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General procedure for free-surface recovery from
bottom pressure measurements: application to
rotational overhanging waves
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A novel boundary integral approach for the recovery of overhanging (or not) rotational
water waves (with constant vorticity) from pressure measurements at the bottom
is presented. The method is based on the Cauchy integral formula and on an
Eulerian–Lagrangian formalism to accommodate overturning free surfaces. This approach
eliminates the need to introduce a priori a special basis of functions, thus providing
a general means of fitting the pressure data and, consequently, recovering the free
surface. The effectiveness and accuracy of the method are demonstrated through numerical
examples.
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1. Introduction

Nonlinear water waves have been extensively studied since the mid-eighteenth century,
when Euler introduced his eponymous equation. Since then, surface gravity waves have
attracted much attention in their modelling, although scientists quickly realised their
inherent complexity. This is one reason why physicists and mathematicians are still
interested by the richness of this problem, making it an endless source for research in fluid
dynamics. For instance, one crucial concern in environmental and coastal engineering is to
accurately measure the surface of the sea for warnings about the formation of large waves
near coasts and oceanic routes. One solution to this problem is reconstructing the surface
using a discrete set of measurements obtained from submerged pressure transducers (Tsai
& Tsai 2009). This approach avoids the limitations of offshore buoy systems, which are
susceptible to climatic disasters, located on moving boundaries, and lacking accuracy in
wave height estimates (Lin & Yang 2020). Consequently, solving the nonlinear inverse
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problem associated with water waves is a timely request for building practical engineering
apparatus that rely on in situ data.

While the hydrostatic theory was originally used to tackle this problem when first
formulated (Bergan, Tørum & Traetteberg 1969; Lee & Wang 1985), it was only recently
that nonlinear waves began to be addressed (Oliveras et al. 2012). Some works, such as
Constantin (2012), considered conformal mapping to successfully obtain reconstruction
formulae. However, the numerical cost associated with solving these implicit relations
renders conformal mapping inefficient when dealing with real physical data, i.e. when
pressure data are given at known abscissas of the physical plane, not of the conformally
mapped one. Actually, introducing some suitable holomorphic functions, it is possible
to efficiently solve this nonlinear problem while staying within the physical plane for
the recovery procedure (Clamond 2013; Clamond & Constantin 2013). These studies
demonstrated the convergence of the reconstruction process and the ability to recover
waves of maximum amplitude (Clamond & Henry 2020). Furthermore, the method was
adapted to handle cases involving linear shear currents (Clamond, Labarbe & Henry
2023), remarkably recovering the unknown magnitude of vorticity alongside the wave
profile and associated parameters. This case is notorious for being challenging, as it
allows for the presence of critical layers and/or stagnation points in the fluid domain
(Wahlen 2009). Note that the existence of nonlinear water waves with constant vorticity
and overturning wave profiles has been demonstrated (Constantin & Varvaruca 2011;
Constantin, Strauss & Varvaruca 2016). Note also that, for infinitesimal waves, exact
recovery formulae were obtained by Henry & Thomas (2018) for steady waves with general
vorticity.

The recovery method studied in Clamond (2013), Clamond & Constantin (2013),
Clamond & Henry (2020) and Clamond et al. (2023) has two shortcomings, however.
First, it was developed for non-overhanging waves, so it cannot directly address these
waves that can occur, in particular, in the presence of constant vorticity. Second, part
of this reconstruction procedure is based on analytic continuation of some well-chosen
eigenfunctions. If for some waves a ‘good’ choice of eigenfunctions is clear a priori,
this is not necessarily the case for complicated wave profiles. By ‘good’ choice, we
mean a set of eigenfunctions that provides an accurate representation of the free surface
with a minimal amount of modes and, at the same time, that can be easily computed.
Even though Fourier series (or integrals) can be used in principle, a large number
of eigenfunctions may be required to accurately represent the free surface. Since a
surface recovery from bottom pressure is intrinsically ill-conditioned, using a large
number of Fourier modes may lead to numerical issues. Another basis should then be
preferably employed. For instance, for irrotational long waves propagating in shallow
water (i.e. cnoidal waves), the use of Jacobian elliptic functions is effective (Clamond
2013; Clamond & Constantin 2013). However, such an alternative basis is not always easily
guessed. Thus, it is desirable to derive a reconstruction procedure independent of a peculiar
basis of eigenfunctions. Here, we propose a recovery methodology addressing these two
shortcoming.

In this paper we derive a general formulation to address the surface recovery problem
using a boundary integral formulation. While a similar approach was described by Da
Silva & Peregrine (1988) for computing waves with constant vorticity, to the best of our
knowledge it has never been applied in the context of a recovery procedure. The Cauchy
integral formula, although singular by definition, proves advantageous from a numerical
perspective. Dealing with singular kernels, the integral formulation easily allows for the
consideration of arbitrary steady surface waves (periodic, solitary, aperiodic) travelling
in a linear shear current, without the need to select a peculiar basis of functions to fit
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General recovery of overhanging rotational waves

the pressure data. Additionally, this method facilitates the parametrisation of the surface
profile, enabling the recovery of overhanging waves with arbitrarily large amplitudes.

Overturning profiles are known to be hard to compute accurately (Vanden-Broeck
1994), which presents a significant challenge due to the ill-posed nature of our problem.
Nevertheless, by considering a mixed Eulerian–Lagrangian description at the boundaries,
we demonstrate the feasibility of the recovery process. To illustrate the robustness of our
method, we present two examples of constant vorticity steady waves: a periodic wave with
an overturning surface and a solitary wave. In both scenarios, we achieve good agreement
in recovering the wave elevation, albeit with the necessity of using refined grids in the
regions of greatest surface variation. Refining a grid where needed is far much easier than
finding a better basis of functions, that is, a feature of considerable practical interest.

The method presented in this study consists of the first boundary integral approach
to solve this nonlinear recovery problem. We expect this work to pave the way
for addressing even more challenging configurations, including the extension to
three-dimensional settings, which will inevitably involve Green functions in the integral
kernels.

The paper is organised as follow. The mathematical model and relations of interest are
introduced in § 2, with an Eulerian description of motion. In order to handle overhanging
waves, their Lagrangian counterparts are introduced in § 4. In § 3 we derive an equation
for the free surface, allowing us to compute reference solutions for testing our recovery
procedure. This procedure is described in the subsequent § 5. Numerical implementation
and examples are provided in § 6. Finally, in § 7 we discuss our general results, as well as
possible future extensions and implications of this work.

2. Mathematical settings

We give here the classical formulation of our water-wave problem in Eulerian variables.
Physical assumptions and notations being identical to that of Clamond et al. (2023),
interested readers should refer to this paper for further details.

2.1. Equations of motion and useful relations
We consider the steady two-dimensional motion of an incompressible inviscid fluid with
constant vorticity ω. The fluid is bounded above and below by an impermeable free surface
and solid horizontal bed, respectively. Our focus lies on travelling waves of permanent
form that propagate with a constant phase speed c and wavenumber k (k = 0 for solitary
and more general aperiodic waves). We adopt a Galilean frame of reference moving with
the wave, thus ensuring that the velocity field appears independent of time for the observer.
Consequently, we can express the fluid domain, denoted as Ω , as the set of points (x, y)
(Cartesian coordinates) satisfying x ∈ R and −d � y � η(x), where η(x) represents the
surface elevation from rest and d is the mean water depth. Thus, the mean water level is
located at y = 0, such that

〈η〉 def= k
2π

∫ π/k

−π/k
η(x) d x = 0, (2.1)

where 〈·〉 denotes the Eulerian averaging operator (c.f. figure 1). In the case where
the surface overturns, η is not a graph so the mapping x �→ η(x) is no longer valid.
We introduce in subsequent sections a parameterisation of the surface to allow for the
computation and reconstruction of surface wave profiles in this context.
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0

y

x

η(x)

ω

–d

Figure 1. Definition sketch in the referential moving with the wave.

In this setting the velocity field u = (u, v) and pressure p (divided by the density and
relative to the reference value at the surface) are governed by the stationary Euler equations

∇ · u = 0, u · ∇u + ∇p + g = 0, (2.2a,b)

where g = (0, g), the acceleration due to gravity g > 0 acting downwards. Equations of
motion (2.2a,b) are supplemented with kinematic and dynamic conditions at the upper and
lower boundaries

u · n − u · ∇η = 0 at y = η(x), (2.3a)

p = 0 at y = η(x), (2.3b)

u · n = 0 at y = −d, (2.3c)

where n is the outward normal vector (see figure 1 for a sketch of this configuration).
Since our physical system is two-dimensional per se, we introduce a scalar

streamfunction ψ such that u = ψy and v = −ψx, so (2.2a) is satisfied identically and
ω = −ψxx − ψyy is assumed constant. Thus, the Euler equations can be integrated into
the Bernoulli equation

2(p + gy)+ u2 + v2 = Bs − 2ω(ψ − ψs)
def= B(ψ) (2.4)

for a constant Bs (Clamond et al. 2023). Alternatively, we can define a Bernoulli constant
at the bottom Bb

def= Bs − 2ω(ψb − ψs). In (2.4), as in the rest of the paper, subscripts ‘s’
and ‘b’ denote that the fields are evaluated, respectively, at the surface and at the bottom.
The free surface and the seabed being both streamlines, ψs and ψb are constant in this
problem.

Because here ps = 0 (constant atmospheric pressure set to zero without loss of
generality), we have the following relations relating some average bottom quantities and
parameters (Clamond et al. 2023):

〈pb〉 = gd, 〈u2
b〉 = Bb, 〈ub − (1 + η2

x)us〉 = ωd. (2.5a–c)

Although we decide to set the reference frame as moving with the wave celerity, it is still
useful to consider Stokes’ first and second definitions of phase speed,

c1
def= −〈ub〉 = −ωd − 〈(1 + η2

x)us〉, (2.6)
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General recovery of overhanging rotational waves

c2
def= −

〈
1
d

∫ η

−d
u dy

〉
= ψb − ψs

d
= −ωd

2
− ω〈η2〉

2d
− 〈(1 + η2

x)hus〉
d

, (2.7)

where h def= η(x)+ d is the local water depth.

2.2. Holomorphic functions
The vorticity being constant, potential theory still holds when using a Helmholtz
representation to subtract the contribution of the linear shear current (Clamond et al.
2023). Therefore, it is convenient to introduce the complex relative velocity

W(z) def= U(x, y)− iV(x, y) = ( y + d)ω + u(x, y)− iv(x, y), (2.8)

that is holomorphic in Ω for the complex coordinate z def= x + iy. (Obviously, the complex
velocity w def= u − iv is not holomorphic if ω /= 0.) The relative complex velocity (2.8) is
related to the relative complex potential F(z) def= Φ(x, y)+ iΨ (x, y) by W = dF/dz, where
U = Φx = Ψy and V = Φy = −Ψx (see Clamond et al. (2023) for more details).

Following Clamond & Constantin (2013), we introduce a complex ‘pressure’ function
as

𝔓(z) def= gd + 1
2 Bs + ω(ψs − ψb)− 1

2 W(z)2 = gd + 1
2 Bb − 1

2 W(z)2, (2.9)

that is holomorphic in the fluid domain Ω , its restriction to the flat bed y = −d having
zero imaginary part and real part pb. Thus, pb determines 𝔓 uniquely throughout the fluid
domain, i.e. 𝔓(z) = pb(z + id). Note that p introduced in (2.2a,b) coincides with the real
part of 𝔓 only on y = −d because the former is not a harmonic function in the fluid
domain (Constantin 2006; Constantin & Strauss 2010).

As for irrotational waves, it is useful (Clamond 2013, 2018; Clamond et al. 2023) to
introduce the anti-derivative of 𝔓(z),

𝔔(z) def=
∫ z

z0

[
𝔓(z′)− gd

]
dz′ =

∫ z

z0

1
2

[
Bb − W(z′)2

]
dz′, (2.10)

where z0 is an arbitrary constant. For the same abscissa x, the functions 𝔔 at the free
surface (i.e. 𝔔s(x)) and at the bottom (i.e. 𝔔b(x)) satisfy the relation

𝔔s(x)− 𝔔b(x) =
∫ x+iη(x)

x−id

[
𝔓(z)− gd

]
dz = ih(x)Bb

2
−

∫ x+iη(x)

x−id

W(z)2

2
dz. (2.11)

2.3. Cauchy integral formula
In the complex z plane the boundaries are analytic curves defined by zs = x + iη and zb =
x − id. For a holomorphic function Ξ(z), the Cauchy integral formula applied to the fluid
domainΩ (assuming non-intersecting and non-overturning seabed and free surface) yields

iϑΞ(z) = P.V.
∮
Ξ(z′)
z′ − z

dz′ =
∫ ∞

−∞
Ξ ′

b d x′

z′
b − z

−
∫ ∞

−∞
(1 + iη′

x)Ξ
′
s d x′

z′
s − z

, (2.12)

with primes denoting the dependence on the dummy variable (e.g. Ξ ′
b

def= Ξb(x′)) and
where ϑ = {2π, 0,π} respectively inside, outside and at the smooth boundary of the
domain. We emphasis that, in this paper all integrals must be taken in the sense of the
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Cauchy principal value (P.V.), even if it is not explicitly mentioned for brevity. When
Im{Ξb} = 0, the bottom boundary condition can be taken into account with the method of
images, i.e. exploiting the Schwarz reflection principle (Morse & Feshbach 1953), yielding

Ξ(z) = i
ϑ

∫ ∞

−∞
(1 + iη′

x)Ξ
′
s d x′

z′
s − z

− i
ϑ

∫ ∞

−∞
(1 − iη′

x)Ξ̄
′
s d x′

z̄′
s − z − 2id

, (2.13)

where an overbar denotes the complex conjugation. Note that (2.13) is valid in finite depth
(provided that Im{Ξb} = 0), and in infinite depth if Ξb → 0 as d → ∞. Examples of
functions satisfying these conditions are Ξ = W + c1, Ξ = W2 − Bb and Ξ = 𝔓 − gd,
so (2.13) provides an expression for computing these functions in arbitrary depth.

2.4. Integral formulations for periodic waves
For L-periodic waves (with L = 2π/k), the Cauchy kernel is periodised in the horizontal
direction, along the interval I = [0, L], leading to the Cauchy integral formula with
Hilbert kernel (Gakhov 1990)

Ξ(z) = ik
2ϑ

∫
I

[
cot

(
k

z′
s − z

2

)
(1 + iη′

x)Ξ
′
s − cot

(
k

z′
b − z

2

)
Ξ ′

b

]
d x′. (2.14)

Alternatively, using the method of images, along with the identity (A10), the Cauchy
integral can be written as

Ξ(z) = k
ϑ

∫
I

[
Li0{exp(ik(z′

s − z))}(1 + iη′
x)Ξ

′
s

+ Li0{exp(ik(z − z̄′
s + 2id))}(1 − iη′

x)Ξ̄ s
]

d x′

+ πϑ−1〈(1 + iηx)Ξs + (1 − iηx)Ξ̄ s〉, (2.15)

where Liν is the νth polylogarithm whose definition is given in Appendix A along with
useful relations. It is worth noting that the last term on the right-hand side of (2.15)
corresponds to the zeroth Fourier coefficient (not present when the holomorphic function
Ξ(z) has zero mean over the wave period). Equation (2.15) can be rewritten using the
identity (A9), yielding

Ξ(z) = i
ϑ

∫
I
∂

∂z

[
Li1{exp(ik(z′

s − z))}(1 + iη′
x)Ξ

′
s

− Li1{exp(ik(z − z̄′
s + 2id))}(1 − iη′

x)Ξ̄ s
]

d x′

+ 2πϑ−1 〈Re {Ξs} − ηx Im {Ξs}〉 . (2.16)

At the free surface (where ϑ = π, z = zs and dzs = (1 + iηx) dx), carefully applying the
Leibniz integral rule (c.f. (B4) in Appendix B) on the singular term in the integrand, (2.16)
reduces to

(1 + iηx)Ξs = i
2π

d
d x

∫
I

[
Li1{exp(ik(z′

s − zs))}(1 + iη′
x)Ξ

′
s

− Li1{exp(ik(zs − z̄′
s + 2id))}(1 − iη′

x)Ξ̄ s
]

d x′

+ (1 + iηx) 〈Re {Ξs} − ηx Im {Ξs}〉 . (2.17)

It should be noted that, obviously, aperiodic equations can be obtained from the periodic
ones letting L → ∞ (i.e. k → 0+). Thus, from now on, we only consider periodic waves.
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General recovery of overhanging rotational waves

3. Lagrangian description

This section focuses on addressing the limitation of the Eulerian framework that hinders
the computation of overhanging waves, which are characterised by multi-valued surfaces.
While one option to address this challenge involves employing an arclength formulation,
as elaborated by Vanden-Broeck (1994), we have chosen to adopt a Lagrangian formalism
in this study. One benefit of the Lagrangian approach is its inherent capability to aggregate
collocation points near the wave crest, where they are most crucial (Da Silva & Peregrine
1988).

Our approach is similar to that used by Da Silva & Peregrine (1988), although we modify
the integral kernels in terms of polylogarithms and we integrate the Cauchy integral
formula to remove the strong singularity from the kernels following Clamond (2018). The
resulting analytical expression is characterised by a weak logarithmic singularity, and it
is suitable for calculating various types of waves, including solitary and periodic waves,
overhanging or not.

Considering the (rotational) complex velocity w = u − iv evaluated at the surface, let
us introduce the holomorphic function log (−w/

√
gd) = q − iθ and define accordingly

qs
def= Re {log (−ws/

√
gd)} = 1

2 ln [(u2
s + v2

s )/
√

gd], (3.1)

θs
def= − Im {log (−ws/

√
gd)} = − atan2 (vs,−us), (3.2)

where we notably used the Bernoulli principle at the surface and where atan2 denotes the
four-quadrant inverse tangent.

Exploiting the impermeability and isobarity of the free surface, one gets

tan θs = ηx = vs

us
= σvs√

Bs − 2gη − v2
s

=
√

Bs − 2gη − u2
s

σus
, (3.3)

where σ = ±1 is introduced for conveniently choosing the direction of the wave
propagation (see the discussion at the beginning of § 4.1 below). Hence, extracting us and
vs from the latter relations, we have

us = σ cos(θs)
√

Bs − 2gη, vs = σ sin(θs)
√

Bs − 2gη. (3.4a,b)

We now consider the Lagrangian description of motion, with t denoting the time, thus,
us = dx/dt and vs = dη/dt (d/dt is the temporal derivative following the motion). From
the second expression in (3.4a,b), we deduce that

d
dt

√
Bs − 2gη = −σg sin(θs), (3.5)

and hence, considering a crest at t = 0 (where η(0) = a is the wave amplitude), we have

√
Bs − 2gη = μ− gσ

∫ t

0
sin(θ ′

s) dt′, μ
def=

√
Bs − 2ga, (3.6a,b)
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where θ ′
s

def= θs(t′). Therefore, all quantities at the free surface can be expressed in terms of
the surface angle θs, using t as an independent variable, e.g.

zs(t) = σ

∫ t

0

[
μ− gσ

∫ t′

0
sin(θ ′′

s ) dt′′
]

exp (iθ ′
s) dt′ + ia, (3.7)

ws(t) = dz̄s

dt
= σ

[
μ− gσ

∫ t

0
sin(θ ′

s) dt′
]

exp (−iθs), (3.8)

η(t) = Im zs = Bs

2g
− 1

2g

[
μ− gσ

∫ t

0
sin(θ ′

s) dt′
]2

. (3.9)

In the Eulerian description of motion, the wave period is constant and depends on
the reference frame (moving at a constant phase speed) where one observes the fluid.
On the other hand, in the Lagrangian context, the period TL of the free surface differs
from the Eulerian period due to the Stokes drift (Longuet-Higgins 1986). The Lagrangian
period being such that η(t + TL) = η(t), we exploit expression (3.9) which, after some
elementary algebra and simplifications, yields[

2μ− gσ
∫ t+TL

t
sin(θ ′

s) dt′ − 2gσ
∫ t

0
sin(θ ′

s) dt′
] ∫ t+TL

t
sin(θ ′

s) dt′ = 0, (3.10)

that is necessarily satisfied for all times if and only if∫ TL

0
sin(θ ′

s) dt′ = 0, (3.11)

thus defining the Lagrangian period TL.

4. Equations for the free surface

Since we do not have access to measurements of the bottom pressure for nonlinear waves
with constant vorticity, we must generate these data from numerical solutions of the
exact equations. Thus, this section aims to derive a comprehensive formulation for the
computation of surface waves using a boundary integral method. From these solutions,
the bottom pressure is subsequently obtained and used as input for our surface recovery
procedure.

4.1. Eulerian formulation
From expressions (2.4) and (2.8), the complex (irrotational part of the) velocity at the
surface is given explicitly by

Ws = ωh + σ (1 − iηx)

√
(Bs − 2gη)/(1 + η2

x), (4.1)

with σ
def= ∓1 denoting waves propagating upstream or downstream, respectively. The

parameter σ is introduced for convenience in order to characterise the (arbitrarily chosen)
direction of the wave propagation in a ‘fixed’ frame of reference, i.e. σ = −1 if the wave
travels toward the increasing x direction in this frame and, obviously, σ = +1 if the wave
travels toward the decreasing x direction.
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General recovery of overhanging rotational waves

Considering the holomorphic function Ξ = W + c (c being an arbitrary definition of
the phase speed), the left-hand side of (2.17) follows directly from (4.1),

(1 + iηx)Ξs = (ωh + c) (1 + iηx)+ σ

√
(Bs − 2gη)(1 + η2

x), (4.2)

where the radicand is purely real since Bs � max(2gη) for all waves. Substituting
expression (4.2) in (2.17), the integral term splits into several contributions as

ωη (1 + iηx) = i
2π

d
d x

[∫
C

Li1(exp(ik(z′
s − zs)))(ωh′ + c)dz′

s

+
∫
C

Li1(exp(ik(zs − z̄′
s + 2id)))(ωh′ + c)dz̄′

s

+ σ

∫
I
{ Li1(exp(ik(z′

s − zs)))− Li1(exp(ik(zs − z̄′
s + 2id)))}

×
√
(Bs − 2gη′)(1 + η′2

x ) d x′
]

+ (1 + iηx) 〈us(1 + η2
x)〉 − σ

√
(Bs − 2gη)(1 + η2

x), (4.3)

where C represents the free surface path, i.e. we use the brief notations
∫
C(· · · ) dz′

s
def=∫

I(· · · )(1 + iη′
x) dx′ and

∫
I(· · · ) dx′ def= ∫ L

0 (· · · ) dx′. The first term inside the square
bracket on the right-hand side of (4.3) reduces to

J1
def=

∫
C

Li1(exp(ik(z′
s − zs)))(ωh′ + c) dz′

s = ω

∫
C

Li1(exp(ik(z′
s − zs)))η

′ dz′
s

= ω

∫
I

Li1(exp(ik(z′
s − zs)))η

′(1 + iη′
x)d x′ = iω

k

∫
I

Li2(exp(ik(z′
s − zs)))η

′
x d x′

= −ω
k

∫
I

Li2(exp(ik(z′
s − zs)))d x′, (4.4)

where we exploited the property (Clamond 2018)∫
C

Liν(exp(ikzs)) dzs = 0. (4.5)

Similarly, we have

J2
def=

∫
C

Li1(exp(ik(zs − z̄′
s + 2id)))(ωh′ + c) dz̄′

s

= −ω
k

∫
I

Li2(exp(ik(zs − z̄′
s + 2id)))d x′. (4.6)

Finally, after integrating the whole expression (4.3) and retaining the imaginary part only,
we obtain the equation for the free surface

K = ωη2

2
− η〈us(1 + η2

x)〉 + ω

2πk

∫
I

Re{L2} d x′

− σ

2π

∫
I

Re{L1}
√
(Bs − 2gη′)(1 + η′2

x ) d x′, (4.7)

976 A20-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

91
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.917


J. Labarbe and D. Clamond

where K is an integration constant obtained enforcing the mean-level condition (2.1), i.e.

K =
〈
ωη2

2
+ ω

2πk

∫
I

Re{L2} d x′ − σ

2π

∫
I

Re{L1}
√
(Bs − 2gη′)(1 + η′2

x ) d x′
〉
. (4.8)

From now on, the same notation K is used to denote integration constants in the different
surface recovery formulae. The exact values of these constants is obtained, as above, by
enforcing the condition (2.1). Moreover, we have introduced, for brevity, the notation for
the kernels

Lν def= Liν(exp(ik(z′
s − zs)))− Liν(exp(ik(zs − z̄′

s + 2id))). (4.9)

Equation (4.7) is a nonlinear integro-differential equation for the computation of the
surface elevation η. Once η is obtained solving (4.7) numerically, one can compute
the corresponding bottom pressure. This bottom pressure can then be considered as
‘experimental data’ to illustrate the reconstruction procedure described below. This is
necessary when such data are not available from physical measurements, as is the case with
rotational waves of arbitrary shape. We can only stress how valuable in situ measurements
would be to test the recovery of surface wave profiles from realistic data.

4.2. Lagrangian formulation
Expression (3.11) provides an implicit definition of TL if the wavelength L is fixed a
priori. It is now of interest to convert our formula for the surface elevation (4.7) using
the Lagrangian description introduced previously (the variable of interest now becomes
θs). After some simplifications, we obtain

ωσ

2
η2 − kη

2π

∫ TL

0
(Bs − 2gη) dt − 1

2π

∫ TL

0
Re {L1}(Bs − 2gη′) dt′

+ ωσ

2πk

∫ TL

0
Re {L2} cos(θ ′

s)
√

Bs − 2gη′ dt′ = K, (4.10)

where K is recovered using condition (2.1) in the same way that (4.8) was obtained.
The computation of (4.10) involves weak logarithmic singularities in the kernel of the L1

operator. In the numerical implementation we use a similar approach as the one presented
by Clamond (2018), by subtracting the regular part of the operator. Thence, we obtain an
explicit expression for the regularised finite integral, i.e.∫ TL

0
Re {L1}(Bs − 2gη′) dt′ = −2g

∫ TL

0
Re {L1}(η′ − η) dt′

+ (Bs − 2gη)
∫ TL

0
Re {L1 − L̂1} dt′, (4.11)

where we introduced

L̂ν def= Liν{exp(iτ(t′ − t))} − Liν{exp(iτ(t − t′)) exp(−2kd)}, (4.12)

with τ def= 2π/TL. Considering t → t′ in both integrands in (4.11), we have

lim
t→t′

Re {L1}(η − η′) = 0, (4.13)

lim
t→t′

Re {L1 − L̂1} = log
[(

1 − exp(−2kh)
1 − exp(−2kd)

)
τ/k√

Bs − 2gη

]
. (4.14)
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General recovery of overhanging rotational waves

The numerical computation of Lagrangian surface waves is thus done by solving the
nonlinear expression (4.10), providing a given wave amplitude η|t=0 = a. The wave period
TL, as well as the Bernoulli constant Bs, are both obtained from the Lagrangian counterpart
of (2.1) and the requirement that

∫ TL
0 dzs = 2πσ/k. Moreover, since the abscissa x(t) is

given explicitly from the definition of the wave profile η(t) through the real part of (3.7),
we only have to solve expression (4.10) for η – and not for both x and η, as done previously
by Da Silva & Peregrine (1988) and by Vanden-Broeck (1994) – thus allowing us to further
reduce the numerical cost.

5. Surface recovery from bottom pressure

Building upon the last three sections, we propose a nonlinear integral equation to recover
the surface elevation in terms of a given measure of pressure pb(x) at the seabed. This
‘measurement’ is given here numerically by solving expression (4.10) and, subsequently,
computing the pressure from the surface profile (exploiting the boundary integrals and the
Bernoulli equation).

The principal benefit in establishing an integral formulation lies in the fact that no
specific eigenfunctions are needed to fit the pressure data. In fact, our derived equation
remains applicable regardless of the nature of the wave under consideration, be it periodic
or not, overhanging or not. We re-emphasise here that, although the equations consider
(2π/k)-periodic waves, their aperiodic counterparts are easily obtained letting k → 0+.

5.1. Eulerian boundary integral formulation
Let us consider the Cauchy integral formula (2.17) (without the method of images) for the
holomorphic function Ξ(z) = 𝔓(z)− gd. It yields

𝔓 − gd = k
ϑ

∫
I

[
Li0(exp(ik(z′

s − z)))(1 + iη′
x)(𝔓

′
s − gd)

− Li0(exp(ik(z′
b − z)))(𝔓′

b − gd)
]

d x′

+ 〈(1 + iηx)(𝔓s − gd)− (𝔓′
b − gd)〉. (5.1)

In order to simplify the latter expression, we exploit both definitions of 𝔓b
def= pb(x)

and d𝔔s/dx = (𝔓s − gd)(1 + iηx) (we recall that 𝔔s is a periodic function). Hence,
expression (5.1) can be rewritten as

𝔓 − gd = i
ϑ

∫
I
∂

∂z

[
Li1(exp(ik(z′

s − z)))(1 + iη′
x)(𝔓

′
s − gd)

− Li1(exp(ik(z′
b − z)))(p′

b − gd)
]

d x′. (5.2)

Before continuing, let the compact notations for the polylogarithmic kernels be

Kν def= Liν(exp(ik(z′
s − zs))) and Jν def= Liν(exp(ik(z′

b − zs))). (5.3a,b)

We now evaluate expression (5.2) at the free surface, reducing it to

(𝔓s − gd)(1 + iηx) = i
2π

d
d x

∫
I

[K1(1 + iη′
x)(𝔓

′
s − gd)− J1(𝔓′

b − gd)
]

d x′. (5.4)

As one can notice, the left-hand side of (5.4) is the integrand of 𝔔s. For that reason, we
first integrate the whole expression over the x coordinate and then split the contributions
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from the surface and the bottom,

𝔔s = i
2π

∫
I
K1(1 + iη′

x)(𝔓
′
s − gd) d x′ − i

2π

∫
I
J1(p′

b − gd) d x′ + K, (5.5)

for a constant of integration K also obtained by applying condition (2.1).
The next step is to decompose the integrand in the first integral of (5.5). To do so, we

merely replace the complex velocity by its expression (2.8) and exploit the identity (4.5)
to cancel out some constant terms, i.e.∫

C
K1(𝔓′

s − gd) dz′
s

= −1
2

∫
C
K1W ′2

s dz′
s = −1

2

∫
C
K1

[
ωh′ + (1 − iη′

x)

√
(Bs − 2gη′)
(1 + η′2

x )

]2

dz′
s

= −ω
2

2

∫
C
K1h′2 dz′

s − ωσ

∫
C
K1h′(1 − iη′

x)

√
(Bs − 2gη′)
(1 + η′2

x )
dz′

s

− 1
2

∫
C
K1(1 − iη′

x)
2 (Bs − 2gη′)
(1 + η′2

x )
dz′

s. (5.6)

After some algebraic manipulations, it further reduces to∫
C
K1(𝔓′

s − gd) dz′
s = −ω

2

2

∫
C
K1η

′2 dz′
s − ω2d

∫
C
K1η

′ dz′
s

− 1
2

∫
I
K1(Bs − 2gη′)(1 − iη′

x) d x′

− ωσ

∫
I
K1h′

√
(Bs − 2gη′)(1 + η′2

x ) d x′

= − iω2

k

∫
I
K2η

′η′
x d x′ + ω2d + g

k

∫
I
K2 d x′

−
∫
I
K1(Bs − 2gη′) d x′

− ωσ

∫
I
K1h′

√
(Bs − 2gη′)(1 + η′2

x ) d x′. (5.7)

Substituting (5.7) into (5.5), the imaginary part yields the Eulerian integral formulation
for the surface recovery

2π Im{𝔔s} = ω2

2k

∫
I

Im{K2}(η′2)x d x′ −
∫
I

Re{K1}(Bs − 2gη′) d x′

+ ω2d + g
k

∫
I

Re{K2} d x′ −
∫
I

Re{J1}(𝔓′
b − gd) d x′

− ωσ

∫
I

Re{K1}h′
√
(Bs − 2gη′)(1 + η′2

x ) d x′ − 2π Im{K}, (5.8)

where K is the same constant as in (5.5).
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General recovery of overhanging rotational waves

Equation (5.8) is a nonlinear integral equation for the free surface recovery from the
bottom pressure. Being strictly Eulerian, this equation is not suitable for overhanging
waves. For the latter, one can proceed as detailed in the following section.

5.2. Hybrid formulation
Equation (5.8) involves integrals at the free surface and at the bottom. In practice, the
bottom pressure is given at some known abscissa x, so the bottom integral must be kept in
Eulerian form. However, Eulerian integrals are not suitable for overhanging waves, so we
rewrite surface integrals in their Lagrangian counterparts. Doing so, the inverse problem
is described by a mixed Eulerian–Lagrangian formalism.

Thus, by rewriting the surface integrals in (5.8) in the Lagrangian description and
keeping the bottom integral in Eulerian form, one gets the general expression for the
surface recovery:

2π Im{𝔔s} = ω2

k

∫ TL

0

[
k−1 Re{K3} +

(
h′ + gω−2

)
Re{K2}

]
cos(θ ′

s)
√

Bs − 2gη′ dt′

−
∫ TL

0
Re{K1}

[
cos(θ ′

s)
√

Bs − 2gη′ + σωh′
] (

Bs − 2gη′) dt′

−
∫ L

0
Re{J1}(p′

b − gd) d x′ − 2π Im{K}. (5.9)

This reformulation is necessary for practical recovery of overhanging waves. It is, of
course, also suitable for non-overhanging waves.

6. Numerical illustrations

6.1. Details on the overall methodology
From a numerical standpoint, the nonlinear integral equations (4.7) and (5.9), respectively
employed for computing the surface profile and recovering it from the bottom pressure,
possess notable characteristics. First, these equations eliminate the need for evaluating the
derivative of θs at any point. Second, we can rely on Fourier analysis since the kernels are
periodic and use the trapezoidal rule for numerical integration.

Since we already know the value of g and the wavenumber k (or equivalently, the
wavelength L) as inputs in our numerical scheme, we can deduce the depth of the layer
d from the definition of the hydrostatic law (Clamond 2013; Clamond et al. 2023). For
simplicity, we consider that the constant vorticity ω is known. However, ω can also
be determined by adapting the procedure described by Clamond et al. (2023). Then,
initialising our numerical schemes with an appropriate initial guess, either from linear
theory or by a previous iteration, as done by Da Silva & Peregrine (1988), we observe fast
convergence for a discrete set of N equidistant points. In our simulations we typically use
N = 128 for moderate waves and N = 512 for waves (regardless of whether they exhibit
overturning or not) with large amplitudes.

When investigating overhanging waves, the non-algebraic nonlinearities inherent in
the problem often pose numerical challenges. The most troublesome issue arises from
aliasing errors present in the functions spectra, a phenomenon occasionally referred to
as ‘spectral blocking’ (Boyd 2001), leading to exponential growth of high frequencies.
As a consequence, this aliasing effect prevents the spectral accuracy inherent in our
formulation. To address this issue, we employ the ‘zero padding’ method, which involves
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increasing the size of the quadrature in Fourier space while appending zeros above the
Nyquist frequency. Subsequently, we transform the functions back to physical space,
compute the nonlinear terms and filter out the previously introduced zero frequencies
from the spectrum. For quadratic nonlinear terms, enlarging the degree of quadrature by
a factor of 3/2 has proven sufficient to mitigate this phenomenon (Patterson & Orszag
1971). However, in the context of non-algebraic nonlinearities encountered in this study,
this argument does not hold, and the exact value of the enlargement factor remains
unknown. Instead, we utilize a factor of 2 (typically suitable for cubic nonlinearities) when
performing products throughout the algorithm. Although we experimented with larger
factors in our simulations, it appeared that this value was adequate for eliminating spurious
frequencies in most aliased spectra.

In addition to aliasing, we noticed that it is numerically more efficient to perform a
change of coordinates in evaluating the finite integrals. Particularly, significant variations
in θs occur where the wave undergoes overturning, indicating a requirement for additional
collocation points in these regions. Thus, rather than evaluating the previous integrals
with respect to the time variable t ∈ [0, TL], we introduce a new integration variable Ξ(t),
defined as

dξ
dt

def=
√

1 + β sin(θs)
2, (6.1)

where β is a scaling parameter arbitrarily set. A similar change of coordinate can be found
in Da Silva & Peregrine (1988). In most simulations involving overhanging waves, we
employ a value of β = 2π/(kdN).

Finally, we solve the whole system of (4.7) and (5.9) with the built-in iterative solver
fsolve from the Matlab software, using the Levenberg–Marquardt algorithm.

6.2. Rotational periodic overhanging wave
The first case of interest, as shown in figure 2, depicts a periodic overturning wave of large
amplitude. This particular scenario poses significant computational challenges, making it
an ideal benchmark for evaluating the robustness of our recovery procedure. Utilizing the
pressure data highlighted in figure 2(a), we successfully reconstruct the surface profile
using the expression 5.9, resulting in excellent agreement, as evident from figure 2(b).
Notably, the change of variables achieved through (6.1) effectively concentrates the points
in regions where θs varies the most. Consequently, we attain a high level of accuracy, with
||η − ηex||∞ ≈ 4.48 × 10−3, where ηex corresponds to a numerical solution obtained by
solving (4.10). Furthermore, for the computation of the unknown Bernoulli constant at the
surface, the error is approximately |Bs − Bex

s | ≈ 5.83 × 10−3.
We emphasise the effectiveness of our recovery procedure by presenting the velocity

field within the fluid layer in both upper panels of figure 3. Notably, a pair of stagnation
points is observed in figure 3(c) on the flat bottom boundary, which often poses
challenges when utilizing conformal mapping techniques. In the present context, since
our methodology operates solely in the physical plane, our general approach can readily
reconstruct the surface profile regardless of the presence or absence of stagnation points.

6.3. Rotational solitary surface wave
Computing solitary waves using our procedure is straightforward but necessitates
considering a relatively large numerical domain to accurately capture their behaviour far
from the crest. Meanwhile, to ensure that the wave is located above the mean water level,
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General recovery of overhanging rotational waves
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Figure 2. Numerical demonstration of the surface recovery procedure for an overhanging and periodic steady
wave with a constant vorticity ω

√
d/g = 3

√
2. (a) Eulerian representation of the bottom pressure. The

dashed-dot line corresponds to the mean bottom pressure. (b) Surface wave profile (blue circles) obtained
from expression (4.7). The red line represents the surface reconstruction achieved from pb through (5.9), while
the dashed-dot line indicates the mean water level.
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Figure 3. Isovalues of (a) u/
√

gd, (b) v/
√

gd, (c) log (|w|/√gd) and (d) arg (w/
√

gd) for the configuration
displayed in figure 2.

we substitute the condition (2.1) with

η(n+1) = η(n) − min η(n), (6.2)

instead, at each numerical iteration n.
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Figure 4. Surface recovery procedure for a solitary steady wave with a constant vorticity ω
√

d/g = 1. Both
panels have the same legend as figure 2.

The recovery process for a solitary wave is presented in figure 4, which illustrates
the pressure data in the upper panel and the corresponding surface profile in the lower
panel. We consider here a solitary wave of relatively small amplitude because it is quite
challenging. Indeed, the larger the solitary wave, the faster its decay (thus requiring a
smaller computational box) and the larger the ratio signal/noise (for field data). So, in this
respect, the recovery of small amplitude solitary waves is more challenging.

In the present specific case, the agreement with a given numerical solution is great,
yielding numerical errors of ||η − ηex||∞ ≈ 1.46 × 10−4 and |Bs − Bex

s | ≈ 4.21 × 10−5

for the surface profile and the Bernoulli constant, respectively. Unfortunately, spurious
infinitesimal oscillations (located far from the wave crest) prevent us from reaching
the much better accuracy that we would expect from our method. In order to facilitate
these computations and remove unwanted oscillations, another change of variables can
be implemented (similar to the approach (6.1) used for the periodic case) to concentrate
the quadrature points near the crest, rather than far away where the elevation is
infinitesimal. However, we reserve this task for future investigations, which will provide
more comprehensive details on the efficient computation of solitary waves within this
context.

7. Discussion

This work presents a novel and comprehensive boundary integral method for recovering
surface water waves from bottom pressure measurements. Despite the inherent complexity
of this inverse problem, we successfully formulate the relatively simple expression (5.9)
for surface recovery, enabling the computation of a wide range of rotational steady waves.
A significant advantage of this approach lies in the integral formulation, which eliminates
the need for arbitrarily selecting a basis of functions to fit the pressure data, as done
previously (Clamond 2013; Clamond & Constantin 2013; Clamond et al. 2023).

To demonstrate the robustness and efficiency of our method, we showcase two
challenging examples: an overturning wave with a large amplitude and a solitary wave.
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General recovery of overhanging rotational waves

In both cases, we accurately recovered the surface profile and the hydrodynamic
parameters with good agreement. Although it might be possible to adapt our numerical
procedure to compute extreme waves (with angular surface) with (or without) overhanging
profiles, this task is left for future investigations. In fact, our main goal here is a proof of
concept and to provide clear evidence on the effectiveness of this new formulation. It is
worth noting that the existence of solitary wave solutions for this inverse problem was
established by Henry (2013) for steady waves with analytic vorticity distributions. It still
remains an open question whether this statement holds or not for periodic waves.

In conclusion, this paper, along with the proposed boundary integral formulation,
represents a significant milestone in solving the surface wave recovery problem,
providing a solid foundation for future extensions, such as its potential application to
three-dimensional configurations. Indeed, in three-dimensional holomorphic functions
cannot be employed but integral representations via Green functions remain, so an efficient
fully nonlinear surface recovery is conceivable.
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Appendix A. Logarithms and polylogarithms

The function ln(x) denotes the natural logarithm (Napierian logarithm) of a real positive
variable x (x ∈ R+), and log(z) denotes the principal logarithm of a complex variable
z ∈ C, i.e.

log(z) def= ln |z| + i arg(z), −π < arg(z) � π. (A1)

This definition requires that the argument of any complex number lies in ] − π;π]. It
implies, in particular, that arg(z−1) = − arg(z) if z �∈ R− and that arg(z−1) = arg(z) = π
if z ∈ R−. We have the special relations

log(−z) = iπ + log(z)+ 2iπ − arg(z)/2π� , (A2)

log
(

eiz
)

= iz + 2iπ
⌊

1
2 − Re(z/2π)

⌋
, (A3)

log
(
−eiz

)
= i(π + z)+ 2iπ − Re(z/2π)� , (A4)

where · · ·� is the rounding toward −∞.
The polylogarithms can be defined, for |z| < 1 and ν ∈ C, by

Liν(z) =
∞∑

n=1

zn

nν
, (A5)
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and for all complex z by analytic continuation (Wood 1992). With the above definition of
the complex logarithm, we have the special inversion formulae

Li0(z)+ Li0(z−1)+ 1 = 0, (A6)

Li1(z)− Li1(z−1)+ log(−z) =
{

0 if z �∈ [0; 1],
2iπ if z ∈ [0; 1], (A7)

Li2(z)+ Li2(z−1)+ 1
2

log2(−z)+ 1
6
π2 =

{
0 if z �∈ [0; 1],
2iπ log(z) if z ∈ [0; 1]. (A8)

The polylogarithms for ν ∈ N∗ are single-valued functions in the cut plane z ∈ C\[1;+∞[
and the inversion formula can be used to extend their definition for z ∈ [1;+∞[. Note
that the inversion formula depends on the definition of the principal logarithm that is not
unique, thus, several variants can be found in the literature.

We finally note other relations useful in this paper,

Liν(e±iz) = ∓id Liν+1(e±iz)/dz, (A9)

Li0(e±iz) = ± i
2

cot(z/2)− 1
2
, (A10)

Li1(e±iz) = ±iπ[Re{z}/2π] + i
2

arg(z2)− i arg(∓iz)− 1
2

log(4 sin2(z/2))∓ i
2

z (A11)

Li2(e±iz) = π2

6
+ z2

4
∓ (arg(z2)− 2 arg(∓iz))

z
2

∓ i
2

∫ z

0
log

(
4 sin2

(
z′

2

))
dz′, (A12)

where [· · ·] denotes the rounding toward zero, the last relation being valid for −2π <
Re{z} < 2π.

Appendix B. Singular Leibniz integral rule

Let K(x, y) be a function regular everywhere for y ∈ [a, b], except perhaps at y = y0 ∈
]a, b[ (y0 generally depending on x, as well as a and b) where K may be singular, its finite
integral being taken in the sense of Cauchy’s principal value, i.e.

J(x) = −
∫ b(x)

a(x)
K(x, y) dy def= lim

ε→0+

{∫ y0(x)−ε

a(x)
K(x, y) dy +

∫ b(x)

y0(x)+ε
K(x, y) dy

}
, (B1)

exists. The first derivative of J is thus
dJ
d x

= lim
ε→0+

{
d

d x

∫ y0−ε

a
K(x, y) dy + d

d x

∫ b

y0+ε
K(x, y) dy

}

= lim
ε→0+

{∫ y0−ε

a

∂K(x, y)
∂x

dy + dy0

d x
K(x, y0 − ε)− da

d x
K(x, a)

+
∫ b

y0+ε
∂K(x, y)
∂x

dy + db
d x

K(x, b)− dy0

d x
K(x, y0 + ε)

}

= −
∫ b

a

∂K(x, y)
∂x

dy + db
d x

K(x, b)− da
d x

K(x, a)

− dy0

d x
lim
ε→0+

{K(x, y0 + ε)− K(x, y0 − ε)} . (B2)
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General recovery of overhanging rotational waves

For instance, a and b being constant and for a sufficiently well-behaving function ϕ, we
have

−
∫ b

a

ϕ( y)
x − y

dy = −
∫ b

a

∂ ln |x − y|ϕ( y)
∂x

dy

= d
d x

−
∫ b

a
ln |x − y|ϕ( y) dy + lim

ε→0+
ln(ε) [ϕ(x + ε)− ϕ(x − ε)] , (B3)

where the limit is zero if ϕ is Hölder continuous (sufficient but unnecessary condition).
This formula is a consequence of (B2) but also of the choice of the antiderivative of 1/(x −
y). Indeed, one can also write

−
∫ b

a

ϕ( y)
x − y

dy = −
∫ b

a

∂ log(x − y)ϕ( y)
∂x

dy

= d
d x

−
∫ b

a
log(x − y)ϕ( y) dy + iπϕ(x)+ lim

ε→0+
ln(ε) [ϕ(x + ε)− ϕ(x − ε)] ,

(B4)

where we used the relations log(ε) = ln(ε) and log(−ε) = ln(ε)+ iπ, since ε ∈ R+. The
relation (B3) is more convenient when dealing only with real variables, while (B4) is more
suitable for complex formulations. The reason behind the latter argument is because log(x)
can be continued analytically in the complex plane, which is not the case with ln |x|.
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