Dynamical systems 2 : Nodes, saddle, spirals, and centers

Type of equilibria : the Poincaré classification

Henri Poincaré has introduced a classification of linear vector fields of the plan which collects all these vector fields in a finite number of classes, according to their qualitative behaviour. This classification is important because it can be used in the study of the non-linear systems near their equilibria, as we will see below.

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}
$$

with A a real 2×2 matrix. Poincaré assumes that A is non-degenerate which means that 0 is not an eigenvalue. Let us denote by λ and μ the two eigenvalues of A; when they are complex we will also write $\alpha \pm i \omega$. One knows that it exists a basis of \mathbb{R}^{2} in which the associate linear map associate with A becomes one of the following :

$$
\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right)\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right)\left(\begin{array}{cc}
\alpha & \omega \\
-\omega & \alpha
\end{array}\right)
$$

If we denote by U and V the coordinates in this basis, it is easy to solve the differential system satisfied by U and V : in the first case one has $(U, V)=\left(e^{\lambda t} U_{0}, e^{\mu t} V_{0}\right)$, in the second $(U, V)=e^{\lambda t}\left(U_{0}+t V_{0}, V_{0}\right)$ and finally in the last case

$$
\binom{U}{V}=e^{\lambda t}\left(\begin{array}{cc}
\cos \omega t & \sin \omega t \\
-\sin \omega t & \cos \omega t
\end{array}\right)\binom{U_{0}}{V_{0}} .
$$

It is then easy to find the qualitative behaviour of solutions. Figure 1 gives this behaviour, according to the values of λ, μ and α, so has the usual translation of the names given by Poincaré for these various cases.
Linearization of a non-linear differential system near an equilibrium Let $\left(x^{*}, y^{*}\right)$ be an equilibrium of the differential system

$$
\left\{\begin{array}{l}
x^{\prime}=f(x, y) \tag{1}\\
y^{\prime}=g(x, y)
\end{array}\right.
$$

, so a common zero of f and g. Let $\varepsilon>0$ be a small parameter. Performing the changes of unknown $X:=$ $\frac{x-x^{*}}{\varepsilon}, Y:=\frac{y-y^{*}}{\varepsilon}$ corresponds to look at the equilibrium $\left(x^{*}, y^{*}\right)$ through a magnifying glass, as limitted (X, Y) corresponds to small $x-x^{*}$ et $y-y^{*}$. Elementary computations show that the corresponding system in X and Y is of kind

$$
\left\{\begin{align*}
X^{\prime} & =a X+b Y+o_{1}(\varepsilon) \tag{2}\\
Y^{\prime} & =c X+d Y+o_{2}(\varepsilon)
\end{align*}\right.
$$

where $o_{1}(\varepsilon)$ and $o_{2}(\varepsilon)$ are of order ε. So, up to ε, limited solutions (X, Y) are close to solutions of

$$
\binom{X^{\prime}}{Y^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{X}{Y}=A\binom{X}{Y}
$$

where matrix A is called the jacobian matrix at the equilibrium $\left(x^{*}, y^{*}\right)$ and can be easily computed through elementary calculus, as its coefficients are just partial derivatives of f and g computed at (x^{*}, y^{*}). Indeed, we have

$$
A=A\left(x^{*}, y^{*}\right)=\left(\begin{array}{ll}
\frac{\partial f}{\partial x}\left(x^{*}, y^{*}\right) & \frac{\partial f}{\partial y}\left(x^{*}, y^{*}\right) \\
\frac{\partial g}{\partial x}\left(x^{*}, y^{*}\right) & \frac{\partial g}{\partial y}\left(x^{*}, y^{*}\right)
\end{array}\right)
$$

We saw that linear systems are (up to degenerate cases) of one of the four types : (stable or unstable) node and saddle, spiral or center. We use this same terminology for non-linear equilibria. Please observe that, whereas a linear center is build up with closed (periodic) solutions, in the non-linear case the solutions may be non-closed and could "spiral weakly" in or outwards. The type of the behaviour of the linearized system is sometimes called the nature of the equilibrium : it gives useful information on the qualitative behaviour of the system near the equilibrium which is easy to compute.

As an example, let us look at two following non-linear differential systems :

$$
\left\{\begin{array}{l}
x^{\prime}=(2-x-2 y / 3) x \tag{3}\\
y^{\prime}=(2-2 x / 3-y) y
\end{array}\right.
$$

Real eigenvalues λ and μ

$0<\lambda<\mu$		Degenerate unstable node
$0<\lambda=\mu, A$ diagonalizable		Unstable node
$0<\lambda=\mu, A$ non-diagonalizable		Saddle
$\lambda<0<\mu$		Stable node
$\lambda=\mu<0, A$ diagonalizable		
$\lambda=\mu<0, A$ non-diagonalizable		

Complex eigenvalues $(\alpha \pm i \omega, \omega \neq 0)$

Fig. 1 - Poincaré classification of linear systems

$$
\left\{\begin{array}{l}
x^{\prime}=(1-x-2 y) x \tag{4}\\
y^{\prime}=(1-2 x-y) y
\end{array}\right.
$$

Above the picture of the corresponding field of directions. In both of these examples there are three equilibria located at the coordinate axes, namely $(0,0),(0,2),(2,0)$ and a fourth equilibirum with nozero coordinates : $\left(\frac{6}{5}, \frac{6}{5}\right)$ for the first example and $\left(\frac{1}{3}, \frac{1}{3}\right)$ for the second one. One gets the nature of equilibria by linearizing the system at each equilibrium - actually, compute the jacobian matrix at these points- and compute the eigenvalues. Here we see that the equilibrium "with non-zero coordinates" is a stable node in the first case and a saddle point in the second one. Having a picture available, we can easily see this too.

