Université de Nice Département de Mathématiques NOM :

PRENOM:

L3 MASS, année 2011-2012

Calcul Stochastique et finance (semestre 2)

Date : Groupe :

Calcul stochastique : TP 11 Etude du modèle de Ho et Lee

Le modèle de Ho et Lee est un modèle mathématique pour la valeur d'un zéro-coupon Z_t^T , $t,T\in [0..T_{\max}]_{\delta t}=:\mathbb{T},\ \delta t:=T_{\max}/N,\ t\leq T,$ où Z_t^T désigne la valeur à la date t d'un contrat assurant le paiement de 1 EUR à la date T. On a donc $Z_T^T=1$ pour n'importe quel $T\in\mathbb{T}$. C'est un modèle probabiliste sur un ensemble Ω servant à coder tous les états du monde envisagés par le modèle, filtré par une filtration $\mathbb{F}=(\mathcal{F}_t)_{t\in\mathbb{T}}$ servant à coder l'information disponible à la date $t\in\mathbb{T}$. En fait, dans ce modèle, la seule information pertinente est celle contenue dans la suite des valeurs des v.a. $(X_t)_{t\in\mathbb{T}^*}$, $\mathbb{T}^*:=]0..T]_{\delta t},\ X_t\in\{0,1\},$ les X_t de même loi $\mathbb{P}^*(X_t=0)=\pi,\ \mathcal{F}_t$ -mesurables, et indépendantes de $\mathcal{F}_{t-\delta t}$ Pour tout $t\in\mathbb{T}^*$, on pose $J_t:=\sum_{s\in]0..t]_{\delta t}}X_s$ et on note n et $k,n\leq k$, les entiers tels que $t=n\delta t$ et $t=k\delta t$. La caractéristique d'un modèle de Ho et Lee est que les zéros coupons $Z_t^T(\omega)$ appartiennent à un arbre binaire recombinant, c'est-à-dire que, $Z_{n\delta t}^T(\omega)$ ne prend que n+1 valeurs distinctes, ne dépendant que de la valeur $j=J_{n\delta t}(\omega)$. Pour $0\leq j(=J_{n\delta t}(\omega))\leq n\leq k$, nous noterons $Z_{n\delta t}^{k\delta t}(\omega):=\mathbf{Z}(\mathbf{n},\mathbf{j},\mathbf{k})$.

- 1. Pourquoi a-ton Z(k, j, k) = 1?
- 2. Nous avons montré que tout modèle de Ho et Lee est sans arbitrage, et qu'il satisfait à :

$$Z_t^T = \frac{Z_{t-\delta t}^T}{Z_{t-\delta t}^t} \eta(\theta^T(t), X_t) , \text{ où } \theta^T(t) := T - t,$$

$$\tag{1}$$

pour une fonction η définie par le choix d'un $\delta > 1$, caractérisant, avec $\pi \in]0,1[$, le modèle retenu, définie par

$$\eta(\theta, 0) := \frac{1}{\pi + (1 - \pi)\delta^{\frac{T - t}{\delta t}}} \text{ et } \eta(\theta, 1) = \eta(\theta, 0) \cdot \delta^{\frac{T - t}{\delta t}}$$
(2)

Les valeurs des Z_0^T , $T \in \mathbb{T}$, peuvent être choisies de manière arbitraire, en pratique comme étant les valeurs spot des zéros-coupons observées sur le marché à l'instant t = 0.

Calculer $\mathbb{E}^*(\eta(\theta, X_t))$ pour tout θ et t dans \mathbb{T}^* , et où \mathbb{E}^* désigne l'espérance pour la probabilité \mathbb{P}^* .

3. Voici une implantation du modèle pour lequel on a $T_{\max} = N$ (et donc $\delta t = 1 = \text{delta_t}$), $t = n*\text{delta_t}$, $T = k*\text{delta_t}$, $J_t(\omega) = j$, $T - t = 1*\text{delta_t}$, $T = k*\text{delta_t}$, $\eta(T - t, X_t(\omega)) = \text{eta}(1*\text{delta_t}, x)$, pour $x = X_t(\omega)$, $Z_t^T(\omega) = Z(n, j, k)$, pour $J_t(\omega) = j$, avec les choix $\pi = pi := 0.5$, et $\delta = \text{delta} := 1.01$.

¹C'est le choix $\delta(=\eta(\delta t,1)/\eta(\delta t,0))>1$ qui exprime qu'un $X_t(\omega)=1$ code un "up" et $X_t(\omega)=0$ code un "down"

```
// Modèle de Ho et Lee
clear;Nmax=8;Tmax=Nmax;delta_t=Tmax/Nmax;
pi=0.5;delta=1.01;r=0.025;
function z0=Z0(k); z0=(1+r)^(-k*delta_t); endfunction;
plot(0 :Nmax,Z0(0 :Nmax));
//
function ee=eta(1,x);
if x==0
ee=(1^1)./(pi+(1-pi)*delta^1);
else ee=delta^l./(pi+(1-pi)*delta^l);
endfunction;
// représentation des eta extrèmes
xset("window",1);clf(1);
Nprime=1000; for x=0 :1 plot(0 :Nprime,eta(0 :Nprime,x)); end;
//calcul des valeurs de la fonctions Z(n,j,k)=ZZ(n+1,j+1,k+1)
ZZ=ones(Nmax+1,Nmax+1,Nmax+1);
for k=0 :Nmax
ZZ(0+1,1,k+1)=ZO(k);
end;
for n=1 : Nmax
for k=n :Nmax
ZZ(n+1,0+1,k+1)=eta(k-n,0)*ZZ(n-1+1,0+1,k+1)/ZZ(n-1+1,0+1,n+1);
for j=1:n
ZZ(n+1,j+1,k+1)=eta(k-n,1)*ZZ(n-1+1,j-1+1,k+1)/ZZ(n-1+1,j-1+1,n+1);
end;
end;
function z=Z(n,j,k) //t=n*delta_t et T=k*delta_t
z=ZZ(n+1,j+1,k+1);
endfunction;
// Dessins : représentation des évolutions possibles de Z(n,j,N) pour N=Nmax
xset("window",2);clf(2);
N=N\max;
//courbes "down"
for j=0 :N plot(j:N,Z(j:N,j,N),'-b'); end;
//courbes "up"
for n1=0:N
Vecteur=zeros(N-n1+1);
for nn=0 : N-n1
Vecteur(nn+1)=Z(n1+nn,nn,N);
end;
plot(n1 :N, Vecteur, '--r');
end;
xs2gif(2,'arbHoLee.gif');xs2eps(2,'arbHoLee.eps');xs2fig(2,'arbHoLee.fig');
 (a) Comment a été choisie la fonction T \mapsto Z_0^T constituée par les valeurs initiales de Z_t^T?
```

(b) Exercez-vous à lire l'arbre des valeurs de Z^8 : que vaut Z^8_8 ? Que vaut Z^8_0 et retrouver cette valeur sur la courbe StructureParTermesInitiale? Que vaut Z^8_4 après deux "up" et deux "down"? Que vaut Z^8_6 après rien que des "up"? On dit dans ce dernier cas que le zéro-coupon d'échéance T=8 est " $above\ par$ "; pourquoi l'existence d'une telle situation paraît-elle être une critique à formuler contre ce modèle?

$$Z_8^8 =$$

$$Z_0^8 = =$$

Après deux "up" et deux "down" $Z_4^8 =$

Après rien que des "up" $Z_6^8 =$

L'existence de situation où comme celle envisagée ci-dessus pour \mathbb{Z}_6^8 surprend car elle signifie que ...

4. Taux actuariels : On appelle taux actuariel d'un zéro-coupon le taux noté A_t^T (ou a(t,T)) tel que

$$Z_t^T (1 + A_t^T)^{\frac{T-t}{\delta t}} = 1.$$

Il n'est donc défini que pour t < T.

(a) Calculer A_t^T en fonction de Z_t^T . Que constatez-vous pour t = T?

(b) Définir une fonction A(n,j,k) correspondant au zéro-coupon $Z_{n\delta t}^{k\delta t}(\omega)$ quand $J_{n\delta t}(\omega)=j$, qui est lui de valeur Z(n,j,k).

(d) Comment se manifeste ici ce que vous avez observé pour $Z^{\mathfrak s}_{\tilde v}$ dans la question précèdente	(c)	Représenter l'arbre des taux pouvant lui succéder dans ce	actuariels joignar modèle.	nt chaque valeur	r de A_t^T aux deux	x valeurs $A_{t+\delta t}^T$
(d) Comment se manifeste ici ce que vous avez observé pour Z^8_0 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z^8_6 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
(d) Comment se manifeste ici ce que vous avez observé pour Z_6^8 dans la question précèdente						
	(d)	Comment se manifeste ici ce	que vous avez ob	servé pour Z_6^8 c	lans la question p	orécèdente.