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The nonlinear Schrödinger and the Schrödinger–Newton equations model many phenomena in 
various fields. Here, we perform an extensive numerical comparison between splitting methods 
(often employed to numerically solve these equations) and the integrating factor technique, 
also called Lawson method. Indeed, the latter is known to perform very well for the nonlinear 
Schrödinger equation, but has not been thoroughly investigated for the Schrödinger–Newton 
equation. Comparisons are made in one and two spatial dimensions, exploring different boundary 
conditions and parameters values. We show that for the short range potential of the nonlinear 
Schrödinger equation, the integrating factor technique performs better than splitting algorithms, 
while, for the long range potential of the Schrödinger–Newton equation, it depends on the 
particular system considered.

1. Introduction

The nonlinear Schrödinger and the Schrödinger–Newton (also called Schrödinger–Poisson) equations describe a large number of 
phenomena in different physical domains. These equations are nonlinear variants of the Schrödinger one, which, in non-dimensional 
units, reads

i𝜕𝑡 𝜓 + 1
2 ∇

2𝜓 − 𝑉 𝜓 = 0, (1)

where 𝜓 is a function of space and time, ∇2 is the Laplace operator and 𝑉 is a function of 𝜓 , space and time.

For the nonlinear Schrödinger equation (hereafter NLS), the local nonlinear potential is

𝑉 = 𝑔 |𝜓|2, (2)

where 𝑔 is a coupling constant. For 𝑔 > 0 the interaction is repulsive, while it is attractive for 𝑔 < 0. The NLS equation describes 
various physical phenomena, such as Bose–Einstein condensates [1], laser beams in some nonlinear optical media [2], water wave 
packets [3], etc.

In the case of the Schrödinger–Newton (SN) equation, the potential is given by the Poisson equation

∇2 𝑉 = 𝑔 |𝜓|2, (3)
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where 𝑔 is a coupling constant, the interaction being attractive if 𝑔 > 0 and repulsive if 𝑔 < 0. It is therefore nonlinear and nonlocal, 
giving rise to collective phenomena [4], appearing for instance in optics [5–7], Bose–Einstein condensates [8], astrophysics and 
cosmology [9–11] and theories describing the quantum collapse of the wave function [12,13]. It is also employed as a model for 
conducting semi-classical cosmological simulations [14].

The SN equation takes a slightly different form when applied in cosmology [15]. Here, due to the expansion of the universe, the 
Poisson equation is modified [16] as

∇2 𝑉 = 𝑎−1 𝑔
(|𝜓|2 − 1

)
, (4)

where 𝑎(𝑡) is a scaling factor. The modification of the Poisson equation (4) ensures that the potential is finite in an infinite uni-

verse [15]. From a numerical perspective, when solving the Poisson equation in Fourier space, this term effectively eliminates the 
singularity associated with the 𝑘 = 0 mode.

These NLS and SN equations are special cases of the Gross–Pitaevskii–Poisson (GPP) equation

i𝜕𝑡 𝜓 + 1
2 ∇

2𝜓 − 𝑉1𝜓 − 𝑉2𝜓 = 0, ∇2𝑉1 = 𝑔1 |𝜓 |2 , 𝑉2 = 𝑔2 |𝜓 |2 . (5)

This equation appears in many fields, such as optics [17,18], Bose-Einstein condensates [19] and cosmology (to simulate scalar field 
dark matter) [20–22].

In order to solve the above equations, except for very special cases, numerical methods must be used. Two families of temporal 
numerical schemes are commonly used to solve the Schrödinger equation with a nonlinear potential: the integrating factor technique 
(generally attached with a Runge–Kutta scheme) and the Split-Step method. In this paper, we present an extensive comparison 
between integrating factor methods and splitting algorithms, considering both accuracy and computational speed. Comparisons are 
made exploring different types of boundary conditions, in one and two spatial dimensions, with parameters ranging in values close 
to many regimes of physical interest. The main reason for choosing these methods is that, in the literature, Split-Step solvers are 
commonly used to integrate both the SN and the NLS equations [23,24], while the integrating factor has been applied to integrate the 
NLS with very performing results [25,26]. A natural question, which is also the main motivation of this work, is how the integrating 
factor technique performs when considering the long range interactions of the SN system instead of short range ones of the NLS. We 
show that the integrating factor performs better than splitting algorithms for local interactions (such as the NLS). When a long range 
interaction (such as the one appearing in the SN equation) is considered, the relative performance between the integrating factor and 
splitting algorithms depends on the system.

The paper is organized as follows. In section 2, the methods of numerical time integration are described. Section 3 concerns 
detailed comparisons between Split-Step integrators (order 2, 4 and 6 with fixed time-step and order 4 with adaptive time-step) 
and standard algorithms with adaptive time-step belonging to the Runge–Kutta family [27–29] together with the integrating factor 
technique. Conclusions are drawn in section 4.

2. Numerical algorithms

In this section, we describe the different numerical methods used for the temporal resolution of the equations considered in the 
paper. First, we outline the integrating factor technique attached with an adaptive embedded scheme of arbitrary order. Then, we 
describe the Split-Step algorithm, with both fixed and adaptive time-step.

Spatial resolution are performed with pseudo-spectral methods. In particular, we rely on methods based on fast Fourier transform 
(FFT) due to their efficiency and accuracy [30].

2.1. Integrating factor

The integrating factor method can be applied to any differential equation of the form

i𝜕𝑡 𝜓 = 𝐹 (𝒓, 𝑡,𝜓) , 𝜓 = 𝜓 (𝒓, 𝑡) , (6)

where the right-hand side can be split into linear and nonlinear parts. This results in

i𝜕𝑡 𝜓 + 𝜓 =  (𝒓, 𝑡,𝜓) , (7)

where  is an easily computable (generally autonomous) linear operator and  def
= 𝐹 +𝜓 is the remaining (usually) nonlinear part. 

At the 𝑛-th time-step, with 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1], the change of dependent variable

𝜙
def
= exp

[
(𝑡− 𝑡𝑛) ]

𝜓 ⟹ i𝜕𝑡 𝜓 = exp
[
(𝑡𝑛 − 𝑡) ] (

i𝜕𝑡 𝜙 − 𝜙
)
, (8)

yields the equation

i𝜕𝑡 𝜙 = exp
[
(𝑡− 𝑡𝑛) ] . (9)

Note that this change of variable is such that 𝜙 = 𝜓 at 𝑡 = 𝑡𝑛. By selecting an appropriate operator , it is possible to significantly 
259

mitigate the stiffness in (7). Consequently, during the time interval 𝑡 ∈ [𝑡𝑛; 𝑡𝑛+1], it is possible to obtain a satisfactory approximation 
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of equation (9) using algebraic polynomials. As a result, conventional time-stepping techniques prove to be effective in efficiently 
solving (9). Here, we focus on adaptive Runge–Kutta methods [29,31].

As explained in [32], it is possible to further improve and optimize the integrating factor method. The details of this improved 
version of the integrating factor technique are illustrated in Appendix A. We perform our numerical tests using this optimized version 
of the integrating factor technique, which hereafter is denoted as IFC.

2.1.1. Application to the Schrödinger equation

Applying these methods to the Schrödinger equation (1) is a simple and direct process. Specifically, for the SN and NLS equations, 
the Laplacian term is a linear operator while the potential 𝑉 is a nonlinear operator. When transitioning into Fourier space in the 
positional domain, the equation transforms into

i𝜕𝑡 �̂� − 1
2 𝑘

2 �̂� − 𝑉 𝜓 = 0, (10)

where symbols represented by ‘hats’ indicate that the Fourier transforms pertain to the underlying quantity, while ‘k’ is defined as 
the magnitude of the vector ‘k,’ referred to as the wavenumber. Hence, the system has been structured in a way that makes the 
application of the integrating factor technique straightforward. With the change of variable 𝜙(𝒌, 𝑡) = �̂�(𝒌, 𝑡) ei𝑘2(𝑡−𝑡0)∕2, one obtains

𝜕𝑡 𝜙 = −iei𝑘2(𝑡−𝑡0)∕2 𝑉 𝜓 . (11)

In order to perform our numerical tests, we use the Dormand and Prince 5(4) [27] and Tsitouras 5(4) [28] integrators. Both 
schemes are Runge–Kutta pairs of order 5(4). However, we observe a speed difference between these solvers of maximum 10%, 
depending on the simulated system. For this reason, we choose for each case the fastest of the two: specifically for NLS and the 
periodical SN equations we use the Dormand and Prince scheme, while in all the other cases we rely on Tsitouras’ one. The higher-

order Fehlberg 7(8) integrator [29] is also used as reference solutions for accuracy comparisons (see section 3.1).

2.2. Split-Step methods

The Split-Step method [33] performs the temporal resolution of the Schrödinger equation separating the linear terms from the 
nonlinear ones, in a different manner compared with the integrating factor. Writing the equation as

i𝜕𝑡 𝜓 = 𝐻 𝜓, (12)

𝐻 = −1
2∇

2 + 𝑉 being the Hamiltonian operator, the formal solution is

𝜓(𝒓, 𝑡) = exp
⎛⎜⎜⎝−i

𝑡

∫
𝑡𝑛

𝐻 d𝑡
⎞⎟⎟⎠𝜓(𝒓, 𝑡𝑛), 𝑡 ∈ [𝑡𝑛; 𝑡𝑛+1]. (13)

Except for very few cases, the result of the operator exp
(
−i∫ 𝑡

𝑡𝑛
𝐻 d𝑡

)
applied to 𝜓(𝒓, 𝑡𝑛) is unknown. Nevertheless, for 𝑡 ∈ [𝑡𝑛; 𝑡𝑛+1], 

it is possible to approximate exp
(
−i∫ 𝑡

𝑡𝑛
𝐻 d𝑡

)
as a product of exponentials, each one involving either the potential or the Laplacian 

term, with appropriate coefficients. For example, the approximation corresponding to the Split-Step method of order 2 is

e− ∫ 𝑡
𝑡𝑛
i𝐻 d𝑡 = e−i𝐾(𝑡−𝑡𝑛)∕2 e− ∫ 𝑡

𝑡𝑛
i𝑉 d𝑡 e−i𝐾(𝑡−𝑡𝑛)∕2 + 𝑂

(
(𝑡− 𝑡𝑛)2

)
, (14)

where 𝐾 = −1
2∇

2.

At higher orders, the approximation of the operator exp
(
−i∫ 𝑡

𝑡𝑛
𝐻 d𝑡

)
is known as Suzuki-Trotter expansion [34]. It is generally 

more complicated than (14) and not unique, which can be determined with the Baker–Campbell–Hausdorff formula [24]. For our 
numerical tests, we consider the Split-Step of orders 2, 4 and 6, whose pseudo-codes are listed in Appendix B.

It is possible to design an adaptive time-step scheme with Split-Step methods. Here, we consider an adaptive embedded splitting 
pair [35] of order 4(3). This algorithm is characterized by a fourth-order splitting solver derived by Blanes and Moan [36] embedded 
with third order scheme constructed by Thalhammer and Abhau [35,23]. The pseudo-code for this algorithm, hereafter denoted 
“SSa”, is described in Appendix B.

3. Numerical comparison of the different time-integrators

In this section, we compare the efficiencies of the methods previously described. The comparisons focus on speed and accuracy 
of each algorithm, simulating systems with different potentials, boundary conditions and physical regimes. Speed is measured with 
the total time needed to run each simulation, which represents the time duration measured from the initiation of the simulation at 
𝑡 = 0 until it reaches the specified final time, 𝑡𝑓𝑖𝑛. To ensure accuracy and reliability, all experiments were conducted on the same 
computing cluster. We mitigated potential fluctuations in CPU performance by averaging the time measurements over 10 independent 
runs of each simulation. First, we outline the different estimators employed to determine the accuracy of each numerical integrator. 
260

Then, we list and summarize the results for every equations considered, in one and two spatial dimensions. We start with the 
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NLS equation which is used as benchmark, since an analytical solution is known in the one dimensional case. Then we switch to 
the SN equation with both open and periodic boundary conditions. Finally, we present the results for the two dimensional Gross–

Pitaevskii–Poisson equation, which can be considered as a hybrid version of the SN and NLS systems.

3.1. Estimators of the accuracy of the time-integration algorithms

The accuracy of each time-integration algorithm is estimated looking at three different indicators:

1. The energy conservation. The energy 𝐸 is a constant of motion for the Schrödinger equation. For the NLS and SN equations, it 
is defined as

𝐸 = 1
2 ∫ d𝒓𝜓∗ (−∇2 + 𝑉 )𝜓. (15)

Using the initial energy as reference, the error on the energy conservation is

Δ𝐸𝑖 =
||||𝐸(𝑡𝑖)
𝐸(𝑡0)

− 1
|||| , (16)

where 𝑡0 is the initial time and 𝑡𝑖 denotes the 𝑖-th time-step of the numerical integration. This error being (in general) time-

dependent, we consider the error

Δ𝐸 =max
𝑖

[
Δ𝐸𝑖

]
, (17)

the latter being the maximal difference with respect to the initial value, during the whole simulation.

2. Another constant of motion for the considered equation, is the mass,

𝑀 = ∫ d𝒓 |𝜓|2. (18)

This quantity is automatically conserved with machine precision when using splitting algorithms, while it is not in general the 
case with the integrating factor. For this reason, when the latter technique is employed, we impose mass conservation at each 
time-step, multiplying the solution 𝜓 by 𝑀0∕ ∫ d𝒓 |𝜓|2, where 𝑀0 is the initial mass.

3. The error on the solution performing time reversion tests. This quantity is obtained running a simulation up to a given time 𝑡f in, 
then reversing the time and evolving back to the initial instant. The error is monitored using the 𝐿∞-norm of the difference 
between the solution at the initial time, at beginning of the simulation and at the end of it. Denoting the “backward” solution 
by 𝜓backward, one has

Δ𝜓rev = max
𝑖

( ||𝜓(𝑥𝑖, 𝑡0) − 𝜓backward(𝑥𝑖, 𝑡0) || ) . (19)

4. The two estimators above favorize a priori time-splitting algorithms because they are symplectic and reversible, whereas the 
integrating factor is not. For this reason, we also compare the result of the simulations with a “reference one”, very accurate, 
using an adaptive Fehlberg integrator of order 7 embedded within an order 8 scheme, with a very small tolerance, tol = 10−14. 
Defining this estimator as Δ𝜓ref , one has

Δ𝜓ref = max
𝑖

( |||𝜓(𝑥𝑖, 𝑡𝑓 ) − 𝜓F7(8)(𝑥𝑖, 𝑡f in)
||| ) , (20)

where 𝜓 is the numerical solution provided by the particular method considered and 𝜓F7(8) is the one outputted by the Fehlberg 
7(8) integrator.

3.2. 1D nonlinear Schrödinger equation

We first consider the case of the one dimensional NLS

i𝜕𝜓
𝜕𝑡

+ 1
2
𝜕2𝜓

𝜕𝑥2
+ |𝜓|2 𝜓 = 0, (21)

which admits a simple analytical solution

𝜓(𝑥, 𝑡) =
√
2 sech

(√
2𝑥

)
exp(i 𝑡). (22)

We present a set of simulations in order to compare the Split-Step integrators with the IFC, looking at the energy conservation error, 
the error on the solution and the total time needed to run each simulation. In these simulations, the space is discretized with 𝑁 = 2048
points, in a domain of length 𝐿 = 80 and the analytical solution at 𝑡 = 0 is used as initial condition. The results are summarized in 
Table 1. We observe that the IFC solver is the fastest one by at least a factor 2, presenting at the same time the best results to all the 
indicators: it uses a larger time-step, presents equal or better energy conservation, returns only a slightly worse Δ𝜓rev and it is one 
261

of the best comparing to the reference simulation.
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Table 1

Comparison for the 1D NLS equation between the IFC method and the Split-Step 
solvers. 𝑇 is the total time required to run each simulation, measured in seconds. 
The Δ𝑡 for adaptive algorithms is the averaged one.

Method Δ𝑡 Δ𝐸 Δ𝜓rev Δ𝜓ref 𝑇 (𝑠)

SS2 10−3 7.5 ⋅ 10−13 6.3 ⋅ 10−10 1.1 ⋅ 10−4 86.7

SS4 5 ⋅ 10−3 10−15 8.2 ⋅ 10−10 5.8 ⋅ 10−7 38.1

SS6 2 ⋅10−2 10−15 2.0 ⋅ 10−10 3.7 ⋅ 10−9 29.3

SSa, tol = 10−6 2.1 ⋅ 10−2 1.6 ⋅ 10−12 3.5 ⋅ 10−10 6.5 ⋅ 10−10 34.0

IFC, tol = 10−9 2.1 ⋅ 10−2 10−15 1.2 ⋅ 10−9 7.8 ⋅ 10−10 14.5

Fig. 1. Snapshots of the modulus of the solution of the 1D SN equation |𝜓|. The left plot is the initial condition, center plot and right plot correspond to the solution 
at the end of the simulation for 𝑔 = 10 and 𝑔 = 500 respectively.

Table 2

Comparison for the 1D SN equation between the IFC method and the Split-Step solvers. 
The SSa simulations and IFC have been performed with a tolerance tol = 10−7 and tol =
10−10 respectively for 𝑔 = 10 and tol = 10−6 and tol = 10−10 respectively for 𝑔 = 500. 
The Δ𝑡 for adaptive algorithms is the averaged one. 𝑇 is the total time required to run 
each simulation, measured in seconds.

g Method Δ𝑡∕𝑡dyn Δ𝐸 Δ𝜓rev Δ𝜓ref 𝑇 (𝑠)

10 SS2 3.1 ⋅ 10−4 5.5 ⋅ 10−10 4.5 ⋅ 10−11 4.5 ⋅ 10−9 123.3

SS4 6.3 ⋅ 10−3 2.9 ⋅ 10−12 2.5 ⋅ 10−12 5.5 ⋅ 10−11 11.1

SS6 6.3 ⋅ 10−2 1.5 ⋅ 10−13 4.0 ⋅ 10−12 1.1 ⋅ 10−11 3.5

SSa 4.3 ⋅ 10−2 4.2 ⋅ 10−12 8.5 ⋅ 10−11 5.9 ⋅ 10−11 6.4

IFC 2.2 ⋅10−2 1.8 ⋅ 10−12 1.3 ⋅ 10−10 3.3 ⋅ 10−11 5.0

500 SS2 10−5 6.0 ⋅ 10−9 1.1 ⋅ 10−10 5.2 ⋅ 10−8 120.0

SS4 5 ⋅ 10−4 2.5 ⋅ 10−9 4.9 ⋅ 10−12 1.3 ⋅ 10−7 5.4

SS6 2 ⋅ 10−3 1.8 ⋅ 10−10 2.8 ⋅ 10−11 7.6 ⋅ 10−8 3.5

SSa 3.2 ⋅ 10−2 1.0 ⋅ 10−10 6.4 ⋅ 10−8 2.9 ⋅ 10−8 6.7

IFC 5.4 ⋅ 10−3 1.8 ⋅ 10−9 2.3 ⋅ 10−8 1.5 ⋅ 10−8 11.9

3.3. 1D Schrödinger–Newton equation

We now focus on the SN system, starting from the case of a single spatial dimension,

i 𝜕 𝜓
𝜕𝑡

+ 1
2
𝜕2𝜓

𝜕𝑥2
− 𝑉 𝜓 = 0, 𝜕2 𝑉

𝜕𝑥2
= 𝑔 |𝜓|2 . (23)

The solutions of (23) depend on the initial condition and on the single parameter 𝑔. The chosen initial condition is 𝜓(𝑥, 𝑡 = 0) =
exp(−𝑥2∕2)∕ 4

√
𝜋. The potential 𝑉 is calculated using Hockney’s method [37]. We perform a set of tests with different values of the 

parameter 𝑔, corresponding to different physical regimes. The case 𝑔 = 10 corresponds to a system in the quantum regime, i.e., with 
an associated De Broglie wavelength of the order of the size of the system, while 𝑔 = 500 corresponds to a system closer to the semi-

classical regime, with an associated De Broglie wavelength about 20 times smaller than the size of the system. The typical evolution 
of this system is characterized by the initial condition which oscillates, exhibiting a complex dynamics. This is particularly visible 
in the semi-classical regime, in which high frequency oscillations appear in the wavefunction, as shown in Fig. 1. The simulation 
is run in a domain of length 𝐿 = 80, discretized into 𝑁 = 2048 points in the 𝑔 = 10 case, while for 𝑔 = 500 we set 𝐿 = 20 and 
𝑁 = 2048 (Fig. 2). The characteristic time of dynamics is defined as 𝑡dyn = |𝑔|−1∕2. In Table 2, we compare the Split-Step integrators 
with the IFC, looking at the energy conservation error, the error on the solution and the total time needed to run each simulation. 
Here, splitting methods proved to be faster than the integrating factor. In addition, the SS4 and SS6 performed better than the 
adaptive integrators. This is due the fact that, for this particular system, the extra computational cost due to the implementation of 
262

the adaptive-step is not fully compensated by the time-gain in terms of computational speed. Indeed, splitting algorithms with fixed 
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Fig. 2. Comparison for the 1D SN equation between the time-step and the error on the energy conservation for the IFC method and the Split-Step solvers for both the 
cases 𝑔 = 10 (upper plots) and 𝑔 = 500 (lower plots). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

time-step require a smaller number of computational operations to be implemented. For this reason, here, choosing a “proper” fixed 
time-step still results in a slightly faster numerical integration compared to an adaptive scheme.

3.3.1. Periodical case

We now switch to another version of the SN system, which has important applications in cosmology in order to simulate the 
formation of large-scale structures in the universe (4). We take 𝑎 = 1, which in cosmology corresponds to the case of a static universe 
[38]; we do not expect modifications of our conclusions for different cosmological models. In one dimension the equations read

i 𝜕 𝜓
𝜕𝑡

+ 1
2
𝜕2𝜓

𝜕𝑥2
− 𝑉 𝜓 = 0, (24a)

𝜕2 𝑉

𝜕𝑥2
= 𝑔 (|𝜓|2 − 1), (24b)

where the wavefunction |𝜓|2 is normalized to unity. The potential 𝑉 is obtained calculating the inverse of the Laplacian in Fourier 
space and transforming back the result to real space. We take “cold” initial conditions (see [39,40]), namely,

𝜓(𝑥, 𝑡 = 0) =
√
𝜌0 + 𝛿𝜌(𝑥) exp(i𝜃(𝑥)), (25)

where 𝜃 is a function whose gradient is proportional to the initial velocity field (set to zero for simplicity), 𝜌0 is the background 
constant density and 𝛿𝜌(𝑥) is the density fluctuations, generated as

𝛿𝜌(𝑥) = −1
[
𝑅(𝑘)

√
𝑃 (𝑘)

]
, (26)

where 𝑅(𝑘) is a Gaussian random field, with zero average and unity variance. The function 𝑃 (𝑘) is called Power Spectrum, and it is 
defined as

𝑃 (𝑘) = 1
𝐿𝑑

|||𝛿𝜌(𝑘) |||2 , (27)

corresponding to the initial density fluctuations one wants to generate. The initial conditions are numerically initialized applying an 
additional filter 𝐹 (𝑘) in Fourier space with the aim of setting to zero all the modes corresponding to a space scale comparable (or 
smaller) than the grid-step(( ) )
263

𝐹 (𝑘) = sech 𝑘∕𝑘𝐹
10

, (28)
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Fig. 3. Snapshots of the modulus squared of the solution of the 1D SN equation (periodical case) |𝜓|2 .

Fig. 4. Comparison for the 1D SN equation (periodical case) between the time-step (left plot) and the error on the energy conservation (right plot) for the IFC method 
and the Split-Step solvers.

Table 3

Comparison for the 1D SN equation (periodical case) between the IFC method and 
the Split-Step solvers. 𝑇 is the total time required to run each simulation, measured 
in seconds. The Δ𝑡 for adaptive algorithms is the averaged one.

Method Δ𝑡∕𝑡dyn Δ𝐸 Δ𝜓rev Δ𝜓ref 𝑇 (𝑠)

SS2 10−5 1.6 ⋅ 10−8 8.3 ⋅ 10−9 8.5 ⋅ 10−10 276.5

SS4 3 ⋅ 10−3 1.9 ⋅ 10−8 1.3 ⋅ 10−9 1.5 ⋅ 10−11 1.8

SS6 7 ⋅ 10−3 1.1 ⋅ 10−8 1.1 ⋅ 10−8 3.1 ⋅ 10−11 2.3

SSa, tol = 10−9 5.8 ⋅ 10−3 2.3 ⋅ 10−9 3.3 ⋅ 10−9 1.2 ⋅ 10−11 4.3

IFC, tol = 10−12 6.7 ⋅ 10−3 1.1 ⋅ 10−8 1.8 ⋅ 10−10 6.7 ⋅ 10−11 1.3

with 𝑘𝐹 = 𝑘𝑁∕8, where 𝑘𝑁 is the Nyquist wavelength, defined as 𝑘𝑁 = 𝑁

2𝐿 . Thus, the initial condition is

𝜓(𝑥, 𝑡 = 0) = −1
[
𝐹 (𝑘) [√

𝜌0 + 𝛿𝜌(𝑥)
] ]

. (29)

In the simulations, space is discretized with 𝑁 = 1024 points, in a domain of length 𝐿 = 1 and a constant power spectrum is 
used as initial condition. We show the simulation results in the semi-classical regime. The latter corresponds to large values of the 
parameter 𝑔, as one has 𝑔 ∝ ℏ−2. Specifically, we take 𝑔 = 106 (we do not observe differences in the performance in the quantum 
regime, i.e., for smaller values of 𝑔) and 𝜌0 = 1.

In Fig. 3, the typical evolution of the system in the cosmological context is shown: the initial condition is spatially homogeneous 
with small fluctuations. The fluctuations grow due to gravitational interactions, up to be dominated by the finite size of the simulation 
box. The characteristic time of dynamics is defined as 𝑡dyn = |𝑔|−1∕2. In Fig. 4, the Split-Step integrators are compared with the IFC. 
We observe for 𝑡 ≳ 5𝑡dyn that the time-step decreases; this is due to the fact that the dynamics switches from a regime where the 
largest scales are still linear, to a regime where all the scales are nonlinear [15]. It indicates that the integrating factor is particularly 
efficient in the weakly nonlinear regime, which is the regime of interest in cosmological simulations. The Split-Step integrators 
(except SS2) are observed to perform in the same manner in the weakly non-linear and strongly non-linear regime. We observe 
that IFC outperforms the tested Split-Step integrators in the first regime, whereas, in the second one it becomes equally efficient 
compared to the split-step methods. This is consistent with the observation of Sect. 3.3: since the dynamics corresponds to a highly 
nonlinear regime, the Split-Step method performs better than the IFC one in this case. Looking to Table 3, it is clear that (for the 
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whole simulation of this system) the IFC is the most efficient integration method.



Applied Numerical Mathematics 197 (2024) 258–271M. Lovisetto, D. Clamond and B. Marcos

Fig. 5. Comparison for the 2D NLS equation between the time-step (left panel) and the error on the energy conservation (right panel) for the IFC method and the 
Split-Step solvers. The top row corresponds to the 𝑔 = −1 case while the bottom row to 𝑔 = −6. The last time-step is chosen in such a way that the final time is the 
same in all simulations, in order to ensure that Δ𝜓rev and Δ𝜓ref are evaluated properly, which explain the step which appears for the last time point in Δ𝑡.

3.4. 2D nonlinear Schrödinger equation

In the 2D NLS case, one has

i𝜕𝑡 𝜓 + 1
2 ∇

2𝜓 − 𝑔 |𝜓|2 𝜓 = 0. (30)

The dynamics of (30) presents a finite time singularity: it can be proven [41] that there exists a finite time when the norm 
of the solution or of one of its derivatives becomes infinity. This happens whenever the initial condition 𝜓0 satisfies 𝐸𝑔 =
1
2 ∫ d𝒓𝜓0

(
𝑔 ||𝜓0||2 − ∇2

)
𝜓∗
0 < 0. The initial condition is taken as 𝜓(𝒓, 𝑡 = 0) = e−𝑟2∕2∕

√
𝜋 and we study the cases 𝑔 = −1 and 𝑔 = −6

with respective initial energies 𝐸𝑔=−1 ≈ 0.42 and 𝐸𝑔=−6 ≈ 0.02. Thus, the latter is associated with an initial energy closer to the 
singular regime than the former. The simulation is run in a box of side 𝐿 = 80, discretized into 𝑁 = 1024 ×1024 points in the 𝑔 = −1
case, while for 𝑔 = −6 we set 𝐿 = 120 and 𝑁 = 4096 × 4096. The characteristic time of dynamics is defined as 𝑡dyn = |𝑔|−1∕2.

Split-Step integrators are compared with the IFC, looking at the energy conservation error, the error on the solution and the total 
time needed to run each simulation. The results are illustrated in Fig. 5 and Table 4. The gain factor between splitting algorithms 
and the IFC method depends on the value of 𝑔. However, in both cases, the optimized integrating factor proved to be more efficient.

3.5. 2D Schrödinger-Newton equation

In the 2D SN case, one has

i𝜕𝑡 𝜓 + 1
2 ∇

2𝜓 − 𝑉 𝜓 = 0, ∇2𝑉 = 𝑔 |𝜓|2 . (31)

Similarly to the one dimensional case, we use a Gaussian initial conditions 𝜓(𝒓, 𝑡 = 0) = e−𝑟2∕2∕
√
𝜋 and two values of the coupling 

constant, 𝑔 = 10 and 𝑔 = 500. The former corresponds to a system in the quantum regime and the latter is closer to the semi-classical 
one. The potential 𝑉 , as in the 1D case, is calculated using the Hockney method [37]. The simulation is run in a box of side 𝐿 = 40, 
discretized into 𝑁 = 10242 points in the 𝑔 = 10 case, while for 𝑔 = 500 we set 𝐿 = 20 and 𝑁 = 1024 × 1024, the characteristic time 
of dynamics is defined as 𝑡dyn = |𝑔|−1∕2.

In Table 5 and Fig. 6, we compare the Split-Step and the IFC integrators, looking at the energy conservation error, the error on 
the solution and the total time needed to run each simulation.

For the 2D Schrödinger–Newton equation, adaptive splitting algorithms proved to be as efficient as the IFC. Similarly to the 
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one-dimensional case, also here the SS6 split-step algorithm with constant time-step resulted to be the fastest among the ones we 
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Table 4

Comparisons for the 2D NLS equation between different methods for the Dormand 
and Prince integrator. The Δ𝑡 for adaptive algorithms is the averaged one. 𝑇 is the 
total time required to run each simulation, measured in seconds. The tolerances of the 
integrator SS4(3) is tol = 10−6 and tol = 10−10 for the IFC.

g Method Δ𝑡∕𝑡dyn Δ𝐸 Δ𝜓rev Δ𝜓ref 𝑇 (𝑠)

-1 SS2 10−3 3.3 ⋅ 10−8 4.5 ⋅ 10−8 5.0 ⋅ 10−10 6939

SS4 2 ⋅ 10−2 1.1 ⋅ 10−9 3.5 ⋅ 10−13 7.0 ⋅ 10−11 830

SS6 10−1 4.5 ⋅ 10−11 2.5 ⋅ 10−14 6.2 ⋅ 10−11 445

SSa 2.3 ⋅ 10−1 7.0 ⋅ 10−10 3.0 ⋅ 10−10 2.5 ⋅ 10−11 267

IFC 1.7 ⋅ 10−1 4.5 ⋅ 10−10 3.0 ⋅ 10−10 1.6 ⋅ 10−11 169

-6 SS2 2.5 ⋅ 10−4 8.8 ⋅ 10−7 1.4 ⋅ 10−11 7.9 ⋅ 10−7 405012

SS4 2.5 ⋅ 10−3 6.3 ⋅ 10−9 2.5 ⋅ 10−12 3.7 ⋅ 10−9 82891

SS6 2.5 ⋅ 10−2 1.7 ⋅ 10−9 1.6 ⋅ 10−12 1.8 ⋅ 10−9 24453

SSa 2.8 ⋅ 10−2 6.5 ⋅ 10−9 1.4 ⋅ 10−10 5.4 ⋅ 10−9 29117

IFC 1.8 ⋅ 10−2 2.3 ⋅ 10−9 3.5 ⋅ 10−9 9.4 ⋅ 10−9 22843

Table 5

Comparison for the 2D SN equation between the IFC method and the Split-Step solvers. 
The Δ𝑡 for adaptive algorithms is the averaged one. The tolerance for the SSa algo-

rithm is tol = 10−6 and tol = 10−7 for 𝑔 = 10 and 𝑔 = 500 respectively, and for the IFC 
algorithm tol = 10−10 and tol = 10−12 for 𝑔 = 10 and 𝑔 = 500 respectively.

g Method Δ𝑡∕𝑡dyn Δ𝐸 Δ𝜓rev Δ𝜓ref 𝑇 (𝑠)

10 SS2 3.2 ⋅ 10−3 1.8 ⋅ 10−8 3.5 ⋅ 10−12 1.0 ⋅ 10−7 9070

SS4 6.3 ⋅ 10−2 6.0 ⋅ 10−10 1.4 ⋅ 10−11 3.8 ⋅ 10−8 959

SS6 1.9 ⋅ 10−1 4.6 ⋅ 10−11 1.6 ⋅ 10−7 4.1 ⋅ 10−8 932

SSa 1.7 ⋅ 10−1 4.7 ⋅ 10−11 1.4 ⋅ 10−7 3.9 ⋅ 10−8 1174

IFC 8.4 ⋅ 10−2 1.3 ⋅ 10−10 5.8 ⋅ 10−8 2.9 ⋅ 10−8 1172

500 SS2 2.2 ⋅ 10−4 2.0 ⋅ 10−8 3.1 ⋅ 10−10 9.1 ⋅ 10−8 84030

SS4 4.5 ⋅ 10−3 5.6 ⋅ 10−10 2.8 ⋅ 10−11 7.0 ⋅ 10−9 8401

SS6 2.2 ⋅ 10−2 6.1 ⋅ 10−12 9.1 ⋅ 10−11 4.1 ⋅ 10−9 5143

SSa 2.1 ⋅ 10−2 1.9 ⋅ 10−11 2.0 ⋅ 10−11 3.9 ⋅ 10−9 6676

IFC 9.1 ⋅ 10−3 7.5 ⋅ 10−11 3.0 ⋅ 10−10 1.6 ⋅ 10−9 6637

tested. This is due to the same reasons mentioned in section 3.3. Note that, here, the performance gap between the integrating factor 
and splitting algorithms is smaller than in the one-dimensional case. Indeed, as the dynamics gets more complicated and the number 
of spatial dimensions increase, algorithms with adaptive time-step shall always be preferred.

3.5.1. Periodical case

For the 2D periodical case, we run simulations in a box of side 𝐿 = 1 with 𝑁 = 1024 × 1024, using again a constant power 
spectrum as initial condition with 𝑔 = 106, 𝜌0 = 1 and a zero initial velocity field. In Fig. 7 some snapshots of the modulus squared 
of the solution are shown, expressing time in units of 𝑡dyn = 1∕

√
𝑔.

In Table 6 and Fig. 8, we compare the Split-Step and IFC integrators, looking at the energy conservation error, the error on the 
solution and the total time needed to run each simulation. We obtain the same result than in one dimension, with the IFC being the 
most efficient method.

3.6. Gross–Pitaevskii–Poisson equation

We conclude by presenting the results for the 2D Gross–Pitaevskii–Poisson equation, which is a combination of the NLS and SN 
equations

i𝜕𝑡 𝜓 + 1
2 ∇

2𝜓 − 𝑉 𝜓 = 0, 𝑉 = 𝑉1 + 𝑉2, ∇2𝑉1 = 𝑔1 |𝜓 |2 , 𝑉2 = 𝑔2 |𝜓 |2 .
Based on the results presented so far, in the case of open boundary conditions, one expects the split-step or the integrating factors to 
outperform one the other, depending on the values of 𝑔1 and 𝑔2. We set them to 𝑔1 = −3 and 𝑔2 = 100 which are very close to the one 
typically employed when simulating the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction [21]. 
The numerical parameters are 𝑁 = 2048 × 2048, 𝐿 = 40 and 𝑡𝑓 = 5 while the initial condition is a Gaussian, 𝜓(𝒓, 𝑡 = 0) = e−𝑟2∕2∕

√
𝜋. 

In Table 7 comparisons between the most efficient methods tested for the NLS (IFC method) and the SN in the non-periodical 
case (SS6 or SSa, depending on the parameters) are shown. We checked that the SS6 method continues to demonstrate superior 
performance compared to SS2 and SS4, as shown in all the other 2D cases. We observe that for our particular initial condition, and 
266

values of 𝑔1 and 𝑔2, the IFC method outperforms the split-step solvers.
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Fig. 6. Comparison for the 2D SN equation between the time-step and the error on the energy conservation with the IFC method and the Split-Step solvers for both 
the cases 𝑔 = 10 (upper plots) and 𝑔 = 500 (lower plots).

Fig. 7. Snapshots of the modulus squared of the solution of the 2D SN equation (periodical case) |𝜓|2 .

4. Conclusion

We studied the numerical resolution of the nonlinear Schrödinger (NLS) and the Newton–Schrödinger (SN) equations using the 
optimized integrating factor (IFC) technique. This method was compared with splitting algorithms. Specifically, for the integrating 
factor, we tested fifth-order time-adaptive algorithms, while, for the Split-Step family, we focused on second-, fourth- and sixth-order 
schemes with fixed time-step, and a fourth-order algorithm with adaptive time-step. We performed extensive tests with systems in 
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one and two spatial dimensions, with open or periodic boundary conditions.
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Table 6

Comparison for the 2D SN equation (periodical case) between the IFC method and 
the Split-Step solvers. 𝑇 is the total time required to run each simulation, measured 
in seconds. The Δ𝑡 for adaptive algorithms is the averaged one.

Method Δ𝑡∕𝑡dyn Δ𝐸 Δ𝜓𝑟𝑒𝑣 Δ𝜓𝑟𝑒𝑓 𝑇 (𝑠)

SS2 10−4 1.8 ⋅ 10−8 4.5 ⋅ 10−9 1.0 ⋅ 10−5 31711

SS4 3 ⋅ 10−3 4.2 ⋅ 10−8 3.1 ⋅ 10−6 5.3 ⋅ 10−6 2485

SS6 7 ⋅ 10−3 3.5 ⋅ 10−8 4.5 ⋅ 10−10 5.1 ⋅ 10−6 3046

SSa, tol = 10−7 7.5 ⋅ 10−3 2.3 ⋅ 10−7 8.5 ⋅ 10−7 1.2 ⋅ 10−6 3362

IFC, tol = 10−12 5 ⋅ 10−3 9.5 ⋅ 10−8 4.6 ⋅ 10−6 8.9 ⋅ 10−7 2232

Fig. 8. Comparison for the 2D SN equation (periodical case) between the time-step (left plot) and the error on the energy conservation (right plot) for the IFC method 
and the Split-Step solvers.

Table 7

Comparison for the 2D Gross–Pitaevskii–Poisson equation between the IFC and the 
Split-Step methods. 𝑇 is the total time required to run each simulation, measured in 
seconds.

Method Δ𝑡 Δ𝐸 Δ𝜓rev Δ𝜓ref 𝑇 (𝑠)

SS6 2.5 ⋅ 10−3 1.2 ⋅ 10−9 4.5 ⋅ 10−11 4.5 ⋅ 10−8 32753

SSa, tol = 10−7 4 ⋅ 10−3 2.4 ⋅ 10−11 2.2 ⋅ 10−8 1.4 ⋅ 10−8 63315

IFC, tol = 10−11 2 ⋅ 10−3 7.7 ⋅ 10−10 6.2 ⋅ 10−8 2.3 ⋅ 10−8 28273

The comparisons between the results obtained in the tested cases, show that the IFC method can be more efficient than splitting 
algorithms, especially in the NLS equation and periodical SN equation cases. For the SN equation in the non-periodical case on the 
other hand, splitting algorithms proved to be more efficient, even though the optimized integrating factor provided competitive 
results in terms of both speed and accuracy. Moreover, the results obtained for the Gross–Pitaevskii–Poisson equation pointed out 
how, for the particular values of the parameters we tested, the presence of a short-range interaction term puts the integrating factor 
method in a clear more performing position.

Finally, the achieved results indicate how, among the splitting algorithms at fixed step, working with higher order solvers is 
always more efficient. In particular the Split-Step order 6 proved to be around 10 times faster compared with the lower order ones, 
while conserving the energy with the same error.

Appendix A. Optimized integrating factor

The optimized version of the integrating factor is based on the property that, for the Schrödinger equation, if the value of the 
potential 𝑉 is modified by an additive constant , only the phase of the solution 𝜓 is changed. Indeed, if 𝜓 is a solution of (1) at a 
given time 𝑡, then Ψ 

def
= 𝜓 e−i 𝑡 is a solution of

i𝜕𝑡Ψ + 1
2 ∇

2Ψ − (𝑉 + ) Ψ = 0, (A.1)

as it can be easily verified. Thus, adding a constant 𝑛 to 𝑉 , the solution is modified as

𝜓(𝑡𝑛) → 𝜓(𝑡𝑛) e−i𝜑, 𝜑
def
=

𝑁ℎ∑
𝑛=0

𝑛 ℎ𝑛, (A.2)
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where ℎ𝑛
def
= 𝑡𝑛+1 − 𝑡𝑛 is the 𝑛-th time-step and 𝑁ℎ is the total number of time-steps.
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The freedom provided by the gauge condition of the potential is exploited to compute an optimal value of 𝑛, which allows to 
choose a larger time-step compared to the 𝑛 = 0 case and therefore speeding up the numerical integration. The resulting optimal 
value, ̃𝑛, which is obtained at each time step 𝑛 as the value of 𝑛 minimizing the 𝐿2-norm of  [32], is

̃𝑛 def
= −

⎛⎜⎜⎝
[
𝑀∕2

]
−1∑

𝓁=−
[
𝑀∕2

]𝑉𝓁 ||𝜓𝓁
||2 ⎞⎟⎟⎠

/⎛⎜⎜⎝
[
𝑀∕2

]
−1∑

𝓁=−
[
𝑀∕2

] ||𝜓𝓁
||2 ⎞⎟⎟⎠ (A.3)

where 𝜓𝓁
def
= 𝜓(𝒓𝓁) and 𝑉𝓁

def
= 𝑉 (𝒓𝓁) at time 𝑡𝑛.

Appendix B. Split-Step pseudo-codes

We list below, in Algorithm 1, the pseudo-codes for the Split-Step algorithms with fixed time-step. We consider the general case 
of order 𝑁 , with 𝑁 ∈ {2,4,6}.

Algorithm 1 SSN, 𝑁 ∈ {2,4,6}.

1: 𝑡 ← 𝑡0
2: 𝜓 ← 𝜓(𝒓, 𝑡0)
3: while 𝑡 < 𝑡𝑓 do

4: 𝜓 ← FFT−1[exp
(
−i�̂�𝑎1ℎ

)
FFT[𝜓]]

5: 𝜓 ← exp
(
−i𝑉 𝑏1ℎ

)
𝜓

6: ⋮
7: 𝜓 ← FFT−1[exp

(
−i�̂�𝑎 𝑁

2
ℎ
)
FFT[𝜓]]

8: 𝜓 ← exp
(
−i𝑉 𝑏 𝑁

2
ℎ
)
𝜓

9: 𝜓 ← FFT−1[exp
(
−i�̂�𝑎 𝑁

2 −1ℎ
)
FFT[𝜓]]

10: 𝜓 ← exp
(
−i𝑉 𝑏 𝑁

2 −1ℎ
)
𝜓

11: ⋮
12: 𝜓 ← FFT−1[exp

(
−i�̂�𝑎1ℎ

)
FFT[𝜓]]

13: 𝜓 ← exp
(
−i𝑉 𝑏1ℎ

)
𝜓

14: 𝑡 ← 𝑡 + ℎ

In the latter, ℎ is the time step, FFT and FFT−1 denote the Fast Fourier Transform and its inverse respectively, �̂� is the kinetic 
energy operator in Fourier space, 𝑉 is the potential, and the values of 𝑎𝑖 and 𝑏𝑖, 𝑖 ∈ {1,2,3,4,5,6}, are listed in Table B.8.

Table B.8

Values of the parameters for the Split-Step algorithms. The 
quantity 𝜔 is given by 𝜔 = 2+2

1
3 +2−

1
3

3
.

SS2 SS4 SS6

𝑎1 =
1
2

𝑎1 =
𝜔

2
𝑎1 = 0.0502627644003922

𝑏1 = 1 𝑏1 = 1 𝑏1 = 0.148816447901042
𝑎2 =

1−𝜔
2

𝑎2 = 0.413514300428344
𝑏2 = 1 − 2𝜔 𝑏2 = −0.132385865767784

𝑎3 = 0.0450798897943977
𝑏3 = 0.067307604692185
𝑎4 = −0.188054853819569
𝑏4 = 0.432666402578175
𝑎5 = 0.541960678450780
𝑏5 = 0.5 − (𝑏1 + 𝑏2 + 𝑏3 + 𝑏4)
𝑎6 = 1 − 2(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)
𝑏6 = 1 − 2(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5)

In the case of SSa, the adaptive splitting algorithm, i.e. the SS4(3), both the solutions at the 4𝑡ℎ and at the 3𝑟𝑑 order must be 
evaluated. The pseudo-code is described in Algorithm 2, while the coefficients are listed in B.9. In our numerical tests we set 𝛼 = 0.9, 
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𝛽 = 3.
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Algorithm 2 SSa.

1: 𝑡 ← 𝑡0
2: 𝜓 ← 𝜓(𝒓, 𝑡0)
3: while 𝑡 < 𝑡𝑓 do

4: 𝜓 ← �̃�

5: 𝜓 ← FFT−1[e−i�̂�𝑎1ℎFFT[𝜓]]
6: 𝜓 ← e−i𝑉 𝑏1ℎ𝜓

7: ⋮
8: 𝜓 ← FFT−1[e−i�̂�𝑎7ℎFFT[𝜓]]
9: 𝜓 ← e−i𝑉 𝑏7ℎ𝜓

10: �̃� ← FFT−1[e−i�̂�𝑎1ℎFFT[�̃�]]
11: �̃� ← e−i𝑉 𝑏1ℎ�̃�

12: ⋮
13: �̃� ← FFT−1[e−i�̂�𝑎7ℎFFT[�̃�]]
14: �̃� ← e−i𝑉 𝑏7ℎ�̃�

15: 𝑒𝑟𝑟 ←
√∑𝑁

𝑖=1
||𝜓(𝒙𝑖 ,𝑡𝑛 )−�̃�(𝒙𝑖 ,𝑡𝑛 )||2∑𝑁
𝑗=1

|||𝜓(𝒙𝑗 ,𝑡𝑛 )|||2
16: if 𝑒𝑟𝑟 ≤ tol then

17: 𝑡 ← 𝑡 + ℎ

18: else

19: 𝜓 ← �̃�

20: ℎ ← ℎ min
{
𝛼
(

tol
Δ𝑛

) 1
4
, 𝛽

}

Table B.9

Values of the parameters for the SSa.

SSa

Order 4 Order 3

𝑎1 0 �̃�1 0

𝑏1 0.0829844064174052 �̃�1 0.0829844064174052

𝑎2 0.245298957184271 �̃�2 0.245298957184271

𝑏2 0.3963098014983680 �̃�2 0.3963098014983680

𝑎3 0.604872665711080 �̃�3 0.604872665711080

𝑏3 -0.0390563049223486 �̃�3 -0.0390563049223486

𝑎4 0.5 - (𝑎2 + 𝑎3) �̃�4 0.5 - (𝑎2 + 𝑎3)
𝑏4 1. - 2(𝑏1 + 𝑏2 + 𝑏3) �̃�4 1. - 2(𝑏1 + 𝑏2 + 𝑏3)
𝑎5 0.5 - (𝑎2 + 𝑎3) �̃�5 0.3752162693236828

𝑏5 -0.0390563049223486 �̃�5 0.4463374354420499

𝑎6 0.604872665711080 �̃�6 1.4878666594737946

𝑏6 0.3963098014983680 �̃�6 -0.0060995324486253

𝑎7 0.245298957184271 �̃�7 -1.3630829287974774

𝑏7 0.0829844064174052 �̃�7 0
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