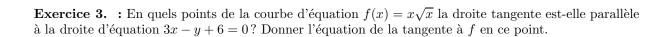
NOM:	Date:
PRENOM:	Groupe:

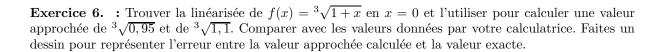
Analyse : Feuille de réponses du TP 1 Approximation linéaire

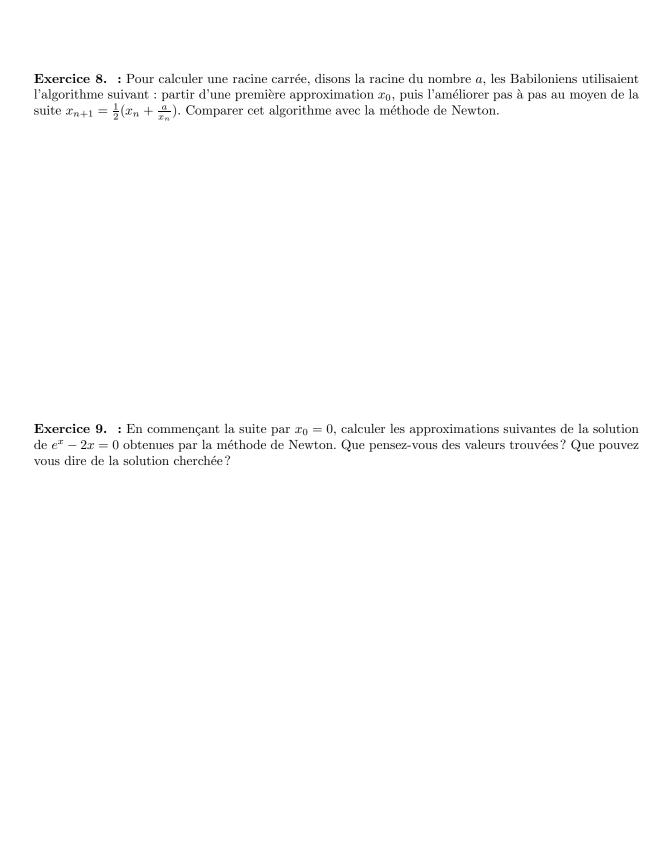

On répondra aux questions posées aussi clairement que possible dans les espaces prévus et on remettra cette feuille de réponses en fin de TP à l'enseignant chargé du TP.

Rappel : On se souviendra que l'équation d'une droite de pente a et passant par le point (x_0, y_0) est $y = a(x - x_0) + y_0$ et donc celle d'une droite passant par les deux points (x_0, y_0) et (x_1, y_1) est $y = \frac{x_1 - x_0}{y_1 - y_0}(x - x_0) + y_0$.

Exercice 1. : Calculer la tangente à la courbe d'Agnesi¹ $f(x) = \frac{1}{1+x^2}$ au point $(-1, \frac{1}{2})$. Représenter la courbe et sa tangente (en vous servant de votre calculette graphique par exemple).

Exercice 2. : Trouver les points (x, f(x)) du graphe de $f(x) = x^3 - x^2 - x + 1$ où la tangente est horizontale.


 $^{^1{\}rm Maria~Gaetana~Agnesi,~math\'{e}maticienne}$ italienne, 1718-1799 (voir par exemple http://fr.wikipedia.org/Maria_Gaetana_Agnesi).


Exercice 4. : Calculer la linéarisée L(x) de $f(x)=x^3$ en $x_0=1$. Même question pour $f(x)=\sqrt[3]{x}$ en $x_0=-8$.

Exercice 5. : Vérifier les approximations linéaires suivantes (calculées en x=0) :

$$\sqrt{1+x} \simeq 1 + \frac{1}{2}x \quad , \quad \frac{1}{1+x} \simeq 1 - x$$

$$\sin x \simeq x \quad , \quad \cos x \simeq 1$$

$$e^x \simeq 1 + x \quad , \quad \ln(1+x) \simeq x$$

Exercice 7.: En commençant la suite par $x_0=2$, calculer les deux approximations suivantes x_1 et x_2 de la solution de $x^3-2x-5=0$ obtenues par la méthode de Newton. Même exercice pour $x^5-10=0$ avec $x_0=1,5$.

