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The integrating factor technique is widely used to solve numerically (in particular) the 
Schrödinger equation in the context of spectral methods. Here, we present an improvement 
of this method exploiting the freedom provided by the gauge condition of the potential. 
Optimal gauge conditions are derived considering the equation and the temporal numerical 
resolution with an adaptive embedded scheme of arbitrary order. We illustrate this 
approach with the nonlinear Schrödinger (NLS) and with the Schrödinger–Newton (SN) 
equations. We show that this optimization increases significantly the overall computational 
speed, sometimes by a factor five or more. This gain is crucial for long time simulations, 
as, with larger time steps, less computations are performed and the overall accumulation 
of round-off errors is reduced.

© 2022 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Schrödinger equation is used in many fields of Physics. In dimensionless units, it takes the form

i ∂t ψ + 1
2 ∇2ψ − V ψ = 0, (1)

where ψ is a function of the spatial coordinates r and of the time t , ∇2 is the Laplace operator, and the potential V is 
generally a function of space and time and, possibly, a functional of ψ . In this paper, we focus more specifically on the 
nonlinear Schrödinger equation (V proportional to |ψ |2) and on the Schrödinger–Newton (or Schrödinger–Poisson) equation 
in which the Laplacian of the potential is proportional to |ψ |2. These special cases were chosen for clarity and because they 
are of practical interest, but the method presented here can be extended to more general potentials (and equations).

With the nonlinear Schrödinger equation (NLS) considered here, the (local nonlinear) potential is

V = g |ψ |2, (2)

where g is a coupling constant. For g > 0 the interaction is repulsive, while, for g < 0 it is attractive. The NLS describes 
various physical phenomena, such as Bose–Einstein condensates [10], laser beams in some nonlinear media [15], water wave 
packets [18], etc.

With the Schrödinger–Poisson equation, the potential is given by the Poisson equation

∇2 V = g |ψ |2, (3)

* Corresponding author.
E-mail address: Martino.LOVISETTO@univ-cotedazur.fr (M. Lovisetto).
https://doi.org/10.1016/j.apnum.2022.04.011
0168-9274/© 2022 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2022.04.011&domain=pdf
mailto:Martino.LOVISETTO@univ-cotedazur.fr
https://doi.org/10.1016/j.apnum.2022.04.011


M. Lovisetto, D. Clamond and B. Marcos Applied Numerical Mathematics 178 (2022) 329–336
where g is another coupling constant, the interaction being attractive if g > 0 and repulsive if g < 0. It is therefore nonlinear
and non-local, giving rise to collective phenomena [5], appearing for instance in optics [9,24,25], Bose–Einstein condensates 
[14], cosmology [17,21,22] and theories describing the quantum collapse of the wave function [11,23]. It is also used as a 
model to perform cosmological simulations in the semi-classical limit [29].

The above equations cannot be solved analytically (except for very special cases) and numerical methods must be em-
ployed. In this paper, we focus on spectral methods for the spatial resolution, i.e., methods that are based on fast Fourier 
transform (FFT) techniques, that are specially efficient and accurate [8]. For the temporal resolution, two families of methods 
are commonly employed to solve Schrödinger-like equations: integrating factors [20] and split-step integrators [6]. The latter 
methods have been used to integrate both the SN and NLS equations, but the former is used essentially to solve the NLS, 
with very performing results [2–4]. In this note, we focus on the former technique, which consists in integrating analytically 
the linear part of the equation and integrating numerically the remaining nonlinear part with a classical method [20]. The 
principle of the method is described as follows.

Writing the Schrödinger equation in the generic form

i ∂t ψ = F (r, t,ψ) , ψ = ψ(r, t) , (4)

the right-hand side is split into linear and nonlinear parts

i ∂t ψ + Lψ = N (r, t,ψ) , (5)

where L is an easily computable autonomous linear operator and N def= F + Lψ is the remaining (usually) nonlinear part. 
At the n-th time-step, with t ∈ [tn, tn+1], considering the change of dependent variable

φ
def= exp[ (t − tn)L ]ψ =⇒ i ∂t ψ = exp[ (tn − t)L ] ( i ∂t φ − Lφ ) , (6)

so φ = ψ at t = tn , the equation (5) is rewritten

i ∂t φ = exp[ (t − tn)L ]N . (7)

The operator L being well chosen, the stiffness of (5) is considerably reduced and the equation (7) is (hopefully) well 
approximated by algebraic polynomials for t ∈ [tn; tn+1]. Thus, standard time-stepping methods, such as an adaptive Runge–
Kutta method [1,7], can be used to efficiently solve (7). To do so, the solution is evaluated at two different orders and a 
local error is estimated as the difference between those quantities. Popular integrators can be found in [1,12].

Notice that, for finite domains, the integrating factor must be implemented such that boundary conditions and the 
domain geometry are properly taken into account. However, here, we focus on periodic domains, therefore there are no 
conditioning issues with the method, as explained in [16].

It is straightforward to apply this strategy to the Schrödinger equation (1) since 1
2 ∇2ψ and the potential V are, respec-

tively, linear and nonlinear operators of ψ . By switching to Fourier space in position, the equation becomes

i ∂t ψ̂ − 1
2 k2 ψ̂ − V̂ ψ = 0, (8)

where “hats” denote the Fourier transform of the underneath quantity and k def= |k| (k the wave vector). The equation is now 
in a form where the application of the integrating factor (IF) method is straightforward, i.e., (8) becomes

i ∂t φ = −i exp[ i
2 k2(t − tn)] V̂ ψ, (9)

where φ(k, t) def= ψ̂(k, t) exp[ i
2 k2(t − tn)]. If the nonlinear part of the equation is zero, then i ∂t φ = 0 and any (reasonable) 

temporal scheme will produce the exact solution φ(t) = φ(tn). In other words, the integrating factor technique is exact for 
linear equations. This indicates that the numerical errors depend on the magnitude of the nonlinear part. Therefore, in order 
to minimise these errors, a strategy consists in minimizing the magnitude of N at each time-step. To do so, we exploit the 
gauge invariance of the Schrödinger equation: if ψ is a solution of (1) at a given time t , then � = ψ(r, t)e

−i
∫ t

t0
dsC(s)

, with 
C(t0) = 0, is a solution of

i ∂t � + 1
2 ∇2� − (V + C(t)) � = 0, (10)

as one can easily verify. Thus, at each time-step, adding a constant Cn to V in (1), modifies the solution as

ψ(tn) → ψ(tn)e−iϕ, ϕ
def=

n∑
j=0

C j h j, (11)

where h j
def= t j+1 − t j is the j-th time-step. Of course, at the end of the computations, the operation (11) can be easily 

reverted if the original phase is relevant. Using this procedure, we observed up to a five-fold speed increase (the overall 
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computational time is divided by about five) compared to taking Cn = 0. Of course, the speed-up varies depending on the 
initial condition, of the (spatial and temporal) numerical schemes and on the choice of gauge corresponding to Cn = 0.

In this paper, we derive some analytic formulas giving an optimal Cn in order to maximise the time-step, i.e., to minimize 
the overall computational time of the numerical resolution. We emphasize that the thus obtained optimal values of Cn do 
not affect the accuracy of the numerical solution, leaving it unchanged with respect to the Cn = 0 case. Two strategies are 
presented. In section 2, a first ‘natural’ approach to derive a suitable Cn is based on the analytical structure of the equation 
and it is independent of the numerical algorithm employed for its resolution. More precisely, Cn is obtained minimizing 
a norm of the right-hand side of the equation (5). This provides an easy manner to obtain a formula that is moreover 
computationally ‘cheap’. This expression is however only near optimal, so a ‘better’ expression is subsequently derived. 
Considering both the equations and the numerical algorithms, a second optimal expression for Cn is derived in section 3. 
This approach consists in minimizing exactly the numerical error and thus explicitly dependents on the numerical scheme. 
This provides a more accurate, but computationally expensive, solution. The advances of these special choices are illustrated 
numerically in section 4. Finally, a summary and perspectives are drawn in section 5.

2. Near optimal Cn

As mentioned above, if properly chosen, the integrating factor is able to reduce the stiffness of the equation, making 
the numerical integration more efficient. In addition, the magnitude of the nonlinear part of (7) also contributes to the 
efficiency of the numerical integration. Specifically, if N is zero, ∂t φ = 0 and the integrating factor technique is exact. Thus, 
the efficiency of the algorithm is expected to increase as the magnitude of N gets smaller, and subsequently the overall 
computational time should be reduced. Here, we show how to choose the arbitrary constant Cn in order to reduce the 
magnitude of the nonlinear part N . In the case of the Schrödinger equation, we have

N (k, t;φ;Cn) = −i exp[ i
2 k2(t − tn)]F{(V + Cn) ψ}, (12)

where F denotes the Fourier transform, and ψ(x, t) =F−1{exp[− i
2 k2(t − tn)] φ(k, t)}.

A natural strategy is to minimise the L2-norm, namely

Gn(Cn)
def= 1

M

[M/2]−1∑
m=−[M/2]

|N (km, tn;φ;Cn) |2, (13)

where M is the number of spatial modes, square brackets denote the integer part and km is the m-th Fourier mode. 
Indeed, in the latter expression, we considered discrete Fourier transforms, given that we are in the context of numerical 
simulations. The explicit expression of Gn can be found exploiting the definition of the discrete Fourier transform. For 
simplicity, we do the calculations in one dimension (1D) without loss of generality, since the final result is independent of 
the spatial dimension d. From Parseval theorem, one obtains

Gn(Cn) =
[M/2]−1∑

�=−[M/2]

(V� + Cn)
2 |ψ�|2, (14)

where ψ�
def= ψ(x�) and V�

def= V (x�) at time tn . Since the function Gn(Cn) is a second-order polynomial in Cn , it admits an 
unique minimum, which is obtained from the equation dGn(Cn)/dCn = 0, yielding

Cn = −
⎛⎝ [M/2]−1∑

�=−[M/2]

V� |ψ�|2
⎞⎠ /⎛⎝ [M/2]−1∑

�=−[M/2]

|ψ�|2
⎞⎠ def= C̃n. (15)

Therefore, at each time step n, C̃n , which is the value of Cn minimizing the L2-norm of N , is obtained from (15). We show 
below that even though this approach is not unique (i.e., different norms could be considered), the provided solution is quite 
advantageous compared to others, being computationally cheap and independent on the order of the numerical scheme.

3. Optimal Cn

We show here another way to choose the arbitrary constant Cn in order to improve the algorithm efficiency and reduce 
the overall computational time. This approach is based on the principles of the adaptive time-step procedure, where at 
each time step n, an error �n between two approximated solutions of different orders is estimated. Since the smaller this 
quantity the larger the time-step, minimizing �n allows to choose a larger time-step, speeding-up the numerical integration 
and keeping roughly the same numerical error. More specifically, the error �n depends on the arbitrary constant Cn , hence 
the minimization can be performed (see below) choosing an appropriate Cn . In this section, we first recall the method 
for determining the size of the time step used in the Runge–Kutta procedures; interested readers should refer to [1] for 
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further details. Although the determination of Cn can be formally presented for any embedded Runge–Kutta schemes, this 
results in very cumbersome calculations with little insights. Thus, for brevity and clarity, we illustrate the method with the 
Heun method (that is a second-order Runge–Kutta method with an embedded first-order explicit Euler scheme for the time 
stepping [27]). We then sketch-out how this procedure can be implemented for generic embedded Runge–Kutta methods.

3.1. Principle of the adaptive time-step procedure

For the time stepping, embedded Runge–Kutta methods estimate the quadrature error comparing the results of two 
orders of the time integrator [1]. For a solver of order N with an embedded (N − 1)-order scheme (hereafter schemes of 
orders {N, N − 1}), at the n-th time step, the error �n is [28]

�n
def=

√√√√√ 1

M

[M/2]−1∑
m=−[M/2]

⎛⎝ ∣∣φ(km, tn) − φ̃(km, tn)
∣∣

Tol + max
(
|φ(km, tn)| ,

∣∣∣φ̃(km, tn)

∣∣∣) × Tol

⎞⎠2

, (16)

where M is the number of spatial modes, square brackets denote the integer part, φ(km, tn) is the N-th order solution at the 
m-th Fourier mode, the “tilde” notation indicating the solution at order N − 1, and Tol is the tolerance (parameter defining 
the desired precision of the time-integration). The time step hn is accepted if the error �n is smaller than the tolerance Tol, 
otherwise hn is reduced and this step is recomputed. hn being accepted, the next time step hn+1 is obtained assuming the 
largest error equal to the tolerance. In order to avoid an excess of rejected time steps, we use the Proportional Integral (PI) 
Step Control [28], which chooses the optimal time step hn+1 as

hn+1 = hn �−b
n � c

n−1, (17)

where b = 0.7/p, c = 0.4/p, p being the order of the chosen integrator [13]. Interested readers should refer to [1] for details 
on this classical procedure.

3.2. Optimum time step

Since the constant Cn can be chosen freely, we seek for the value of Cn providing the largest hn+1, namely, to maximise 
the right-hand side of (17). Since hn and �n−1 are determined at the previous time-step, only �n in (17) depends on Cn . 
Thus, in order to maximize hn+1, �n must be minimized, i.e., one must solve d�n/dCn = 0. This derivation being character-
ized by cumbersome algebra for general embedded Runge–Kutta schemes, we illustrate the case of the Heun algorithm (that 
is a second-order Runge–Kutta method with an embedded first-order explicit Euler scheme for the time stepping [27]), the 
principle being the same for higher order integrators. Also for simplicity, we give the calculations in one dimension (1D) 
without loss of generality, since the final result is independent of the spatial dimension.

3.2.1. Optimum Cn for Heun’s method
Heun’s method consists, here, in solving the initial value problem (for t � tn)

i ∂t φ = f (k, t;φ;Cn)
def= −i exp

[
i
2 k2 (t − tn)

]
F{ (V + Cn)ψ }, (18)

and

φ(k, t)
def= exp

[
i
2 k2 (t − tn)

]
F{ψ(x, t)}. (19)

Hereafter, for brevity, we denote

φn = φn(k)
def= φ(k, tn), ψn = ψn(x)

def= ψ(x, tn), Vn = Vn(x)
def= V (x, tn). (20)

At time t = tn+1, the first- and second-order (in hn) approximations of φ, respectively φ̃n+1 and φn+1, are

φ̃n+1 = φn + hn f (k, tn;φn;Cn), (21)

φn+1 = φn + 1
2 hn [ f (k, tn;φn;Cn) + f (k, tn + hn;φn + hn f (k, tn;φn;Cn);Cn) ] . (22)

The next time-step hn+1 is chosen using equation (17). For our equation, the difference between the first- and second-order 
approximations �φn+1

def= ∣∣φn+1 − φ̃n+1
∣∣ is such that

(�φn+1)
2 = 1

4 h 2
n | f (k, tn;φn;Cn) − f (k, tn + hn;φn + hn f (k, tn;φn;Cn);Cn) |2

= 1
4 h 2

n

∣∣∣ f (k, tn;φn;Cn) + i eik2hn/2×

F
{
(Vn+1 + Cn)F−1

{
e−ik2hn/2 (φn + hn f (k, tn;φn;Cn))

}}∣∣∣2
, (23)
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where Vn+1 = V (x, tn + hn). We note that the absolute value in (23) is of first-order in hn , as one can easily check with a 
Taylor expansion around hn = 0, so (�φn+1)

2 = O  
(
h 4

n

)
. More precisely, after some elementary algebra, one finds

(�φn+1)
2 = 1

4 h 4
n

∣∣∣F {
(Vn + Cn)

2 ψn

}
+ iF {∂t Vn ψn} + F {∂x Vn ∂xψn} (24)

+ 1
2 F {∂xx Vn ψn}

∣∣2 + O
(
h 5

n

)
,

which, defining

α(x, t;Cn)
def= (Vn + Cn)

2 ψn, β(x, t)
def= i ∂t Vn ψn + ∂x Vn ∂xψn + 1

2 ∂xx Vn ψn, (25)

can be rewritten as

(�φn+1)
2 = 1

4 h 4
n |F {α(Cn) + β}|2 + O

(
h 5

n

)
. (26)

Introducing the mean quadratic error

En(Cn)
def= 1

M

[M/2]−1∑
m=−[M/2]

�φ2
n+1(km, tn;Cn), (27)

substituting (26) into (27) and exploiting the definition of the discrete Fourier transform, one obtains (using Parseval theo-
rem)

En(Cn) = 1

M

[M/2]−1∑
m=−[M/2]

∣∣∣∣∣∣
[M/2]−1∑

�=−[M/2]

e−2iπm�/M(α�(Cn) + β�)

∣∣∣∣∣∣
2

1
4 h 4

n + O
(
h 5

n

)

=
[M/2]−1∑

�=−[M/2]

|α�(Cn) + β�|2 1
4 h 4

n + O
(
h 5

n

)
. (28)

The minimum of En(Cn), obtained from the equation dEn(Cn)/dCn = 0, is such that

[M/2]−1∑
�=−[M/2]

d |α�(Cn)|2
dCn

+ 2 Re

(
dα�(Cn)

dCn
β∗

�

)
= 0. (29)

Therefore, the optimum Ĉn providing the largest hn+1, in the case of Heun’s method, is a solution of (29).

3.2.2. Optimum Cn for generic embedded Runge–Kutta schemes
The optimum Cn for general embedded Runge–Kutta schemes can be obtained following the same principles illustrated 

above with the Heun algorithm. However, the algebraic calculations get rapidly very cumbersome, leading to expensive 
computations that, in most cases, exceeds the time gained with a larger step. Here, we sketch-out the procedure for generic 
embedded Runge–Kutta methods, considering solvers of order N with an embedded (N − 1)-order scheme (for other em-
bedded or extrapolation methods, the procedure is completely analogue). For a s-stage method, the error �φn+1 can be 
written as [28]

(�φn+1)
2 =

∣∣∣∣∣
s∑

�=1

d� w�

∣∣∣∣∣
2

, d�
def= as,� − b�, w�

def= hn f

(
k, tn + c� hn;φn +

�−1∑
r=1

a�,r wr;Cn

)
, (30)

where a�,r , b� and c� are the coefficients of the Butcher tableau which characterizes the integrator [28]. Using Taylor expan-
sions and un-nesting the scheme, it is possible to prove that a result with a similar structure compared with (26) is obtained. 
In this case, the number of stages s appears as exponent in the function α, which takes the form α(x, t; Cn) = (Vn +Cn)2s ψn . 
The function β , on the other hand, becomes explicitly dependent on Cn , involving a number of terms growing exponentially 
with s. For this reason, even though the exact result can always be achieved, the computational time needed to minimize 
the error (16) is often larger than the time gained with a larger step, especially for higher order schemes (s > 3). In the 
next section, we show how, for practical applications, an exact solution is not necessary to improve the algorithm, and (15)
represents a fast and accurate method.
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Fig. 1. Average time-step hav = 1
Nh

∑Nh
n=1 hn with a constant Cn for the IF method applied to the one dimensional NLS (left) and SN (right) equations.

Table 1
Comparisons for the SN and the NLS equations, in one and two spatial dimensions, 
between different values of Cn .

Eq. SN1D SN1D SN2D SN2D NLS1D NLS1D NLS2D NLS2D

C 0 C̃n 0 C̃n 0 C̃n 0 C̃n

N�t 20819 3871 8382 2682 6047 4781 754 690
T (s) 66.7 12.1 12856 4736 18.9 14.5 23769 22843

4. Numerical examples

Here, we consider numerical examples where we apply this method, focusing on both the SN and NLS equations solved 
with the Dormand and Prince 5(4) integrator [12] in one and two spatial dimensions. In all cases, we set open boundary 
conditions for the potential, while the initial conditions and the value of the physical parameters are chosen to be very 
close to regimes of physical interest, as described in [10,15,18]. Notice that, in the most general case, one should take into 
account the geometry of the domain and the nature of boundary conditions to calculate the potential V in the SN case. 
This operation is however straightforward in the considered examples, as we focused on rectangular domains using pseudo-
spectral methods. Details on the numerical simulations can be found in Appendix A. The gain factor provided by the method 
depends on the optimal value of Cn compared to the Cn = 0 case, which changes from case to case as a function of the 
boundary conditions for the potential and of the profile of the solution. Specifically, since the gain factor is evaluated with 
respect to the Cn = 0 case, the more the optimal value of Cn is far from zero, the larger the gain factor gets.

For the one-dimensional NLS, some analytical stationary solutions are known. We then use one of these solutions (see 
Appendix A) as initial condition. For all other cases (SN and NLS 2D), no such stationary solutions are known, so we use 
gaussian initial conditions.

In Fig. 1, we show the average time-step hav = ∑Nh
n=1 hn /Nh , for an entire simulation with Nh time steps, as a function of 

Cn for the one-dimensional SN and NLS equations. These plots are generated taking Cn constant for the entire simulations, 
in order to better appreciate the strong dependence of the time-step on the choice of the gauge for the potential. In Fig. 2, 
we report the result of simulations performed choosing the near optimal Cn = C̃n at each time-step. Note that, for the one-
dimensional NLS, the solution being stationary, hn and the optimum Cn do not change in time, that is not the case in 2D. 
We show the time-step hn as a function of time for the one-dimensional SN and NLS equations, comparing the Cn = 0 case 
with Cn = C̃n . In both cases, the time-step chosen by the algorithm with the optimisation of the gauge constant proves to 
be larger, compared to the Cn = 0 case. In Table 1, we show the number of time-loops N�t required to run each simulation 
and the time T needed to run the simulation (in seconds) for the cases Cn = 0 and C = C̃n . For NLS, in the one dimensional 
case we achieve roughly a 30% improvement in terms of speed gain between the C = 0 and C = C̃n cases, while in two 
dimensions the speed gain is only approximately 10% since, here, the value of C̃n is very close to zero. As long as the S N
equation is concerned, (15) proved to reduce remarkably both the number of time loops and the effective time for the total 
simulation, providing up to a factor 5 of improvement with respect to the Cn = 0 case in 1D and up to a factor 3 in 2D.

5. Conclusion

Exploiting a gauge condition on the potential, we optimized the integrating factor technique applied to the nonlinear 
Schrödinger and Schrödinger–Newton equations. Although the exact values of the piecewise constant Cn minimizing the 
error (16) (therefore maximizing the time-step) is in principle always possible to compute (e.g., with a computer algebra 
system), its expression depends on the particular numerical scheme chosen and it becomes complicated as the order of the 
method increases, resulting in a high computational cost. However, the near-optimal value obtained from the first approach 
334
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Fig. 2. Comparison between Cn = C̃n and Cn = 0 for time-step hn as a function of time, for the IF method applied to the NLS1D (top left), NLS2D (top right), 
SN1D (bottom left) and SN2D (bottom down).

we described, based on the minimization of the L2-norm of the nonlinear part of the equation, proved to be an accurate 
and efficient solution in the tested cases. Thus, being computationally extremely cheap and independent of the particular 
numerical scheme employed, this is the approach one should choose for most simulations, at least when the computation 
of N is not very expensive. For Schrödinger-like equations with hard to compute potentials, most of the computational time 
is spent in the calculation of N . For these very demanding equations, the extra cost needed to compute the optimum Ĉn

(instead of the near optimum C̃n) is negligible in comparison, so Ĉn could be preferable.
For the cases tested here, we found a speed-up in the computation time up to a factor 5, the speed-up depending on 

the equation and on the physical regime. These examples show that this approach provides significant speed improvements, 
that with minor modifications of the original algorithm. Though we focused on the nonlinear Schrödinger and Schrödinger–
Newton equations, the method principle is independent on the particular potential considered, so this approach can be 
extended to other Schrödinger-like equations. More generally, the idea behind the method presented in this note can be, at 
least in principle, generalized and extended to other equations with similar gauge conditions.

Appendix A. Numerical simulations

For the one-dimensional NLS, we considered the case g = −1 (see eqs. (1) and (3)) and we used ψ(x, t = 0) =√
2 sech

(√
2 x

)
as initial condition. We discretized the space with N = 2048 points, in a computational box of length 

L = 80. The two-dimensional NLS, which is often employed in optics to model self-focusing beams in a medium with a 
cubic non-linearity [19,30], presents a finite time (blow-up) singularity [26]. More specifically, whenever the initial con-
dition ψ0 satisfies E g = ∫

dr ψ0, 
(− 1

2 ∇2 + g
2 |ψ0|2

)
ψ∗

0 < 0, the norm of the solution, or of one of its derivatives, becomes 
unbounded in finite time. For this reason, we stop the simulation at tfin = 5, i.e., before the singularity occurs. We set 
ψ(r, t = 0) = e−r2/2/

√
π as initial condition and we consider the g = −6 case, for which the corresponding initial energy is 

E(g = −6) ≈ 0.02, hence quite close to the singular regime; for the spatial discretization we used L = 120 and N = 40962

(squared box with side L = 120 discretized with 4096 × 4096 nodes). For both the one and two dimensional SN equations, 
we set g = 500 and considered a Gaussian initial condition, ψ(x, t = 0) = N e−|x|2/2 where N is the normalisation factor, 
fixed such that 

∫
dx |ψ(x, t = 0)|2 = 1. The parameters of the spatial discretization are L = 20 and N = 2048 in 1D, while 

for the 2D case we set L = 20 and N = 10242. To solve the SN and the NLS equation we used the Dormand and Prince 5(4) 
integrator [12].
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