Université de Nice Département de Mathématiques NOM: PRENOM:

L3 MASS Calcul Stochastique appliqué la finance Date: 14 mars 2012

Feuille-réponses du TD 7Modèle de Tedeschi sans période d'exclusion

Exercice 1. : Modèle simplifié de Tedeschi On considère un modèle de Tedeschi sans temps d'exclusion. La seule sanction en cas de nonre le de bé il

mboursement du prêt et des intérêts est la perte du droit automatique à un nouveau prêt et renvoi dans le statut de demandeur. Rappelons qu'un demandeur n'a qu'une probabilité γ e se voir attribuer un prêt : on dit alors qu'il devient un bénéficiaire B . On suppose que tout enéficiaire a une probabilité α de rembourser son prêt : dans ce cas il reste bénéficiaire, sinon redevient demandeur.	
1.	Ecrire le diagramme de cette chaîne de Markov à deux état B et D ainsi que sa matrice de transition P .
2.	Trouver son vecteur propre à gauche unitaire π^* associé à la valeur propre 1 : c'est une distribution stationnaire de la chaîne.
	Choisir $\alpha=0.90$ et $\gamma=0.50$, calculer π^* et vérifier, en utilisant Scilab, qu'il s'agit bien d'une distribution stationnaire. Quelles commandes Scilab avez-vous utilisées ?
3.	Recommencer avec $\alpha=0.97$ et $\gamma=0.10.$ La proportion de bénéficiaires a-t-elle augmenté ? Pouvez-vous l'expliquer ?
4.	On suppose que la proportion initiale de bénéficiaires dans la population est de 10%. Calculer dans chacun des deux cas précédents la proportion après 50 étapes, après 100 étapes. Qu'observez-vous?

Exercice 2. : Modèle de Tedeschi avec deux types d'emprunteurs

On distingue à présent deux types d'emprunteurs : les sûrs S et les risqués R de probabilités de remboursement respectives égales à $\alpha_S > \alpha_R$. Une nouvelle fois, la seule sanction en cas de non remboursement est que l'emprunteur perd le statut de bénéficiaire et redevient demandeur, toujours avec un proba γ de redevenir bénéficiaire. On suppose que la probabilité qu'un bénéficiaire ayant obtenu un prêt soit sûr est β et celle qu'il soit risqué $1 - \beta$. On modélise cette situation par une chaine de Markov à trois états $S = \{S, D, R\}$ et avec la matrice de transition suivante :

$$\mathbb{P} = \begin{pmatrix} \alpha_S & 1 - \alpha_S & 0 \\ \gamma \beta & 1 - \gamma & (1 - \beta)\gamma \\ 0 & 1 - \alpha_R & \alpha_R \end{pmatrix}$$

1. Tracer le diagramme de cette chaîne de Markov (X_t) . Préciser que vaut la probabilité $P(X_{t+1} = R/X_t = D)$ et expliquer cette valeur.

2. Pour $\alpha_S=0.92,\ \alpha_R=0.88,\ \beta=0.40$ et $\gamma=0.30$; choisir une distribution initiale et calculer son image au temps $t=50,\ t=500.$ Qu'observez-vous?

3. Recommencer avec $\alpha_S = 0.98$, $\alpha_R = 0.96$ et $\gamma = 0.50$.

4. Dans ces deux cas, calculer au moyen de Scilab (la commande utile est spec, voir l'aide en ligne) le vecteur propre unitaire de \mathbb{P} de valeur propre 1. Comparez avez les résultats des questions précédentes.