condition

p(x,0) = po(x), xeT. (10)

Assume pg > cg a.e. in T where ¢ is a positive constant. Then there
exists a constant ¢ > 0 depending on ¢y, 1", m and

// ployul*dzdt and lull m (@)
T

only, such that
p=>c

a.e. in Q.
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Existence of a bounded solution to the Parabolic
approximation
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Approximation by splitting-in-time

Let 7 > 0. Set t;, = k7, k € N. We solve alternatively the deterministic,
parabolic part of (7) on time intervals [toy, to511) and the stochastic part
of (7) on time intervals [tog1,top12), i€

o for tg, <t <tlopy1,

9, UT +20,F(U7) = 2e92U" in Qo topss (11a)
U (tor) = U7 (top—) in T, (11b)

o for topr1 <t <topyo,

dU"™ = V2% (U7)dW (t) N Qtypsr tansos (12a)
UT(tQkJrl) = UT(tQk-Jrl_) in T. (12b)
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Bounds

Proposition Let U,y € W?2(T) satisfy p-, > co a.e. in T, for a positive
constant ¢y. Then U7 satisfies the a priori bounds derived on U,,
uniformly with respect to 7 € (0, 1):

@ Improved regularity
@ Entropy bounds
@ Gradient bounds

@ L°°-bounds

@ Bound from below on the density
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Entropy balance law
Let

]-det = Z 1[t2k,t2k+1)7 1St0 = 1 - ]-det'
k>0

Let (1, H) be an entropy - entropy flux pair associated to a C?, convex
subquadratic function g. Then, almost surely, for all ¢ € [0, 7], for all
test-function ¢ € C?(T),

(n(U"(1)), @)
=<77(Uo),90>+2/0 Laet(s) [(H(UT), 0pp) 4+ e(n(U7), 02¢)] ds
9 / Laes () (" (UT) - (UT, UT), )
0
+V2 : Lsto(s)(n' (UT)®ST(UT) dW (s), )
+/ sto <G€T UT) agq’l?(UT),gD>dS.
0
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Weak solution

If (&) = o+ BE, then n(U) = ap + Bq. Consequence:

(UT(t), )

almost surely, for all ¢ € [0, 77, for all test-function ¢ € C?(T;R?),

~(Une)+2 [ () [(F(UT), o) + (U7, 020)] ds
+v2 / t Lo (8)(TST(UT), ) dW (5)
0

=] 5 = E DAy
Berthelin and Debussche and Vovelle



Path spaces

Recall that W = )", ., Bier where the 3, are independent brownian
processes and (ey);>1 is a complete orthonormal system in a Hilbert space
i1

Let $ly D 4 be defined by

o = {v:Zakek; ZZ’E < oo},

k>1 k>1

2
with the norm Hv||f10 =D i>1 %, U =) ;51 akek. The embedding
31 < $ly is then an Hilbert-Schmidt operator and, almost surely,
W e Xy = C([O,T];ﬂo).

The path space of U7 is Xy = C([0,T]; L*(T)). Set X = Xy x Xy .
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Tightness - 1

Let

X[(t) = V2 /0 Lato(5)65(5)
and set

W7(t) =Y X (t)ex

k>1

Lemma The Ajy-valued process W7 converges in law to W when 7 — 0.

=] 5 £ DA
Berthelin and Debussche and Vovelle



Tightness - 2

Let us denote by 1ii; the law of U™ on Ayy. The joint law of U™ and W™
on X is denoted by 7.

Proposition Let Uy € (W?%?2(T))? be such that pg > ¢y a.e. in T for a
given constant ¢g > 0. Assume Uj € A,_. Then the set {;/"} is tight and
therefore relatively weakly compact in the set of probability measures on
X.
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Tightness - 2

Let us denote by sy the law of U™ on Ayy. The joint law of U™ and W7
on X is denoted by 7.

Proposition Let Uy € (W?%?2(T))? be such that pg > ¢y a.e. in T for a
given constant ¢g > 0. Assume Uj € A,_. Then the set {;/"} is tight and
therefore relatively weakly compact in the set of probability measures on
X.

Corollary (Skorohod) There exists a probability space (Q°, 7, P¢), a
sequence of X-valued random variables (I]'T",I/T/T")neN and a X-valued
random variable (U., W.) such that, up to a subsequence,
O the laws of (U™ W) and (U., W.) under P° coincide with 1™ and
e respectively,
Q@ (U™, W™) converges P=-almost surely to (U., TV.) in the topology
of X.
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ldentification of the limit (U., W.)

Let (]—'E) be the P*-augmented canonical filtration of the process
(U, We), .

Fi =0(0(aUs, 0W.) U{N € F=; P°(N) =0}), tel0,T],

where g, is the operator of restriction to the interval [0, ¢| defined as
follows: if E' is a Banach space and ¢ € [0, 7], then

Ot C([OaT];E) — C([Oat];E)
f*—>f|[0,t]-
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ldentification of the limit (U., W.)

Let (]—'E) be the P*-augmented canonical filtration of the process
(U, We), .

F; = o(o(a0:, 0We) U{N € F&; PF(N) =0}), te[0,T],

where g, is the operator of restriction to the interval [0, ¢| defined as
follows: if E' is a Banach space and ¢ € [0, 7], then

Ot C([OaT];E) — C([Oat];E)
f*—>f|[0,t]-

Proposition The sextuplet
(Q€7f€7 (ﬁf)7ﬁpsa Wapfja)
is a martingale bounded solution to (7).
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Final step in the proof of existence of a bounded solution
to the Parabolic Approximation

Gyongy-Krylov argument [Gyongy, Krylov, 96]:

Existence of a martingale solution
& Uniqueness of pathwise solutions (extended a little bit...)
= Existence of pathwise solutions.
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Martingale solution to isentropic Euler equations
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Back to the original problem

dU + 8,F(U)dt = W (U)dW (),

Ult:0 — UO.

Or: how to pass to the limit in the parabolic approximation?
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D

o &5 = wa
Berthelin and Debussche and Vovelle



Back to the original problem

dU + 0,F(U)dt = B(U)dW (¢),

Ult:() — UO.

Or: how to pass to the limit in the parabolic approximation?
Three steps:

o Step 1. Estimates on U,
o Step 2. Convergence in the sense of (random) Young measures,

@ Step 3. Reduction to a Dirac Mass (outside the vacuum) of the
Young measure obtained at the limit.
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Remarks

o No L*°-bounds.
1
@ When v > 2, div-curl lemma requires £7-2 5. bounded with ¢

@ Martingale argument: with densely defined martingales only, cf.
[Hofmanovd 2013].
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Open questions

@ Parabolic approximation with additive noise

@ Proof of the existence of invariant measures (with Khaled Saleh)

Well-balanced schemes (with Khaled Saleh)

Convergence of the stochastic compressible Navier-Stokes system

@ Uniqueness of weak entropy solutions (in law ?), uniqueness of weak
entropy solutions in the deterministic case
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Thank you for your attention
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