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Chapter 1

Introduction

1.1 An overview of the thesis

In the real life, the poor people rarely have chance to borrow money from the traditional bank
since they do not have jobs, collateral, record of credit history, etc. Instead of this, they can
borrow a small amount of money from an Institute of microfinance, named microcredit. In par-
ticular, microcredit consists in providing small loans, which typically does not exceed 200$ to
poor and low-income people that are excluded from the traditional banking system. Providing
microcredit access to poor people to help them start their own business is a great idea to help
them improve their life.

In this work, I use the set of microcredit data in Tunisia, collected by Nahla Dhib. She did a
survey on 404 people in Tunisia who received the microcredit and gathered information about
them with 24 parameters of interests. In this set of data, the set of 23 parameters (called
predictor variables) are used to predict the economic effect they did after receiving microcredit
loans. The purpose of my work is to searching for the subset of predictors which are the main
factors affecting the result of output, economic effect. In Nahla’s survey, the economic effect
is measure by the impact of access to microcredit on economic situation, means if it improves
the behaviour of borrowers based on their economic activity. For each observation, a person
is regarded as having effect to the economy, i.e economic effect if after having access to mi-
crolending, borrower has role on economic cycle such as consume, invest, pay tax, improve his
social level and enhance the standards of life, etc. In contrast, borrower is marked as having
no economic effect if after receiving the microcredit loan, he/she is still in same situation and
make default.

Of course, we can keep all 23 predictors in the model used to predict the output, but this
is really big model. It may contains some variables that may not be good predictors for the
output since some of them may be redundant, others may have no relation with the output
variable. On the other hand, having too many predictors is not very easy to interpret the data.
In this case, searching for a small set of predictors that still explain well the output will be a
good idea in building final model.

To deal with selection variables problem, Akaike developed a criterion named Akaike informa-
tion criterion (AIC). It was first announced in a symposium in 1971 and published in 1973. It
is a measure of the relative quality of statistical models for a given set of data. For a given a
collection of models built by observed data, AIC estimates the quality of each model, relative
to the other models. Given a set of candidate models, by process of constructing AIC criterion,
the preferred model will be the one with the minimum AIC value, see [3], page 619.



As a competition to AIC, Bayesian information criterion (BIC) was introduced by Gideon E.
Schwarz and published in 1978. BIC is also a criterion for model selection among set of can-
didate models, the preferred model will be the one with the lowest BIC value. BIC criterion
is closely related to AIC criterion, the only different between these two criterion is the penalty
term for the number of predictor variables in the model, see [5], page 461. The details of AIC
and BIC criterion will be given in chapter 2.

In my work, I will use some statistical tools as linear regression model, logistic regression
model, AIC and BIC criterion to build two optimal models to predict the output. These
models contains small subsets of predictor variables which seem to be the most important
factors in explaining the output. Run these statistical tools, I use R-software and the observed
data collected by Nahla Dhib to build the final optimal models. In addition, the fitness of the
models, the stability of the variables on the models and some comments on the results are also
presented, based on the results obtained by running R functions on the real data.

1.2 Outline

In this thesis, I organize the contents as follows:
e In chapter 1, I present the preview of the thesis, and include the outline of the thesis.

e In chapter 2, I provide some necessary statistical tools used in variable selection method
in chapter 3. In section 2.1, I start with the Gaussian linear regression model, whose the
output variable is real number and the error term is assumed to be normally distributed,
followed by estimating the parameters of this Gaussian model using maximum likelihood
method. In addition, the asymptotic property of maximum likelihood estimator of the
parameters under the regular assumption of the density function is also provided. Start-
ing with Gaussian linear regression model will be an efficient way to understand logistic
regression model in the next section.

The linear logistic regression model whose the output variable takes binary values is pre-
sented in section 2.2. In this section, I will discuss about the estimation of parameters by
maximum likelihood and numerical method, the interpretation of the model like p-value,
odds ratio, the Wald confidence interval of odds ratio, residual deviance of the model.

The chapter ends up with the model selection in section 2.3. 1 start this section by
the derivation of Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC). The later part is on three variable selection algorithms: forward selection, back-
ward elimination and the mix of these two algorithms, backward stepwise algorithm. The
final algorithm, backward stepwise algorithm, will be used to build AIC and BIC optimal
models using R-software in chapter 4.

e In chapter 3, I present the variable selection using the observed microcredit data in
Tunisia, collected by Nahla Dhib. I start this chapter with the brief description of the
data of Tunisia in section 3.1, and then use this data to perform the logistic regression
model using function glm() of R-software packages in section 3.2.

In section 3.3, I use backward stepwise algorithm along with AIC and BIC criterion on
the data to build two optimal models. These optimal models will be used in prediction of



economic effect, instead of the full model given in section 3.2. The fitness of the models,
the stability of remaining variables in each of these optimal models will be presented at
the end of the this section.

e In chapter 4, I will give some comments on AIC and BIC optimal models obtained in
chapter 3. In addition, the final choice of the model, according to my point of view, will
be presented.



Chapter 2

Statistical tools

As mentions in the introduction part, variable selection plays an important role in building a
statistical model. The purpose of this chapter is to provide some necessary statistical tools
used in variable selection method in chapter 3.

The chapter is divided in to three parts.

In section 3.1, the Gaussian linear regression model is introduced. I start firstly with the defi-
nition of linear regression model and then is the Gaussian linear regression model whose error
is assumed to be normally distributed. After that, the maximum likelihood method is intro-
duced as a method to obtained the parameters of this Gaussian model. Starting with Gaussian
linear regression model will provide an efficient way to understand logistic regression model.
The assumptions and the steps I use to find the estimators of parameters in Gaussian linear
regression model are mainly from reference [11] , chapter 3.3.

In section 3.2, I discuss about the linear logistic regression model. The main different between
this model with the Gaussian model is its output variable takes binary values or dichotomous
while in Gaussian model, the output variable is real number. I begin with the definition of
logistic regression model, the estimation of parameters by maximum likelihood and numerical
method. The later part of this section is about the interpretation of the model, like p-value,
odds ratio, the Wald confidence interval of odds ratio, residual deviance of the model are pre-
sented. The knowledge of this section is mainly derived from reference [1] chapter 3, Appendix
Bl1, reference [2] chapter 2 and reference [4] chapter 2, 4.

The final section 3.3 is on model selection. In the first part of this section I will start with
two popular criteria used to perform selection variables, Akaike Information Criterion (AIC)
introduced by Akaike (1973) and Bayesian Information Criterion (BIC) derived by Schwarz
(1978). The later part is about step by step variable selection algorithm. In this part, I will
discuss about three algorithms: forward selection, backward elimination and the mix of these
two algorithms, stepwise algorithms, using in selecting variables in detail. The knowledge of
this section follows the lectures of J.S. Cavanaugh 2012, lecture 5, (see [6]) and L. Wasserman
2004, lecture note 16, (see [7]).

2.1 Gaussian linear regression model

2.1.1 Definitions

Regression is a method for studying the relationship between an output variable (response
variable) Y and the input variables (explanatory variables) X', ..., X™. In this section, we will



study a kind of regression model named Gaussian linear regression model. This is the linear
regression model whose error is assumed to follow a normal distribution. We will start with
the definition of linear regression model, Gaussian linear regression model and end up with the
estimation of the parameters in the Gaussian model using the method of maximum likelihood.
The asymptotic property of maximum likelihood estimator of parameter is also present. This
property will be used in the next two sections, 2.2 and 2.3.

Now, suppose that we have a data set of n independent observations. Let Y = (Y7,...,Y,)7T
be the output vector and X = (1, X!, ..., X*) be an n x (k + 1) dimensional matrix where
1=(1,...,1)T € R" is a constant vector, X7 € R" represents the j** input variable in the data
set, 7 =1,...,k. The matrix X can be written as

1 r11 12 ... T1k

1 To1 To2 ... T2k

X =
1 21 o ... Zu

the i row of X except the first entry represents the i** input observation.

Definition 1 (Linear regression model) Let Y € R" be a random output vector and
X1 ..., X* € R" be input vectors defined on a probability space (2, P). The linear regres-
sion model relating output variable Y to a set of input variables X', ..., X* is an equation of
the form

Y =00+ /X 4+ .. + 68X +e
=Xp+e€
where B = (Bo, B, ..., Br)T is k+ 1-dimensional vector of coefficients, € = (g, €1, ..., €,)T is n-
dimensional vector of random error in the model. In this setting, the observations are assumed
to be independent, the input vectors X7,j = 1,...,k are linear independent, the random errors
€ are iid random variables with Ele;] = 0, Var(e;) = o® for alli=1,...,n

Definition 2 (Gaussian linear regression model) The linear regression model given in
Definition 1 is called a Gaussian linear regression model if it satisfies the following assumptions

e ¢ is a random error vector and € ~ N(0,0%1,)
o rank(X) ==k

Suppose now that we are given a data set of n independent observations and they satisfy the
assumption in the Gaussian linear regression model. We want to express the output variable as
the linear combination of input variables to get the results we want to know from these data.
We do not know the true values of parameters [y, f1, ..., Br because we can not collect the
whole data in the real life. Instead, we will deal with problem of estimating the values of pa-
rameters by using the observed data, and some statistical methods. The method of maximum
likelihood estimator is one of the most convenient ways to obtain these estimations.

2.1.2 Estimating parameters of Gaussian linear regression model by
the Maximum likelihood method

The purpose of this subsection is to introduce the maximum likelihood method to estimate the
parameters of density function of random output vector Y = (Y1,...,Y,)T in Gaussian linear
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regression model. The concepts derived from this subsection will also be used to compute the
parameters in a logistic regression model and to derive AIC and BIC in sections 2.2 and 2.3.

e Maximum likelihood method

Consider an n-sample, regarded as a random vector Y, Y = (Y1,...,Y,)T, where Y;,i =
1...,n are independent identically distributed (i.i.d) random variables with probability
density functions, f(y;, ), where 0 is vector of parameters specified f and y,...,y, are
its observation values. Suppose 8 = (61,...,0,)7 € © = R* where O is the parameter
space. Let y = (y1,...,yn)?, the joint probability density function of the Y}s is given by

n

i=1
Recall that the likelihood L(#) and log-likelihood functions [(#) of this n-sample are given
by

L(O) = L(~0) = L(y,0) = [ ] £(5:,0)

and

10) =1(-,0) = U(y,0) = logL(y,0)) = Z log f(y:, 0)

Note that although these likelihood and log-likelihood functions depend on the observed
sample values y = (y1,...,%,)7, they are regarded as the functions of the parameter 6.

In the real life, we do not know the true joint density function, since we do not know
the true values of parameters . Instead, we can obtain the estimation of the parameters
by using observed data and maximum likelihood method is one of the convenient ways
to estimate them. The goal of maximum likelihood method is to find the estimator of
parameters that makes the observed data best fit with the estimated data.

Denote the estimator of 6 by 6. We note that the parameter vector @ is a fixed vector of
real numbers and its estimator 6 is a random vector and we can determine its distribution.
In general, it is often quite difficult to maximize the likelihood function directly. Instead,
we usually use the log-likelihood function to work with. Since the logarithm function is
monotonic, then any # that maximizes the likelihood function also maximizes the log-
likelihood function.

Definition 3 The maximum likelihood estimation of 6, denoted by 0% is any value of the
parameter vector that maximize the likelihood function (or log-likelihood function) with
respect to the parameter vector 0. That is,

0" =0 (y) = argmax i, 0) = argmax » lo iy 0

(y) = argm i]j[f(y ) = argm 2_; 97 (i, 0)
The mazimum likelihood estimator 0, of 0 is the random vector obtained by replacing
values y by sample Y, i.e, 0, = 0%(Y)

Suppose that the log-likelihood function { (0) is twice continuously differentiable. To find
the maximum likelihood estimator 6 of 6, we solve the equation:

ol ol ol
250 = (a_m""’M>(9)_0

9



and if this solution satisfies the condition that its Hessian matrix is negative definite:

021
62

then it will be the maximum likelihood estimator én of 6.

g) <0

Example: Let Y = Y),...,Y, be an n-sample where Y/s,i = 1,...,n are iid random
variables, Y/s follow a Bernoulli distribution with the density functions f(y;,p), p is the
probability of a success. Recall that

flyi,p) =p¥(1—p)'¥

The likelihood and log-likelihood functions of this sample are

n n

Lp) =11 fGip) =] (1 =)'
and
I(p) = Zn;wg(f(yup))
= i{yilog(p) + (1 = yi)log(1 —p)}

= Z?/ilOg(p) + (n — Zyi)log(l —p)

The maximum likelihood estimator p of p is the solution of equation

lp) 1< 1 - B
Tp_E;%_ﬂ<"—Zy’) =0

i=1

hence p is given by

p=

S|

Z Yi-
i=1

Now, we will study the asymptotic property of this maximum likelihood estimator 0, of
0. This property can be derived under some regular assumptions on the probability den-
sity function f(y,0). These assumptions and the derivation of the property are mainly
obtained from reference [11], chapter 3.

The regular conditions on the probability density function f(y,#) of a random variable
are stated as following

1. The function logf(y,0) is three times continuously differentiable with respect to
0=(01,...,00)T

10



2. There exist integrable functions Fi(y), F5(y) and H(y) on R™ and a real number
m > 0 such that for any § € ©

H(y)f(y,0)dy <m

]Rn
and Dlogf Flog]
0g 0g
g0, (00 <), 5 20, (0) < Fa(y)
Plogf

—(0) < H L, l=1,...,k
69180]801( )< (y)7 Z7]7 ) ’

3. Forall # € ©,

Olog f Olog f

(0)f(y,0)dy < oo, i, j=1....k

Proposition 1 Suppose that the probability density function f(y,0) of a random variable
Y satisfies the above reqular assumptions, then

S Y
and E{_ g_;i(g)} _ EK%(@)) (%(9))1 (2.2)
where %(0) _ <aaz(£)7_waééi)>7 g—;i(e) = (%w))i,jzl 77777 ;

Proof

We have

for all j = 1,...,k. Here, we use the second regular condition of p.d.f f(y,#), then the
integration and differential operators are interchangeable.
Since



0?1 o ( ol

o) 1 of
0, <f(y,9) a_ej(y’9>)
- e (10 o (1:0) + 7 a.(a—f@@)

f*(y.0) 06 90, f(y,0) 00; \ 06,
o al ol 1 g (0f
then
0?1 [ ol ol 1 o (0f
E Y, =E Y, Y, —(Y.
{89 00, ( 9>1 i 06, a6, 0)89 (¥, 6) + f(Y,6) 00, (89j( ’9>)1
o] ol ol 1 o (0f
~ B[ g V0) 5 (V20 } v [ a9 (o 001 0.0) )
] 8[ 81 0 af
ol 81
= _E{ae (Y, 9)89 (Y, 0)]
forall 7,7 =1,...,k and # € ©. Here, we use again the second regular condition of p.d.f

f(y, ) for the second term of expectation on the right hand side. Thus
02 ol ol \"
-0 -={(5) (5) |

The matrix E[ — 2% (9)} is called the Fisher information matrix, denoted by J(f). As a
consequence of proposition 1, we have following property:

Corolarry 1 Let S(0) = S(Y,0) = 2L(9), S(0;) = S(Y;,6;) = (9) j=1,...,k and

denote the variance-covariance matriz of vector S(0) by V(S(0)). Then we have

Proof.

The ij™" entry of V(S(0)) is

Cov(5(6:), 5(6;)) = E[S(6:)5(6;)] — E[S(6:)]E[S(6;)]
— E[S(6:)S(0;)] since E[S(6;)] =0

vison =£[(20)(20) | =0

12
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Now, we will present the asymptotic normality property of maximum likelihood esti-
mator (MLE) of 0, 0, = ,(Y1,...,Y,). The index "n” here means that the MLE is
subscribed by sample size n. Note that we are considering the sample Y = (Y;,...,Y,)7T,
where Y;,i = 1...,n are independent identically distributed (i.i.d) random variables with
probability density functions f(y;, @), y1,- .., y, are its observation values. Again, denote

Y= <y17"'7yn)T7

Let 0y be true unknown parameter vector of the jointly density function f(y,@).

First, we state the asymptotic property of MLE.

Proposition 2 The MLE 0, of Oy has asymptotic normality property, i.e, the random
vector \/n(0,, — 6y) converges in law to a k-dimensional normal random vector with the
mean 0 and the variance covariance matriz J 1 (0y). In the other words,

(6, — ) —= X where X ~ Ny(0, T7(6))
n—oo
Sketch of proof
In this proof and then, I will use the notation \/n(3 — ) SEEEN N(0,[J(B)]™1) to demon-
n—oo

strate that the random vector \/ﬁ(én — fp) converges in law to a k-dimensional normal
random vector with the mean 0 and the variance covariance matrix J~(6p).

al( 9)

Expanding =5* around ¢y by using Taylor expansion, we have

_6‘5(9n)_0l(90) 9%1(6o)
90 06 062

(6, — 0o) + 0(6,, — 0))?

From this Taylor expansion, ignore the error term, we can obtain the following approxi-
mation equation:

_PUbo) 5 81(90)
Denote
~l(6y) d*1(6o) :
S(0y) = 50 and [1(0) = — 502 then equation (2.3) becomes
1(0)(6, — o) = S(60) (2.4)
Using Central limit theorem, corollary 1, E[S(6y)] = 0 and V[S(6y)] = J(6y), we get
1
Vi 5(60) ~ 0] £ (0, (60) 25
by Law of large number, we have
Lr00) — s B0 = E| - Zi0)] = 06 2.6
E(O>m[<0)]_ —@()—(0) (2.6)

From equation (2.4) we have

Vil o) = V| =500 | 11660 R @)

13



Thus, from equations (2.5),(2.6) and (2.7) and Slutsky theorem (see [12]), v/7(6, — 6p)
converges in law to a k-dimensional normal random vector N (0, J7!(6y)), in the other
words,

V0, — 0p) —— N(0, J71(6p))

n—o0

Estimate parameters of Gaussian linear regression model

Recall that we are given the model
Y =XG+e¢

where Y = (Yy,..., V)T, X = (1, X, ..., X™), 8= (B0, P1,---,8:)", and e ~ N(0,0°%L,).
We rewrite this model as
Y;:Xlﬁjtez,z:l,,n

where X; is the i"* row of matrix X, ¢, ~ N(0,0?). Since X;, 3 are real, Y; is normally
distributed with mean X;3 and variance 2. The probability density distribution of Y; is
given by

2 _ 1 _L o R\2
o (50) = —sean( = 5t - X

then the likelihood function L(f3,0?) will be

L(B,0%) = nyz,ﬁa :H\/;?“p( %(yi—XﬁV)

and the log-likelihood function I(, 0?)

1(8,0%) = log(L(B, %))
= —glog(27r02) - T; Z(yz - Xip)?

=1

Ly xpTy - xp)

n 2
= —§log(27ra ) — 52

To obtain the estimator (3, 0?), we solve the following equations

{ 9(8,0%) = —55 (—2X Ty + 2XTXS) =0
Z(B,0%) =~ + 5y — XB)T(Y — XB) =0

given the sample Y, we get the solution
. 1 . .
f=XTX)'XTY and 6= —(y—XB)T(Y - Xp)
n
We see that B is an unbiased estimator of 5 and it is normally distributed. Indeed,

E[f]

E[(XTX)'XTY]

(XTX) ' XTE[Y]

(XTX)'XTXB  since E[Y]=Xp
g

14



Since Y is Gaussian vector (its components are Gaussian random variables) and [ is a
linear function of Y, 3 follows a normal distribution with the variance-covariance matrix
given by

V3] = VI(XTX) "' XTY]
= (XTX)"'XTVY)xX(xTXx) ™
=o?(XTX)™!

2.2 Linear logistic regression model

In Gaussian linear regression model, the output variable Y is a continuous random variable,
taking value in R, and the residuals of the model are normally distributed. In this case, we
build a model to describe directly the relationship between output variable and the set of input
variables. When the output variable Y is categorical, i.e discrete variable, the residuals of the
model do not follow normal distribution. Thus, we can not use the Gaussian linear regression
model to express the relationship between output and input variable directly. Instead of this,
we define a logit link function of Y and use this logit function as the response (output) in
the regression equation instead of just Y. Such a model is called logistic regression model. In
this section, I will study the case when the input variable Y is measured on binary scale for
example, the response may be yes/no, pass/fail, win/lose, alive/dead or healthy/sick. In this
case, we usually use binary values 71”7 and ”70” to describe Y, thus Y is assumed to follow a
Bernoulli distribution.

First, I will start the section with the definition logistic regression and finding the parameters
in the model. The maximum likelihood and the numerical method named Newton-Raphson
Iteration will be used together to find the estimators of parameters.

After that, the interpretation of the model likes the fitted probability of the model, the signifi-
cant and confidence interval of the parameters, the odds ratio and confidence interval of odds
ratio will be presented. Finally, two standard goodness-of-fit test statistics named Pearson
goodness-of-fit and the residual deviance are shown at the end of this section.

2.2.1 Logistic regression model

Suppose that the output variable Y takes binary value ”1” or 707, then Y, given an input
variable X, follows a Bernoulli distribution. Let p(X) =P(Y = 1|X), P(Y = 0|X) =1 — p(X),
then we have

EY|X]=1-PY =1X)+0-PY =0/X) = p(X)

Define an odds as the probability of a success compared to the probability of a failure occurred

p(X)

odds = ————
1 —p(X)

and the logit function of p(X) by

logit(p(X)) = log(odds) = log %

We see that the odds takes values in the interval [0, 0o) since p(X) takes values from 0 to 1, then
the logit of p(X) will has range in (—o0,00). The relationship between p(X) and logit(p(X))
is a continuous relationship, see Figure (2.1) below.

15



logitlp)

T
00 02 04 06 08 1.0

Figure 2.1: Relationship between p(X) and logit p(X)

Definition 4 (Linear logistic regression model)

Given an n x (k + 1) dimensional input matriv X = (1, X*,...,X"?), X9 j = 1,... k are
linear independent, and an n-dimensional output vector Y = (Yy,...,Y,)T, Yii=1,... ,n are
independent random variables with Y; ~ B(1,p(X;)) where X; is i*™" row of input matriz X,
p(X;) =P(Y; =1|X;), i = 1,...,n, the linear logistic regression model is defined by

logit(p(X)) = XPB+¢
where € is an error, B = (Bo, b1, - .., Bk) is k + 1 dimensional coefficient vector.

Estimation of parameters in Linear logistic regression model

Suppose that we have a data set of n samples with the n- dimensional output vector Y =
(Y1,...,Y,), Y € {0,1} and the n x (k + 1) dimensional input matrix X = (1, X!, ..., X*)
where 1 = (1,...,1)7 is a column corresponding to constant coefficient, X%, i = 1,...k is the i**
column of X corresponding to the i’ input variable. Let y = (y1,...,%,)? denote the vector of
possible value of Y, X; = (1,21, ..., 2;) denote the i row of input matrix X, corresponding
to the i observation of the data set. We want to find the relationship between output variable
Y input variables X by the given data set and using linear logistic regression model. The
problem will lead to estimate the unknown parameter 8 = (8o, 81, ..., )T to obtain the best
fitting model with the observed data. To do this, we will again use the maximum likelihood
method and denote the maximum likelihood estimator of 5 by B = (ﬁo, Bl, e ,Bk)T.

Let p(X) = (p(X1),...,p(Xy))T. For observation (X;, X;), we have

logit(p(X;)) = l09‘1—f(;?))(i) =X;-B= ]z;% - Bj
then .
s = el 8 = canl Y w55}
=0
S(X exp{35_o v - B}

U Tt eap{Xh gz B}

Under this model, each ¥; given X; is a Bernoulli with success probability p(X;). Its probability
density function is f(y;, 8) = p(X;)¥% (1 — p(X;))'¥. Hence, the likelihood function L(3) and
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log-likelihood functions () of the given data set will be

n n

L(8) = [T Fwe ) = [T p(X0" (1 = p(X:)

i=1 i=1

and
n

1(B) =Y lwilog(p(X:)) + (1 = yi)log(1 — p(X,))]

i=1
To obtain the maximum likelihood estimator B of 3, we solve the following equations

ol(B)
9B;

=0,j=1,....k

Using the chain rule
ol(B) _ OU(B)  Op(Xi)  Ologit(p(X;))
0p;  Op(X;) Ologit(p(Xy)) OB,

where i )
ol(p) _ yi -y _ yi — p(X;)
(X)) = \p(X)  T=p(X)) S p(X)(I—p(X)
op(X;) B 1 B ' B |
alOng(p(XZ)) o Blogz;((f((j'z)) - p(Xz)(l p(Xz))a
m@mM&»:aziﬁm@+&m9:m‘
86j ) J 1]
thus @) )
ol 5 B n Yi — P Xi . B x x
3@ o Py p(XJ(l _ p(XZ))p(Xz)(]_ ij Zyl .
hence o
5 =X (=p())

Since this is not a linear function of 3, we can not obtain MLE of § by solving = al(ﬁ B

1,...,k directly. Instead, we use a numerical approximation iteration method called New-
tonfRaphson method. This method attempts to construct a sequence 8™ from an initial guess

BO) that converges towards some value §* satisfying mé%*)

= 0, using Taylor’s theorem to

approximate the equation. The detail of this method can be found in Appendix B1 of refer-
ence [1], and chapter 2, 4 of reference [4]. Here, I just write the procedure of this method briefly.

Newton—Raphson method for Maximum Likelihood Estimation

e Choose an initial guess 8% = (53,7, ..., 807

31(/3)

e Using a Taylor formula to expand S (ﬁ) around 3°, we get

0=5(8) = S(8° — I(8°)(3 — B°) +o(8 — B°)

where I(3°) = _ 22U, Solving this equation for 3, ignoring the term O(B — %), we

i 0p?
obtain

Bl ="+ ()] 'S(8)
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here, S(B°) = 81560)%5) = XT(Y —p(X)) evaluated at 8 = 3°, and [I(°)]"! is estimated

by its expectation. From property of Fisher information matrix J(3°), we have

E[I(3")] = E :(Wégo)) (az{gg))ﬂ

—E[XT(Y = p(X))(XT(Y — WWT)]

B=p°

= E[X10 (N - p00NX]

_ X'E [(Y (XY - p<X>>T>] X
B=p°

since the observations are independent, and each Y;|.X; follows a Bernoulli distribution
with parameter p(X;), we have

{E[m —p(X))Y; = p(X))] =Cov(¥,Yy) =0 ifi#]

E[(Y: — p(X3))?] = V(Y3) = p(Xi)(1 — p(Xi))

hence E[(Y —p(X))((Y —p(X))T)] = V(Y — p(X)) = W where W is the diagonal matrix
with 7" diagonal element w; = p(X;)(1 — p(X;)) Thus,

P [ o))

e Continuing this procedure, at step ["* we obtain
B = 5 [T T p0) )
B=B1-1

_ { (XTI ) [ Tl (XBH + WY - p(X))’”)} }5_51_1

— {(XTwl—lX)—l(XTwl—lzl—l)}
B=B1-1

where 77! = {Xﬁl_l + WYY — p(X))l_l}
B=B1—1

e Hence, the maximum likelihood estimator B is obtained by

B: lim A

l—00

2.2.2 Interpretation of fitted logistic regression model

Fitted probability of the logistic regression model

Once we have obtained the estimator B = (ﬁg,ﬁl, e ,Bk)T of B, we can compute the fitted
probability of the model by the following formula

o eap{y @i B)
L+ exp{d 5o i - B}
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where z; = (1, 2;1,...,z4)" is the i*" row vector of possible value of X;. Except the first entry,
it is the i"* observed input of our data set.

Interpretation of estimated parameter [

e Estimated standard deviation of § and (;,i =0,...,k
Let B denote the maximum likelihood estimator of true parameter , 3 of our linear logistic
regression model. As the sample size n is large, by asymptotically normal property of
MLE, ,@ is an unbiased estimator of 3 and

V(B = ) —— N(0.[1(B)] )
where J(f3) is the Fisher information matrix of 3). From this property, the variance-

covariance matrix of MLE V(j3) can be estimated by [J(5)]~}, denoted by V(5). In
logistic regression case,

; 2°1(P)
J(B)=E| - = X'Wwx
6 =5 - 2 ,
hence, V(8) = (XTWX)~ and the standard deviation of estimator § is obtained by
(XTWX)~1/2,
e Hypothesis testing and confidence interval for (;,i =0,...,k

After getting parameters of the model, we want to decide whether there is a relationship
between the output and each input variables or not. The preliminary approach to help us
decide this relation is to compute its p-value. To do this, we test the significant of each
individual coefficient:

Hy:3,=0 versus Hy: B, #0, i1=0,...,k

using the Wald-test:

_ B

se(B;)
here, sAe(BAZ-),i =0, ...,k are obtained by the square roots of the diagonal elements of V(B ,
respectively. The statistic W; has approximately a standard normal distribution in large
samples.
The result of this test give us the statistical significance of each variable by its p-value.
Recall that the p-value is the smallest level of significance at which the null hypothesis
Hjy can be rejected. The smaller p-value, the more confident that there is relationship
between the output and each input variable. In general, if the p-value is less than 0.05,
then we can reject the null hypothesis.

i

From this test, we can also obtain the confidence interval of each parameter ;. Since W;
has approximately a standard normal distribution, a 100(1 — «)% confidence interval for
B; is ) o R

(Bi — z1-a8e(Bi), Bi + z1-a 5e(B;))

e The odds ratio and its confidence interval
After obtaining the parameters of the regression model, how can we use them to express
the change in the output when the input variables are changed? To answer this question,
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we define a concept called Odds ratio.
Recall that the linear logistic regression model is expressed as:

=Bo+AX +.. 4 BX"

X* may take binary or continuous values. The odds is defined by

odds = ﬂ — PotBIX B X

1 —p(X)
Now we want to check the change of the output when X! is changed. Suppose that the
present value of X' is a, fix all values of X2, ..., X* and increase the value of X! by 1.

When X! = a the odds is
650+B1a+.-.+ﬂkX’“

and when X' = a + 1 the odds is

eﬁo+51(a+1)+~--+ﬁkxk

The odds ratio of X!, keeping all X?2,..., X* fixed, is defined by

ePotBi(at1)+...+B X"

OR, = g

eBotBrat..+BrX* - ¢
Hence, OR of X! is the increase in odds obtained by increasing X! by 1 unit, holding
other input variables fixed.

In logistic regression, the odds ratio is considered as a parameter of interest due to its
easy interpretation. In practice, the inferences of the odds ratio are usually based on the
sampling distribution of log(OR;) = f; which tends to follow a normal distribution. We
can compute the 100(1 — )% confidence interval (CI) of OR; by firstly computing the
end points of confidence interval of i, and then taking the exponential of these values.
In particular, the 100(1 — a)% confidence interval of OR; is given by

(eﬁi—zl_%s%(@) e@-&-zl_%s%(,@i))

?

Testing the goodness of fit of the model

The goodness of fit of a statistical model measures how well it fits with the observed data.
There are many statistics used to perform the goodness of fit of a regression model, like
residual deviance, Hosmer-Lemeshow test, Pearson goodness-of-fit. In this section, I will
discuss about the Pearson chi-square goodness-of-fit and used this to measure the goodness
of fit of the regression model in chapter 3. This test is derived from the the convergence of
the maximum likelihood estimator 5. Recall that by combination of maximum likelihood
and numerical approximation method, 3 is estimated by

B = (XTWX)"'wz whereZ = X3 + WY - p(X))

In the above formula, Z is considered as a linear combination of X% i = 0,...,k (since
X = (1, X', ..., X")). Regarding Z as the output variable, X as the input matrix, W
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as the weight matrix, and let Z =X B be the fitted value of Z, the Pearson chi-square
goodness-of-fit statistic is defined by

=(Z-2)'W(Z - 2)

= (W = p) W (WY - p(x)))
= (v - ( >> Y p(xX)
3 i)
p(x p(z:))

=1

2.3 Model selection

The task of model selection is to choose the ”optimal” statistical model from a set of candidate
models. The main idea is to select the "best” subset of explanatory variables to keep in the
final model, but why should we choose the subset of variables instead of keeping all of them in
the model? There are some main reasons to do this:

e We want to interpret the data in the simplest way, so the redundant input variables should
be removed.

e Unnecessary input variables may bring noise to the estimation of other quantities which
we are interested in.

e [f the model is used for prediction, we can save time and money by not collecting the
redundant variables.

Model selection criteria are statistical tools used in model selection. They help us find an
“optimal” statistical model from a set of candidate models. A model is considered as an
optimal model if it satisfies three qualities:

e Generalizability: Having ability to describe or predict new data of the fitted model.

e Simplicity: Choosing a simplest model from a set of candidate models which best fits the
observed data, since the simple model is easier in explaining the data than a complex
one.

e Goodness of fit: Balancing between too simplistic model and too complex one. In prac-
tice, a too simplistic model may not contain important variables while a complex model
may contain unnecessary explanatory variables.

In this section, I will firstly present the the derivation of two popular model selection criteria
named Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), followed
by some comments on these two criteria. In the second part, three model selection procedures
using AIC and BIC are introduced.

2.3.1 AIC and BIC criteria
Akaike Information Criterion (AIC)

The AIC criterion is a measure of the relative quality of statistical models for a given observed
data. Its main principle is based on the fitness between the density function of a selected

21



model and the density function of a "true model”. The measure of fitness can be reflected from
Kullback-Leibler (K-L) information. The knowledge of this information is studied from [Konish
2008], chapter 3.1.

e Kullback-Leibler (K-L) information.

Let Y = (Yi,...,Y,) be a random vector draw from a true unknown model with the true
density function g(y,6y), €y is the true parameter specified density g, F be the family
of approximating density functions f(y,0),0 € © such that the components of 6 are
independent,

F ={f(y,0),0 € ©,the components of § are independent }

Let 0 be the MLE of f(y,0) over ©,

0 = argmaxf(y, 0)
60

and f(y,0) is the fitted density of the model.

Denote ©;,7 = 1, ..., m the collection of parameter spaces whose dimensions are k1, . . ., k,,
and 6; the MLE of f(y,0) over ©,,7 =1, ..., m, respectively. Define the candidate family
of density functions Fy by

Fi={f(y, 0}), 0; € 0, dim(0©;) = k;, components of 0; are independent }

Our purpose is to find the best approximation of the true density function g(y, 6y) among
all fitted densities f(y, 91) over all family of density functions candidates F;,i =1,...,m.
Akaike [1973] used the Kullback-Leibler (K-L) information as a measure of this ”best
approximation”.

Definition 5 The K-L information I, ;(6y,6) between two parametric density functions
9(y,00) and f(y,0) with respect to g is defined by

g(Y, 90)}
f(Y,0)

here, the index "g” in expectation means the E is computed under g(Y,0y).

I,(60,0) = By |log

Proposition 3 The K-L information satisfies the following properties:

- [g,f(elb 9) 2 O;
— I,1(00,0) =0< g=F.
Proof
First, note that for all x > 0, log(z) < x — 1, the equality holds when x = 1. Then,
0 0
9(.00) ~ 9(y,0)
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By multiplying both sides of the equation by ¢(y, 0p) and integrating them over R, we get

f(y,0) f(y,0)
/Rlog—g(y,@o)g(y,@o)dy < /R <—g(y,00) - 1)g(y,90)dy

:/Rf(y,e)dy—/ﬂgg(y,ﬁo)dy
—0

Hence

f(y,0)
9(y. 0)

,0
14.4(00,0) =/logg(y 0) (y,00)dy = —/log 9(y,00)dy > 0
R R

g
f(y.0)
Clearly, the equality holds only when ¢(y, 6y) = f(y, ).

Although we can measure the appropriateness of a given model by calculating the K-L
information, we can not calculate it directly since it contains the unknown density g(y, 6p).
We decompose the K-L information by

I,1(00,0) = Eg[logg(Y, 00)] — Egllog f(Y,0)]

Notice that the first term E,[logg(Y,6)] in this decomposition is just a constant, it
depends only on the true density g(y,6p). Thus, to measure the appropriateness of a
given model we can consider only the second term E,[logf(Y,8)]. The larger this value
will provide the better model.

Again, the value of E [logf(Y,0)] can not be computed directly since it also depends on
unknown true density g(y,0y). Instead, we will approximate it by the observed data.

Derivation of AIC
The knowledge of deriving AIC is mainly from the lecture of L. Wasserman 2004, see [7],
lecture note 16].

As comment, above, for a fitted density f(y,8), the value K = E,[logf(Y, é)] can be used
to reflects the separation between the the true density g(y,6y) and the fitted one. Let
Y1, ..., Y, be the data observed from the true distribution. Intuitively, we can approxi-
mate K by its empirical mean K:

1 1(6)
K= gglogm,e) ==

However, this estimate brings a large bias. The work of Akaike [1973] showed that the
bias is approximately %. We will outline the computation of this bias as follow:

Let Z, = \/n(0 — 6,). By asymptotically normal of MLE,
Zn —> N(Oa [‘](00)]71)

where J(fp) is the Fisher information matrix of f at 6y Let S(Y;,0y) = w and

Sp = %Z” 1 S(Y;,00). By proposition 1 of chapter 2 and central limit theorem we have

1=

VS, —=— N(0,[J(6))])

n—o0

Hence, in distribution mean,
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J(06)Z,, ~ /7S,

Using Taylor expansion to extend log f(y, ) around 6y, we get

K2 [ (0,00 1005, 00) + (0 — 00)" (5, 00) = 50— 00)7 I (06)(0 — 00)]dy

Rn

1
= / 9(y, 0)log f(y,00)dy — %ZEJJ(%)Zn

1
= Ko — %ZEJ(Go)Zn, where Ko = / 9(y, 0o)log f (y, 0o)dy
and
- 1y 5 oT 1 70%ogf(Yi,0)
K =~ - ZZI [lng(Y%,@o) + (0 — 0o)" S(Yi, 0p) + 5(9 —6) T(e — 90)]
1 < zrs, 1 _,
= Ko+ - ; [logf(Y;, to) — Ko] + W — %Zn Jn(00) 2y,
VAN 1
~ Ko+ K nt_ 77 Z
o+ 1K1+ Jn on wJ(00) 2,
where,
1 <~ &?logf(Y;, 0
Jn (o) = - ; 0 0g§9(2 .b0) n—I>Poo> J(0o)bylawo flargenumber,
and .
Ky = =5 Tlog £(¥i,0) — Ko
n <
Thus . .
K-K~K, + VI Sn ~ K + 2 I (00) 2
n n

since J(0p)Z,, =~ +/nS, in distribution.

Hence,
_ 1
EK — K] ~ E[K,] + EE[ZE J(00)Z,)

— 0+ %trace(J(Qo)[J(eo)]l)
k

n

In the above approximation, we use the the fact: If v is an m-dimension random vector
with the mean p and covariance variance matrix X, A is an m x m matrix and B = vT Av,
then E[B] = trace(AY) + u? Ap.

-~ ~

Thus, we can use K = K — % as the approximation of E,[logf(Y, 8)]. From this property,
H. Akaike 1973 ([3]) defined the AIC statistic by

AIC = —2nK = —2logf(y,0) + 2k

Bayesian Information Criterion (BIC)
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The Bayesian Information Criterion (BIC) is another type of criterion used in model selection.
It is regarded as a competitor to AIC. While AIC is derived under an unbiased estimation of
K-L information, BIC is derived under Bayesian posterior probability. BIC is defined by

A~

BIC = —2logf(y,0) + klog(n)

The first term of BIC,—2log f (v, é), is the same as of AIC. This term is known as goodness-of-
fit term. The only difference between these two criteria is the second term, known as penalty
term. Since for n > 8, klog(n) > 2k, the penalty term of BIC grows faster than the one in AIC.
Hence, using BIC criterion may result in choosing a more simplistic model than the one when
using AIC criterion. We will see that the set of variables chosen by BIC is the subset of those
chosen by AIC in chapter 3.

2.3.2 Model selection procedure

In this subsection, I will discuss about three main algorithms that have been widely used in
model selection, named forward selection, backward elimination and stepwise procedure. While
backward elimination just reverses the forward selection procedure, stepwise algorithm is the
combination of both backward and forward procedure in which variables are selected either
being added or removed from the model.

Forward selection algorithm

Suppose a criterion (AIC or BIC) is used in the algorithm as a an evaluation tool, and we have
k input variables X7,..., X;in the full model. The following steps are performed in forward
elimination algorithm:

e Step 0. Start with an empty model My = (). Let C'(0) be AIC/BIC of empty model (the
model just contains only intercept parameter), C?, ..., C}p be the AIC/BIC of k model
{X1}, ..., {Xk}, respectively.

Variable X,, will be added to model M if

C) =min{C},i=1...,k} and Y < C(0)
If C9 > C(0) the algorithm terminates.

e Step 1. Let C(1) = CY be the criteria of current model. At this step, the model under
consideration is My = {X,, }. Compute the AIC/BIC of k — 1 models M; U {X,},j =
1,...,k, 7 # a1, denote them by C;,j =1,...,k,J # ay respectively.

Variable X,, will be added to model M, if

Ca, =min{Cl,i=1...,k} and C,, < C(1)
If )}, > C(1) the algorithm terminates.

e Step 2. Let C(2) = Cj, be the criteria of current model. The model under consideration
is My = {Xq,, Xo, }. Compute the AIC/BIC of k — 2 models My U{X;},i=j,...,k,j#
ay, a, denote them by C%,j =1,... k,j # a1, ay respectively.

Variable X,, will be added to model M, if

CZ =min{c,i=1...,k} and Cz, <C(2)

If C2, > C(2) the algorithm terminates.
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Similarly, for subsequent steps, the procedure fits all models containing the selected vari-
able at the previous step plus one variable which is not included in the current model.
Therefore, at step s, k — s models will be considered. The algorithm stops when all input
variables are included in the model or if any addition of a variable increases the criterion
of the current model.

Backward elimination algorithm

Backward elimination algorithm is just a reversed version of the forward selection algorithm.
It start with a full model and removes variables one by one at each step. The procedure of this
algorithm is performed as following:

e Step 0. Start with a full model My = {X;,..., X;}. Let C(0) be AIC/BIC of full model,
CY, ..., CY be AIC/BIC of k models My \ {X1}, ..., Mo{Xy}, respectively.
Variable X,, will be deleted from model M, if

C) =min{C,i=1...,k} and  C,, <C(0)
If C? > C(0) the algorithm terminates.

e Step 1. Let C(1) = C?. be the criteria of current model. At this step, the model under
consideration is M; = My \ {X,, }. Compute the AIC/BIC of £k —1 models M\ {X;},j =
1,...,k,7 # r, denote these values by C'jl,j =1,...,k,j # r respectively.

Variable X,, will be deleted from model M; if

Cy, =min{C},j=1...,k} and  C) < C(1)
If !, > C(1) the algorithm terminates.

e Step 2. Let C(2) = C}, be the criteria of current model. At this step, the model
under consideration is My = M; \ {X,,, X,,}. Compute the AIC/BIC of k — 2 models
My\ {X;},7 =1,...,k,j # r1,re, denote these values by Cjz,j =1,....k,j # 11,70
respectively.

Variable X, will be deleted from model M, if

C: =min{C},i=1....,k} and Cp <C(2)
If C2, > C(2) the algorithm terminates.

Similarly, for subsequent steps, the procedure fits all possible models deleting one input
variable from the remaining variables at the previous step. Therefore, at step s, k — s
models will be considered. The algorithm stops when all input variables are deleted from
the model or if any deletion of a variable increases the criterion of the current model.

Intuitively, the backward elimination algorithm is preferred to the forward selection algorithm
since it gives a chance to each variable to stay at least once time in a model before being deleted
at the next step.

Stepwise algorithm

This is a combination of backward elimination and forward selection procedure. In this algo-
rithm, at each step a variable may be added or removed from the model in a sequential manner,
based on the selected criteria. Stepwise selection procedure provides a faster and more effective
in choosing the best subset of explanatory variables than the two previous algorithms. The
procedure of stepwise algorithm (when starting with a full model) is as following:
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e Step 0. Start with a full model My = {X;,..., X;}. Let C(0) be AIC/BIC of full model,
CY, ..., CY be AIC/BIC of k models My \ {X1}, ..., Mo{Xy}, respectively.
Variable X,, marked as "unimportance” and will be removed from model M, if

CY =min{C),i=1...,k} and  C,, <C(0)
If C? > C(0) the algorithm terminates.

e Step 1. Let C(1) = C?. be the criteria of current model. At this step, the model under
consideration is My = My \ {X,, }.
Compute the AIC/BIC of k — 1 models M; \ {X;},j = 1,...,k,j # r1, denote these
values by CJ,j =1,...,k,j # 71 respectively.
Also, compute AIC/BIC of model M; U {X,,} (variable X,, is added back to the model
My). This is just model M,. Variable X,, will be deleted from model M, if

C),=min{C},j=1...k,j#r} and C},<C(1)
If C}, > C(1) the algorithm terminates.

e Step 2. Let C(2) = C,, be the criteria of current model. At this step, the model under
consideration is My = M \ {X,,, X;, }
Compute the AIC/BIC of k — 2 models My \ {X,},j =1,...,k,j # r1,7a, denote these
values by C;,j =1,...,k,7 # ry,ro respectively.
Also, compute the AIC/BIC of model M, U {X,,} (variable X,, is added back to model
M), denote it by CZ, and AIC/BIC of model M, U {X,,} (variable X, is added back
to model M), denote by CZ . Variable X,, will be deleted from model M, if

0377'27

C?, = min{C Clj=1....kj#r,r} and C} <C(2)

T

If C2 > C(2) the algorithm terminates.

Similarly, for subsequent steps, the procedure fits all possible models obtained by removing
a variable from or adding a variable to the current model, based on the selected criterion.
Hence, at each step, it will consider all possible models which exclude one variable from
the set of remaining variables and all possible models which add back each variable from
the set of deleted variables from previous steps to the current model. The algorithm stops
when adding or removing a variable from the current model increases the criterion of the
current model.
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Chapter 3

Variable selection to explain Economic
effect

In the thesis of P. Mauk (see [10], chapter 4), he built two optimal models using AIC and BIC
criterion on the data set of joint liability borrowing groups collected by Ahlin and Townsend
in Thailand. In this chapter, I will use the statistical tools presented in the chapter 2 as linear
logistic regression, model selections using AIC, BIC criterion and stepwise algorithm to apply
to a data set that have been collected from Tunisia by Nahla Dhib. The data contains 404
observations (obtained from 404 people in Tunisia) with 23 parameters of interest. I will build
two optimal models using this data to measure the economic effect obtaining after lending loans
to 404 people in Tunisia. In the models, the economic effect is considered as output variable,
named Y. Nahla Dhib decided value of output variable Y by measuring the impact of access
to microcredit on economic situation, i.e, if it improved the behaviour of borrower based on his
economic activity. In particular,

e Y = 1, if after access to microlending , borrower has role on economic cycle (consume,
invest, pay tax, improve his social level and enhance the standards of life).

e Y =0, if after access still in same situation and make default

The content of this chapter is organized as following: In section 3.1, the brief descriptions of the
data, like the definition of variables, the table of summary of descriptive statistics are provided

In Section 3.2, I will perform the logistic regression model on the data of Tunisia using function
glm() of R-software packages. This function provides many results of linear logistic regression
as coefficients of parameters, the statistical significance of each variable based on its p-value,
value of AIC of the full model, residual deviance, etc. I also make some comments on the results
to compare them with the results in the other models in later subsections.

Section 3.3 is on variable selection in prediction of economic effect using backward stepwise
algorithm along with AIC and BIC criterion on the data. The purpose of this section is to
reduce the number of variables from the logistic regression model to obtain the ”optimal”
models which can be used to describe fully the characteristic of the data in the simplest ways.
The function stepAIC in R- packages with two different values of k£, kK = 2 in the model using
AIC criterion and k£ = log(n) in the model using BIC criterion are used to obtain the final
optimal models. We will see that the set of variables remaining in the BIC optimal model will
be the subset of variables containing in AIC model. T also apply the same procedure on the
optimal models to show that if we continue to delete variables from the optimal ones, then the
values of criterion will be increased. The section will end up with a small part of statistical
learning. In this part, I will divide the whole data into two parts: learning data containing
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300 observations taken randomly, and test data containing the remaining observations. In this
manner, thirty sub-samples are generated randomly. In each sub-sample, learning data is used
to build the optimal learning models (with two criterion AIC and BIC), and test data is used
to test the fitness of these two learning optimal models with the data, based on the estimated
probability of a success. The frequency of appearance of variables in AIC and BIC optimal
models on these learning optimal model are also be presented. Besides, the Pearson error of
learning sample, test sample and the whole data will be recorded to compare among the errors
of the models.

3.1 Data description

In this section, a data set consists of 23 input variables and one output variable used to perform
a logistic regression model to predict economic effect is presented. This data set is collected by
Nahla Dhib. It contains 404 observations of 24 variables (in fact, Nahla Dhib has 26 variables

in total, but two of them are deleted from the data set because they contain just singular-

ities values). The 24 variables under consideration are Y (economic effect), AGE, GENDER,

EDUC, CIVSTATUS, DEPCHILD, TYPBORR, TYPCONTR, OBJLOAN, SOCILEVEL, IMPROVEMENT,

PROBLEM, REPAYMENT, KINDIMF, USEMICRO, FINAINCLUS, SAVING, USESAVING, COLLATERAL,
OTHERLOANS, INDGROUP, BUSISECTOR, REA.ACTIVITY and REA.ASKLOAN. Here, Y is the out-

put variable. It reflects the effect to economy after borrowing loans of 404 borrowers. The brief
definition of these variable is as followings:

e AGE: The age of borrowers, it is divided into three groups, young, adult and retirement.
e GENDER: The sex of borrowers, male or female.

e EDUC: The level of education of borrowers. In Nahla survey, there are five levels in total:
no education, primary level, secondary level, professional level and academy.

e CIVSTATUS: The situation of borrower’s family, single or married
e DEPCHILD: The situation of borrower: Having children to take care of or not.
e TYPBORR: The type of borrower, divided in two groups: new and old borrower.

e TYPCONTR: The type of contract of borrower, divided into three groups: the first, the
second and the third contract.

e OBJLOAN: The objective of loan, i.e the purpose of borrowing loan: to create activity,
reproduce activity or improve activity.

e SOCILEVEL: The social level of borrower, measured in 4 categories: very poor, poor,
vulnerable and medium.

e IMPROVEMENT: The improvement of borrower after the loan: little improve and high
improve.

e PROBLEM: Determine if there is problem during the contract or not.

e REPAYMENT: The action of paying back loan, measured in two categories: delay of paid
off

e KINDIMF: The kind of micro-credit that borrowers receive: Association of very small loan
or Enda, a kind of microcredit in Tunisia.
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e USEMICRO: The way borrower uses micro-lending, to consume, produce or both of them.

e FINAINCLUS: The financial inclusion, records the situation that the borrower is included
on traditional bank before access to micro-lending or not.

e SAVING: The ability to have saving after the access of micro-credit of borrower.
e USESAVING: The way borrowers uses their saving, to invest or consume in the next period.

e COLLATERAL: The security pledged for the payment of the loan, measured by three cat-
egories: guaranteed by other person, guaranteed his/her activity or by having surety
bond.

e OTHERLOANS: The other loans that borrower receive, measured by having or not having
the other type of loans.

e INDGROUP: The way of receiving loan, in group or by individual.

e BUSISECTOR: The kind of business sector, primary, secondary or service sector. The pri-
mary sector means the sector of making directly use of or exploit the natural resources,
such as agriculture, forestry, fishing, mining, etc. The secondary sector produces manu-
factured goods, and the service sector provides services to other businesses.

e REA.ACTIVITY: The reason to work in activity, measured in three categories: has training,
inherited from family or be an opportunity.

e REA.ASKLOAN: The reason to ask for loan of borrower: unemployment, having insufficient
fund for activity or poor.

The following tables provides the definitions of these variables used in the observed data. This
tables is provided by Nahla through the survey she did in Tunisia.
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Definition of Variables

Variable

Definition

Object

AGE

GENDER

EDUC

CIVSTATUS

DEPCHILD

TYPBORR

TYPCONTR

OBJLOAN

SOCILEVEL

IMPROVEMENT

PROBLEM

REPAYMENT

KINDIMF

USEMICRO

FINAINCLUS

SAVING

USESAVING

COLLATERAL

{1, 2,3}

{12}

{0,1, 2, 3,4}

{0.1}
{0.1}
{0, 1}

{1, 2, 3}

{1, 2, 3}

{0,1, 2, 3}

{1, 2}
{0, 1}
{0, 1}
{12}

{1, 2, 3}

{0, 1}

{0, 1}
{0, 1}

{1, 2, 3}

NP NEFPFRPOFRPONRPFPFWNRERPOWNERWUNRPRPPRPOPRPORPROPLPWNERPONEREWN P

3:

. if young people
:if adult
. if retired
. if male
: if female
: if no education
. if primary level
. if secondary level
: if have professional training
. if higher education
:if single
. if married
. if no child
. if child
. if new borrower
. if old borrower
. if apply for first contract
: if apply for second contract
. if apply for third contract
: to create his/her activity
: to continue his/her activity
: to improve his/her activity
. if very poor
. if poor
. if vulnerable
: if medium
. if little improve after the loan
. if high improve after the loan
: if no problem during the contract
. if some problems during the contract
. if default
: If absence of default
: if the loan is provided by other IMF
. if Enda
. if the loan is used to consume
: if the loan is used to produce

if both

0 if included in traditional bank before access to
micro-lending

1
0:
1
0:
1
1
2:

3:

if not (finacial exclusion)

if no saving after lending

if saving after lending

if saving for future investment
if saving for future consumsion
if guarantee by other person

if guarantee by his/her activity
if guarantee by bonds




OTHERLOANS

INDGROUP

BUSISECTOR

REA.ACTIVITY

REA.ASKLOAN

{0, 1}
{12}

{1, 2, 3}

{12}

{1, 2, 3}

W NEFE WNEFE WNEFENPRFP PP O

: if no access to other loans

: if access to other loans

: if individual lending

. if group lending

. if primary sector

. if secondary sector

. if service sector

. if the activity follows training

. if the activity is inherited from family
. if not

: if main reason is unemployment
: if main reason is lack of fund

: if main reason is other




3.2 Logistic regresion with all input variable

In this section, the data set described on section 3.1 will be used to perform the linear logistic
regression of economic effect on all input variables. In this logistic regression model, twenty
five inputs variables describing the characteristic of borrowers (such as level of study, age, civil
status, etc.) are used to predict output variable Y, economic effect.

Recall that output variable Y takes binary values. To perform logistic regression on Y, we
use the function glm() in R-packages with the option family = binomial(). The results of
this logistic regression, including coefficients, coefficient’s confident intervals, standard error,
z-value, p-value, are recorded in Table 3.1. In addition, the odds ratios (OR) computed by
taking exponential of the coefficients and 95% confidence intervals (CI) of OR based on Wald
test as explained in previous chapter are also presented. These results are shown in table 3.2.

Table 3.1: Results of the Logistic regression model on the whole data

’ Variable Coefficient 95%CI Std.Error z-value Pr(> |z|) ‘
Intercept -10.03804 (-15.015 , -5.061) 2.53913 -3.953  7.71le-05 ***
AGE 0.14071 (-0.380 , 0.662) 0.26575 0.529 0.59648
GENDER 1.54337 (0.592 , 2.495) 0.48557 3.178 0.00148 **
EDUC 0.77686 (0.276 , 1.278) 0.25569 3.038  0.00238 **
CIVSTATUS 1.05943 (-0.811 , 2.930) 0.95420 1.110 0.26688
DEPCHILD -0.94404 (-2.571 , 0.683) 0.82994 -1.137  0.25534
TYPBORR 0.09434 (-0.949 , 1.137) 0.53214 0.177  0.85928
TYPCONTR 0.29569 (-0.245 |, 0.836) 0.27573 1.072 0.28354
OBJLOAN -0.70422 (-1.300 —0 109) 0.30391 -2.317  0.02049 *
SOCILEVEL -0.10944 (-0.557 , 0.338) 0.22844 -0.479  0.63188
IMPROVEMENT 0.12753 (-0.554 , 0.809) 0.34760 0.367 0.71371
PROBLEM -1.04159 (-2.536 , 0.453) 0.76249 -1.366  0.17193
REPAYMENT 1.23923 (-0.167 , 2.645) 0.71739 1.727  0.08409 .
KINDIMF 0.86375 (-0.169 , 1.897) 0.52702 1.639  0.10123
USEMICRO 0.05024 (-0.354 , 0.455) 0.20635 0.243 0.80763
FINAINCLUS 19.34092 (-2040.090 , 2078.772) 1050.74925 0.018 0.98531
SAVING 2.70705 (1.000 , 4.414) 0.87104 3.108 0.00188 **
USESAVING 0.87970 (-0.336 , 2.095) 0.62004 1.419 0.15596
COLLATERAL 0.43709 (0.032 , 0.842) 0.20683 2.113  0.03458 *
OTHERLOANS -3.73272 (-12952.687 , 12945.221) 6606.73058  -0.001  0.99955
INDGROUP -0.60229 (-1.362 , 0.157) 0.38756 -1.554  0.12017
BUSISECTOR 0.47661 ( 0.010 , 0.943) 0.23796 2.003 0.04519 *
REA.ACTIVITY -0.22981 (-0.616 , 0.156) 0.19700 -1.167  0.24339
REA . ASKLOAN 0.39250 (-0.112 , 0.897) 0.25745 1.525 0.12737

Codes: *** ** * and . denote 51gn1ﬁcance at 0%, 0.1%, 5%, and 10% respectively.

From Table 3.1, we can see that the logistic regression model contains a large number of input
variables (23 variables). It may not satisfy the principle ”simplicity” of an optimal model and
having too many variables in the model is not very easy to interpret the data. Besides, vari-
ables FINAINCLUS and OTHERLOANS have large confident intervals, (—2040.090,2078.772) and
(—12952.687,12945.221), respectively, and also large confident intervals of their odds ration,
(0, +00) for both variables. This may be due to the big separation on their observed values,
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and hence, they may not be good predictors for the output.

Table 3.2: Odds ratio (OR) and Confident intervals of OR

’ Variable Odds ratio (OR) 95%CI of OR ‘
Intercept 0.000000e+00 (0.000 , 0.006)
AGE 1.151000e+00 (0.684 , 1.938)
GENDER 4.680000e+00 (1.807 , 12.123)
EDUC 2.175000e+00 (1.317 , 3.590)
CIVSTATUS 2.885000e+00 (0.445 |, 18.720)
DEPCHILD 3.890000e-01 (0.076 , 1.979)
TYPBORR 1.099000e+00 (0.387 , 3.118)
TYPCONTR 1.344000e+00 (0.783 , 2.307)
OBJLOAN 4.940000e-01 (0.273 , 0.897)
SOCILEVEL 8.960000e-01 (0.573 , 1.403)
IMPROVEMENT 1.136000e+00 (0.575 , 2.245)
PROBLEM 3.530000e-01 (0.079 , 1.573)
REPAYMENT 3.453000e+00 (0.846 , 14.088)
KINDIMF 2.372000e+-00 (0.844 , 6.664)
USEMICRO 1.052000e+00 (0.702 , 1.576)
FINAINCLUS 2.509892e+4-08 (0.000 , +00)
SAVING 1.498500e+01 (2.718 , 82.620)
USESAVING 2.410000e+00 (0.715 , 8.125)
COLLATERAL 1.548000e+00 (1.032 , 2.322)
OTHERLOANS 2.400000e-02 (0.000 , 4+00)
INDGROUP 5.480000e-01 (0.256 , 1.170)
BUSISECTOR 1.611000e+00 (1.010 , 2.568)
REA.ACTIVITY  7.950000e-01 (0.540 , 1.169)
REA.ASKLOAN 1.481000e+00 (0.894 | 2.452)

On the other hand, from column 6 of Table 3.1, we can see that some estimated coefficients have
very high p-value, for example, p-value of OTHERLOANS, FINAINCLUS, TYPBORR, USEMICRO are
0.9995, 0.985, 0.859 and 0.807, respectively. Because of their high p-value, they seem to be not
statistically significant.

In building an optimal model, we want to avoid including variables which may not be good
predictors for the output. With these above remarks, our goal now is to select the subset of
variables among 23 variables which also have capability to explain well the output. Looking
at the Table 4.1, the first approach in choosing good predictors would be keeping all variables
which have small p-value. With this approach, 7 variables such that p-value are less than
10% should be kept. They are GENDER, EDUC, OBJLOAN, REPAYMENT, SAVING, COLLATERAL,
and BUSISECTOR

Building a model by this way may lead to question: Do variables with higher p-value play any
role in predicting the output? Are they good explanatory variables for the model or not? We will
see later that all variables which have small p-value as GENDER, EDUC, OBJLOAN, REPAYMENT,
SAVING, COLLATERAL, BUSISECTOR will be kept in AIC optimal model, and almost all variables
with large p-value in AIC optimal model will be deleted in BIC optimal model, and the set
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of variables in BIC optimal model is the subset of variables in AIC model.

3.3 Variable Selection in prediction of economic effect

In previous section we have seen that keeping all variables in building a model may give us a
bad model since it contains some variables that may not be good predictors for the output and
a model with too many input variables is not easy to interpret the data. Our goal is to find
an optimal model, which contains fewer input variables and also has ability to explains well
the output. The first approach is to choose a model which contain only statistically significant
variables with small p-value (usually less than 10%). In this section, we will illustrate two
methods of variables selection, in which we select not only statistically significant variables for
prediction but also the variables which produce an optimal value of the chosen criterion, AIC
and BIC.

This section contains four small parts: The first two parts illustrate the selection of variables
using backward stepwise elimination algorithm along with AIC and BIC criteria applied on
linear logistic regression model. Recall that the full model contains 23 predictors, namely, AGE,
GENDER, EDUC, CIVSTATUS, DEPCHILD, TYPBORR, TYPCONTR, OBJLOAN, SOCILEVEL, IMPROVEMENT,
PROBLEM, REPAYMENT, KINDIMF, USEMICRO, FINAINCLUS, SAVING, USESAVING, COLLATERAL,
OTHERLOANS, INDGROUP, BUSISECTOR, REA.ACTIVITY, REA.ASKLOAN. The third part is on
some discussions on the results obtained in AIC and BIC optimal models. The final part is

a small part of statistical learning, in which the fitness of AIC, BIC optimal model based on
probability of a success and the stability of variables in each model are presented. Besides, the
Pearson error of learning models, test models and the whole models using AIC, BIC as criterion
are also be recorded to compare among the errors of the models.

3.3.1 Variable selection by AIC criterion

In this part, the selection variables using Backward stepwise elimination algorithm with the
statistical criterion AIC on the linear logistic regression of the full model containing 23 input
variables are presented. The steps of selecting variables based on criterion AIC and backward
stepwise procedure are illustrated in the last two sections of chapter 2. Recall that AIC statistic
for each model is given by

AIC; = =2 x log — likelihood + 2 * i

where 7 is the number of input variables in the model. In our problem, i € {1,...,23}. In each
step, variable is removed from the model if deleting it produces the smallest AIC for the model.
In the next steps, the deleted variable from the previous steps are added back to the model if
including it gives smallest value of AIC among adding or deleting other variables.

To perform this selection variables, we use the existing function stepAIC of R-packages with the
options direction = "both" and k =2, in library(MASS). After 10 AIC steps, we obtain the
AIC optimal model, which has the smallest value of AIC, and deleting or adding any variable
from this final model will increase the value of AIC of the model. Table 3.3 and 3.4 record 10
steps of running stepAIC on the full data (404 observations with 23 input variables):

e Step 0: AIC = 309.12
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— Start with a full logistic regression model with 23 input variables, AIC = 309.12.
Call this model is M,

— Generates 23 models by deleting one by one variable from these 23 variables of the
full model, computes the AIC for each models, arrange their AIC value in ascending
order.

— Since deleting OTHERLOANS from the full model will create a model with smallest
value of AIC (307.12), it will be removed at the next step.

e Step 1: AIC = 307.12

— Start with model M; obtained from model M, without OTHERLOANS. AIC of this
model is 307.12.

— Generate 23 new models in which 22 models obtained by deleting one by one variable
from the M; model and remaining model obtained by adding back the deleted
variable, OTHERLOANS, to model M, (in this case, adding back OTHERLOANS into M
will create model My). Compute their AIC values for each model and arrange them
in ascending order.

— Since deleting TYPBORR from model M will create a model with smallest value of
AIC (305.15), it will be dropped at the next step to create model M.

e Step 2: AIC = 305.15

— Start with model My obtained from model M; without TYPBORR. AIC of this model
is 305.15.

— Generate 23 new models in which 21 models obtained by deleting one by one variable
from My model and two other models obtained by adding back one of deleted
variables OTHERLOANS and TYPBORR in turn to model Ms. Compute their AIC values
for each model and arrange them in ascending order.

— The model obtained by deleting USEMICRO from model My will have smallest value
of AIC (303.22). Thus, USEMICRO will be removed at the next step to create model
M.

e Step 3: AIC = 303.22

— Start with model M3 obtained from model My without USEMICRO. AIC of this model
is 303.22.

— Generate 23 new models in which 20 models obtained by deleting one by one variable
from M3 model and three other models obtained by adding back one of deleted
variables OTHERLOANS, TYPBORR and USEMICRO in turn to model M3. Compute their
AIC values for each model and arrange them in ascending order.

— The model obtained by deleting SOCILEVEL from model M3 will have smallest value
of AIC (301.41). Thus, SOCILEVEL will be removed from Mj at the next step to
create model M.

e Step 4: AIC = 301.41
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— This step starts with model M, obtained from model M3 without SOCILEVEL. AIC
of this model is 301.41.

— Again, generates 23 new models in which 19 models obtained by deleting one by
one variable from M, model and four other models obtained by adding back one
of deleted variables OTHERLOANS, TYPBORR, USEMICRO and SOCILEVEL in turn to
model My. Compute their AIC values for each model and arrange them in ascending
order.

— Observe that model obtained by deleting AGE from model M, will have smallest
value of AIC (299.62). Thus, AGE will be removed from M, at the next step to
create model Ms.

e Step 5: AIC = 299.62

— This step starts with model M5 obtained from model M, without AGE. AIC of this
model is 299.62.

— Generate 23 new models in which 18 models obtained by deleting one by one variable
from M35 model and five other models obtained by adding back one of deleted vari-
ables OTHERLOANS, TYPBORR, USEMICRO, SOCILEVEL and AGE in turn to model Mj5.
Compute their AIC values for each model and arrange them in ascending order.

— Observe that model obtained by deleting IMPROVEMENT from model My will have
smallest value of AIC (297.82). Thus, IMPROVEMENT will be removed from Mj at the
next step to create model M.

Following this manner, the algorithm then stops at step 10", with the final model having
smallest value of AIC (293.88). Observe that from this model, if we continue to delete one
of its remaining variables or adding one variable from the set of deleted variables, we will
obtained a model with a larger AIC value. This final model will be the optimal model that
we are looking for. It contains just 13 variables. Thus, by using backward stepwise elimi-
nation algorithm with statistical criterion AIC, the number of input variables are reduced
from 23 in the full logistic regression model to 13 in the AIC optimal model. These 13
variables are: GENDER, EDUC, TYPCONTR, OBJLOAN, PROBLEM, REPAYMENT, KINDIMF,
FINAINCLUS, SAVING, USESAVING, COLLATERAL, INDGROUP, BUSISECTOR

Table 3.6 and 3.7 summary the results in the AIC optimal model: the estimated coeefi-
cients and their 95% confident intervals, standard errors, z-value, p-value are shown in
Table 3.6 and values of odds ratios and their 95% confident intervals are in Table 3.7.

From Table 3.7, we can see that all variables in the full logistic regression model which have
p-value less than 10% are contained in AIC optimal model. Some remaining variables
in AIC optimal model have higher p-value (larger than 10%) as TYPCONTR, PROBLEM,
REPAYMENT, FINAINCLUS, USESAVING and BUSISECTOR. We will see that all of them,
except FINAINCLUS will be deleted in BIC optimal model in the next part.

3.3.2 Variable selection by BIC criterion

In this part, the same procedure of backward stepwise elimination algorithm as in previous part
are performed to obtain an optimal model, but with another statistical criterion, namely, BIC
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Table 3.3: Step 0,1,2 in AIC Backward stepwise elimination procedure

|

Step 0: AIC = 309.12

H

Step 1: AIC = 307.12

H

Step 2: AIC = 305.15

|

Variable AIC || Variable AIC | Variable AIC
- OTHERLOANS 307.12 || - TYPBORR 305.15 || - USEMICRO 303.22
- TYPBORR 307.15 || - USEMICRO 305.18 || - IMPROVEMENT 303.29
- USEMICRO 307.18 || -— IMPROVEMENT 305.25 || - SOCILEVEL 303.36
- IMPROVEMENT 307.25 - SOCILEVEL 305.35 || — AGE 303.43
- SOCILEVEL 307.35 || - AGE 305.40 || - CIVSTATUS 304.38
- AGE 307.40 || - TYPCONTR 306.26 || - DEPCHILD 304.40
- TYPCONTR 308.26 || - CIVSTATUS 306.34 || - REA.ACTIVITY 304.55
- CIVSTATUS 308.34 | - DEPCHILD 306.37 || - TYPCONTR 304.67
- DEPCHILD 308.37 || -— REA.ACTIVITY 306.49 || <none> 305.15
- REA.ACTIVITY 308.49 || <none> 307.12 || - PROBLEM 305.41
<none> 309.12 || -PROBLEM 307.25 || - USESAVING 305.44
- PROBLEM 309.25 || - USESAVING 307.41 || - INDGROUP 305.53
- USESAVING 309.41 || - REA.ASKLOAN 307.44 || - REA.ASKLOAN 305.57
- REA.ASKLOAN 309.44 | - INDGROUP 307.53 || - KINDIMF 305.84
- INDGROUP 309.53 | - KINDIMF 307.75 || - REPAYMENT 306.12
- KINDIMF 309.75 || - REPAYMENT 308.01 || + TYPBORR 307.12
- REPAYMENT 310.01 || + OTHERLOANS 309.12 | + OTHERLOANS 307.15
- BUSISECTOR 311.19 || - BUSISECTOR 309.19 | - BUSISECTOR 307.26
- COLLATERAL 311.67 || -— COLLATERAL 309.67 || -— COLLATERAL 307.69
- OBJLOAN 312.58 || - OBJLOAN 310.58 | - OBJLOAN 308.63
- SAVING 316.36 || — SAVING 314.36 || - SAVING 312.47
- EDUC 317.27 || - EDUC 315.27 || - EDUC 313.33
- GENDER 318.53 || - GENDER 316.53 || - GENDER 314.94
- FINAINCLUS 334.33 || - FINAINCLUS 332.38 || - FINAINCLUS 330.44

- sign means that a variable is dropped from a model and
+ sign means that a variable is added back to a model
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Table 3.4: Step 3,4,5 in AIC Backward stepwise elimination procedure

|

Step 3: AIC = 303.22

H

Step 4: AIC = 301.41

H

Step 5: AIC = 299.62

|

Variable AIC || Variable AIC | Variable AIC
- SOCILEVEL 301.41 || - AGE 299.62 || - IMPROVEMENT 297.82
- IMPROVEMENT 301.42 || - IMPROVEMENT 299.63 || - DEPCHILD 298.59
- AGE 301.47 || - DEPCHILD 300.55 || - CIVSTATUS 298.67
- DEPCHILD 302.40 || - CIVSTATUS 300.57 || - REA.ACTIVITY 299.02
- CIVSTATUS 302.43 || - REA.ACTIVITY 300.93 || - TYPCONTR 299.52
- REA.ACTIVITY 302.73 || - TYPCONTR 300.96 || <none> 299.62
- TYPCONTR 302.83 || <none> 301.41 | - PROBLEM 299.79
<none> 303.22 || - PROBLEM 301.66 || - REA.ASKLOAN  299.99
- USESAVING 303.46 | - USESAVING 301.68 || - USESAVING 299.99
- PROBLEM 303.51 || - INDGROUP 301.69 || - INDGROUP 300.03
- REA.ASKLOAN 303.63 || - REA.ASKLOAN 301.87 || - REPAYMENT 300.31
- INDGROUP 303.66 || - KINDIMF 302.12 || - KINDIMF 300.41
- KINDIMF 303.86 || — REPAYMENT 302.25 || + AGE 301.41
- REPAYMENT 304.13 || + SOCILEVEL 303.22 || + SOCILEVEL 301.47
+ USEMICRO 305.15 || - BUSISECTOR 303.35 || - BUSISECTOR 301.47
+ TYPBORR 305.18 || + USEMICRO 303.36 || + USEMICRO 301.59
+ OTHERLOANS 305.22 || + TYPBORR 303.40 || + TYPBORR 301.62
- BUSISECTOR 305.31 || + OTHERLOANS 303.41 || + OTHERLOANS 301.62
- COLLATERAL 305.81 || - COLLATERAL 303.91 || - COLLATERAL 302.19
- OBJLOAN 306.80 || - OBJLOAN 305.13 | - OBJLOAN 303.81
- SAVING 310.63 || — SAVING 308.75 || - SAVING 306.80
- EDUC 311.34 || - EDUC 310.34 || - GENDER 309.89
- GENDER 313.05 || - GENDER 311.43 || - EDUC 309.90
- FINAINCLUS 328.46 || - FINAINCLUS 326.52 || - FINAINCLUS 325.37

- sign means that a variable is dropped from a model and
+ sign means that a variable is added back to a model
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Table 3.5: Step 6,7,8 in AIC Backward stepwise elimination procedure

|

Step 6: AIC = 297.82

Step 7: AIC = 296.79

H Step 8: AIC = 294.98 H

Variable AIC || Variable AIC | Variable AIC
- DEPCHILD 296.79 || - CIVSTATUS 294.98 || - REA.ACTIVITY 294.27
- CIVSTATUS 296.89 | - REA.ACTIVITY 296.13 | - PROBLEM 294.67
- REA.ACTIVITY 297.29 | - PROBLEM 296.51 | <none> 294.98
<none> 297.82 || <none> 296.79 | - TYPCONTR 295.21
- TYPCONTR 297.92 | - TYPCONTR 296.91 || - USESAVING 295.32
- PROBLEM 297.95 || - USESAVING 297.14 || - REA.ASKLOAN 295.48
- USESAVING 298.10 || - REPAYMENT 297.24 || - KINDIMF 295.61
- REPAYMENT 298.49 || - REA.ASKLOAN 297.31 || - REPAYMENT 295.61
- INDGROUP 298.56 || - KINDIMF 297.44 || - INDGROUP 296.15
- REA.ASKLOAN 298.73 || + DEPCHILD 297.82 || - BUSISECTOR 296.42
- KINDIMF 298.82 || - INDGROUP 297.85 || + IMPROVEMENT 296.76
+ IMPROVEMENT 299.62 || - BUSISECTOR 298.32 || + CIVSTATUS 296.79
+ AGE 299.63 || + IMPROVEMENT 298.59 || + SOCILEVEL 296.83
- BUSISECTOR 299.64 || + SOCILEVEL 298.63 || + DEPCHILD 296.89
+ SOCILEVEL 299.64 || + AGE 298.77 || + AGE 296.94
+ USEMICRO 299.74 || + USEMICRO 298.78 || + USEMICRO 296.95
+ TYPBORR 299.80 || + TYPBORR 298.78 || + TYPBORR 296.96
+ OTHERLOANS 299.82 || + OTHERLOANS 298.79 || + OTHERLOANS 296.98
- COLLATERAL 300.46 || - COLLATERAL 299.61 || - COLLATERAL 297.72
- OBJLOAN 302.13 || - OBJLOAN 301.48 | - OBJLOAN 299.87
- SAVING 305.22 || = SAVING 304.45 || - SAVING 302.74
- GENDER 307.98 | - GENDER 306.03 || - GENDER 305.50
- EDUC 308.22 || - EDUC 307.84 || - EDUC 306.17
- FINAINCLUS 323.38 || - FINAINCLUS 321.59 || - FINAINCLUS 320.72

- sign means that a variable is dropped from a model and
+ sign means that a variable is added back to a model
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Table 3.6: Step 9,10 in AIC Backward stepwise elimination procedure

| Step 9: AIC =294.27 |  Step 10: AIC =293.88 |

Variable AIC || Variable AIC

- REA.ASKLOAN  293.88 || <none> 293.88
- PROBLEM 293.90 | - USESAVING 293.89
<none> 294.27 | - REPAYMENT 294.05
- USESAVING 294.33 || - PROBLEM 294.07
- TYPCONTR 294.44 || + REA.ASKLOAN 294.27
- REPAYMENT 294.46 || - BUSISECTOR 294.37
- BUSISECTOR  294.72 | - TYPCONTR 294.49
+ REA.ACTIVITY 294.98 || + IMPROVEMENT 295.18
- KINDIMF 295.23 || - INDGROUP 295.35
- INDGROUP 295.76 || + REA.ACTIVITY 295.48
+ IMPROVEMENT  295.97 || + SOCILEVEL 295.63
+ SOCILEVEL 296.10 || - KINDIMF 295.71
+ CIVSTATUS 296.13 || + CIVSTATUS 295.73
+ USEMICRO 296.16 | + USEMICRO 295.75
+ DEPCHILD 296.18 || + TYPBORR 295.77
+ TYPBORR 296.23 || + DEPCHILD 295.84
+ AGE 296.27 || + AGE 295.88
+ OTHERLOANS 296.27 || + OTHERLOANS 295.88
- COLLATERAL 297.49 || - COLLATERAL 297.21
- DBJLOAN 298.99 | - OBJLOAN 298.17
- SAVING 303.03 || - SAVING 303.19
- GENDER 304.13 || - GENDER 304.24
- EDUC 305.26 || - EDUC 305.31
- FINAINCLUS 319.57 || - FINAINCLUS 319.41

- sign means that a variable is dropped from a model and
+ sign means that a variable is added back to a model
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Table 3.7: AIC optimal model

’ Variable Coefficient 95%CI Std.Error z-value Pr(> |z|) ‘
Intercept -8.8147 (-13.091 , -4.539) 2.1817 -4.040  5.34e-05 ***
GENDER 1.4751 (0.598 , 2.352) 0.4476 3.296  0.000981 ***
EDUC 0.7156 (0.314 , 1.117) 0.2049 3.492 0.000480 ***
TYPCONTR 0.3854 (-0.080 , 0.851) 0.2374 1.623 0.104513
OBJLOAN -0.7267 (-1.300 , -0.154) 0.2924 -2.486  0.012937 *
PROBLEM -1.0265 (—2.507 , 0.454) 0.7554 -1.359  0.174201
REPAYMENT 1.0002 (-0.303 , 2.304) 0.6652 1.504 0.132657
KINDIMF 0.9917 (0.011 , 1.972) 0.5003 1.982 0.047440 *
FINAINCLUS 19.2869 (-2016.217 , 2054.791)  1038.5415 0.019 0.985183
SAVING 2.8859 (1.255 , 4.517) 0.8322 3.468 0.000525 ***
USESAVING 0.7803 (-0.366 , 1.926) 0.5847 1.334 0.182079
COLLATERAL 0.4680 (0.068 , 0.868) 0.2040 2.295 0.021744 *
INDGROUP -0.6798 (-1.393 , 0.033) 0.3636 -1.869  0.061559 .
BUSISECTOR 0.3323 (-0.082 , 0.747) 0.2115 1.571 0.116133

Codes: *** ** * and . denote significance at 0%, 0.1%, 5%, and 10% respectively.

Table 3.8: Odds ratio (OR) and Confident intervals of OR in AIC optimal model

’ Variable Odds ratio (OR) 95%CI of OR ‘
Intercept 0.000000e+00 (0.000 , 0.011)
GENDER 4.372000e+-00 (1.818 , 10.510)
EDUC 2.045000e+00 (1.369 , 3.056)
TYPCONTR 1.470000e+00 (0.923 , 2.341)
OBJLOAN 4.840000e-01 (0.273 , 0.858)
PROBLEM 3.580000e-01 (0.082 , 1.575)
REPAYMENT  2.719000e+-00 (0.738 10.013)
KINDIMF 2.696000e+-00 (1.011 , 7.187)
FINAINCLUS 2.377875e+08 (0.000 , +o0)
SAVING 1.792000e+-01 (3.507 , 91.561)
USESAVING  2.182000e+-00 (0.694 , 6.864)
COLLATERAL  1.597000e+00 (1.071 , 2.382)
INDGROUP 5.070000e-01 (0.248 , 1.033)
BUSISECTOR 1.394000e+00 (0.921 , 2.110)
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criterion. Recall that the formula of BIC statistic is
BIC; = =2 % log — likelihood + i x log(n)

where i is the number of input variables in the model. In our case, i € {1,...,23}. Observe
that the first term in BIC statistic is the same as in AIC statistic, the only different between
two criterion is the second term. Note that when n > 8 i % log(n) > 2 i, the second term of
BIC grows faster than the one in AIC. Then the optimal model based on BIC criterion seems
to be more simple than the one based on AIC criterion.

To perform the selection variables based on backward stepwise elimination algorithm and BIC
criterion, we also use the function stepAIC of R-packages with the options direction = "both"
but with different choice of k, k = log(404), in library(MASS). After 18 steps, we obtain
the final model, which has the smallest value of AIC, and deleting or adding any variable from
this final model will increase the value of AIC of the model. This model is the BIC optimal
model. Table 3.9 and 3.10 record the results of running function stepAIC with the choice k =
log(404) i.e the resuls of BIC optimal model.

Table 3.9: BIC optimal model

’ Variable Coefficient 95%CI Std.Error z-value Pr(> |z|) ‘
Intercept -3.3391 (-5.367 , -1.311) 1.0348 -3.227  0.001251 **
GENDER 0.9375 (0.172 , 1.703) 0.3906 2.400 0.016383 *
EDUC 0.6836 (0.309 , 1.058) 0.1910 3.579 0.000345 ***
OBJLOAN -0.6791 (-1.220 , -0.138) 0.2759 -2.462  0.013824 *
FINAINCLUS 19.0457 (-2091.700 , 2129.791)  1076.9308 0.018 0.985890
SAVING 3.7936 (3.069 , 4.518) 0.3697 10.261 < 2e-16 ***

Codes: *** ** * and . denote significance at 0%, 0.1%, 5%, and 10% respectively.

Table 3.10: Odds ratio (OR) and Confident intervals of OR in BIC optimal model
| Variable Odds ratio (OR) 95%CI of OR |

Intercept 3.500000e-02 (0.005 , 0.270)
GENDER 2.554000e+-00 (1.188 , 5.491)
EDUC 1.981000e4-00 (1.362 , 2.880)
OBJLOAN  5.070000e-01 (0.295 , 0.871)
FINAINCLUS 1.868258¢+08 (0.000 , +00)
SAVING 4.441400e+-01 (21.519 , 91.670)

From Table 3.9, we see that in BIC optimal model, there are only 5 variables are kept: GENDER,
EDUC, OBJLOAN, FINAINCLUS and SAVING. All these variable have small p-value, except vari-
able FINAINCLUS. Note that, although FINAINCLUS has a really high p-value (0.986), its coef-
ficient has a quite large of confident interval (—2091.700,2129.791) and the odds ratio w.r.t it
also has a large confident interval (0, +o00) in BIC optimal model, it is kept in both BIC and
AIC optimal model.
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3.3.3 A discussion about the values AIC and BIC of optimal models

In this part, I will continue to apply backward stepwise elimination algorithm on AIC and BIC
optimal models, based on the minimum of AIC and BIC at each step to see how the values of
AIC and BIC will change when deleting more variables from the optimal models.

e AIC optimal model

Consider the last step of backward stepwise elimination algorithm using AIC criterion
(it is recorded at the final column of Table 3.5). If we continue to apply this algorithm
on the final model, USESAVING will be removed firstly since removing it will give us a
new model which has smallest value of AIC, comparing with deleting other variables or
adding one variable from the set of deleted variables to the optimal model. The model
obtained by removing USESAVING from AIC optima model has AIC = 293.89, slightly
higher than the one in AIC optimal model, however, we force to remove USESAVING from
the model. Following this way, we perform backward stepwise elimination procedure on
the new model (the model obtained from the optimal model without USESAVING). At
this time, REPAYMENT will be deleted from the current model. By the same manner, the
procedure stops when all variables are deleted from the model. At each time of deleting
the remaining variables in AIC optimal model, the value of AIC of the next step model
is always higher than AIC of the current model, except step 13, dropping PROBLEM will
decrease the AIC of the current model. Note that the value of AIC of the model at step
13 is even smaller than the AIC value of AIC optimal model. The results of value of AIC
and variables dropped/added are shown in table 3.10.

Figure 3.1 plots the values of AIC at each step of backward stepwise elimination proce-
dure correspond to the number of remaining variables in each step.

e BIC optimal model

In the same direction acting on AIC optimal model, the backward stepwise elimination
procedure using statistical criterion BIC is performed in BIC optimal model. We start by
forcing OBJLOAN removing from BIC optimal model, although removing it will increase
the BIC value of the current model (from 317.68 at step 18 to 318.43 at step 19). By
the same argument as before, GENDER, EDUC, FININCLUS and SAVING will be removed
at step 20, 21, 22 and 23, respectively. The procedure stop at step 23, when all input
variables are deleted from the model. At each time of removing variable from the current
model, the value of BIC of the next step model is always increased. The results of value
of BIC and variables dropped/added are also shown in table 3.10.

Note that at each step of selection variables using backward stepwise elimination algorithm
and BIC criterion, the algorithm deletes the same variable as one using AIC criterion.

Figure 3.2 plots the values of BIC at each step of backward stepwise elimination procedure cor-
respond to the number of remaining variables in each step. The backward stepwise elimination
algorithm using BIC criterion stop at step 18, at this step, the model contains 5 variables, and
its BIC value is smallest of all other models, including the models of forcing variables removing
from BIC optimal model.
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Figure 3.1: AIC and number of variables in corresponding models
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Figure 3.2: BIC and number of variables in corresponding models
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Table 3.11: AIC and BIC of step models and variable dropped at each step
’ Step | AIC and dropped/added variable H BIC and dropped/added variable ‘

0 309.12 390.46

1 307.12 - OTHERLOANS 385.07 - OTHERLOANS
2 305.15 - TYPBORR 379.71 - TYPBORR

3 303.22 - USEMICRO 374.39 - USEMICRO

4 301.41 - SOCILEVEL 369.19 - SOCILEVEL

5 299.62 - AGE 364.02 - AGE

6 297.82 - IMPROVEMENT 358.82 - IMPROVEMENT
7 296.79 - DEPCHILD 354.41 - DEPCHILD

8 294.98 - CIVSTATUS 349.20 - CIVSTATUS

9 294.27 - REA.ACTIVITY 345.11 - REA.ACTIVITY
10 | 293.88 - REA.ASKLOAN 341.33 - REA.ASKLOAN
11 | 293.89 - USESAVING 337.95 - USESAVING
12 | 293.90 - REPAYMENT 334.56 - REPAYMENT
13 | 293.45 - PROBLEM 330.73 - PROBLEM

14 | 294.27 - BUSISECTOR 328.16 - BUSISECTOR
15 | 294.62 - INDGROUP 325.12 - INDGROUP

16 | 295.14 - TYPCONTR 322.25 - TYPCONTR

17 ] 295.66 - COLLATERAL 319.38 - COLLATERAL
18 | 297.34 - KINDIMF 317.68 - KINDIMF

19 | 301.49 - OBJLOAN 318.43 - OBJLOAN

20 | 305.06 - GENDER 318.62 - GENDER

21 | 311.51 - EDUC 321.68 - EDUC

22 | 336.40 - FINAINCLUS 343.17 - FINAINCLUS
23 | 519.48 - SAVING 522.87 - SAVING

- sign means that a variable is dropped from a model and
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3.3.4 The fitness of AIC and BIC optimal models

In this part, I will divide the whole data into two parts: learning data containing 300 obser-
vations taken randomly, and test data containing the remaining observations. In this manner,
thirty sub-samples are generated randomly. In each sub-sample, learning data is used to build
the optimal learning models (with two criterion AIC and BIC), and test data is used to test the
fitness of these two learning optimal models with the data, based on the estimated probability
of a success.

For each sub-sample, the procedure of this testing as following:

e Using 300 observations to obtain the learning optimal models (with AIC and BIC crite-
rion) to compute the estimated probability of a success p(X;):

’ 1-— Bl‘pxié 1+ 61?]9{25:0 Tyj - Bj}

h

. .t . .
,,,,, ) 18 " row of input matrix X

e For each of 104 remaining observations (Y;), X;),i = 1,...,104, compute p(X;),

— Ifp(X;) > 05 and Y; = 1 or p(X;) < 0.5 and Y; = 0, mark this pair (Y;), X;) as

"OK?” pair.
- Ifp(X;) <05 and Y; = 1 or p(X;) > 0.5 and Y; = 0, mark this pair (Y;), X;) as
"NOT OK?” pair.

e Count the number of "OK” pair and "NOT OK” pair to compare.

Table 3.11 records the number of "OK” pairs and "NOT OK” pairs in each samples of thirty
sub-samples and in the whole data sample, using AIC and BIC criterion. From this table, we
see that in each model, the number of ”OK” pairs is much more than the number of ”NOT OK”
pairs. We can say that our models using AIC and BIC criterion in this case are acceptable.
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Table 3.12: Number of 7OK” pair and "NOT OK” in each sub-sample

Sub-sample

Samples with AIC
"OK” pair "NOT OK” pair

Samples with BIC
"OK” pair "NOT OK” pair

1 84 20 93 11
2 83 21 93 11
3 93 11 86 18
4 93 11 87 17
5 82 22 95 9
6 81 23 89 15
7 88 16 93 11
8 83 21 87 17
9 92 12 92 12
10 90 14 84 20
11 93 11 89 15
12 83 21 95 9
13 83 21 86 18
14 91 13 81 23
15 83 21 91 13
16 87 17 90 14
17 91 13 88 16
18 87 17 90 14
19 84 20 92 12
20 86 18 87 17
21 88 16 90 14
22 89 15 93 11
23 87 17 90 14
24 89 15 93 11
25 93 11 87 17
26 84 20 84 20
27 83 21 90 14
28 85 19 82 22
29 87 17 88 16
30 92 12 89 15

whole data | 351 53 351 53
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The frequency of appearances of 23 variables in 30 learning AIC models and 30 learning BIC
models are presented in figure 3.3 and 3.4, respectively.

In figure 3.3, the green bars illustrate the input variables contained in the AIC optimal model.
We observe that EDUC and FINAINCLUS appear in all 30 sub-sample models, SAVING, OBJLOAN,
GENDER, COLLATERAL appear in 29, 28, 26 and 23 sub-samples, respectively. From this, we can
say that EDUC, FINAINCLUS, SAVING, OBJLOAN, GENDER and COLLATERAL are the most im-
portant variables in the AIC optimal models. The other variables kept in AIC optimal model
(TYPCDNTR, PROBLEM, REPAYMENT, KINDIMF, USESAVING, INDGROUP and BUSISECTOR) also
have higher frequency than the ones that are not in the model. Hence, we can say that the
variables kept in AIC optimal model are fairly stable.

Notice that variable OTHERLOANS does not appear in any sub-sample models.

Figure 3.3: Frequency of variables appearing on 30 AIC learning models
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In figure 3.4, the green bars also illustrate the input variables kept in the BIC optimal model.
We observe that FINAINCLUS and SAVING appear in all 30 sub-sample models, EDUC appear
in 27 sub-samples, respectively. From this, we can say that FINAINCLUS, SAVING and EDUC
are the most important variables in the BIC optimal models. The other variables kept in AIC
optimal model (GENDER and OBJLOAN) also have higher frequency than the ones that are not in
the model, although their frequency are not really high, just equal to 13 and 10, out of 30. In
some sense, we can also say that the variables kept in BIC optimal model are fairly stable.

3.3.5 Choosing final AIC optimal model

Consider again figure 3.1 and the first two columns of table 3.11. The backward stepwise elimi-
nation stops at step 10 and AIC value of AIC optimal model is 293.88. At this time, our model
has 13 variables, and deleting one variable from this set or adding one variable from the set of
deleted variables will give us models with higher values of AIC in the next steps. In this case,
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Figure 3.4: Frequency of variables appearing on 30 BIC learning models

Frequency of variables appearing in 30 BIC learning models
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although USESAVING is the target variable in backward stepwise elimination algorithm using
criterion AIC, deleting USESAVING brings us a model with a higher value of AIC, 293.89. Hence,
the algorithm terminates at step 10. But, if we force to remove USESAVING, and then REPAYMENT
and PROBLEM in the next two step, we obtain a model with smaller (even smallest of all) value
of AIC. This model contains 10 variables, and the variables were forced to remove from AIC
optimal model have low statistical significance: USESAVING, REPAYMENT, PROBLEM have p-value
0.18, 0.13 and 0.17, respectively. If we continue applying backward stepwise elimination by this
manner until all input variables are deleted, the models we obtained will have higher AIC than
AIC of AIC optimal model, so higher than AIC of model at step 13 (see table 3.10).

On the other hand, from Figure 3.3, we can see that the frequency appearances of REPAYMENT,
USESAVING and PROBLEM in 30 AIC sub-sample models are not really high, just equal to 17, 13
and 12 respectively, out of 30 sub-samples.

It should be note that variable FINAINCLUS has a really high value of p-value, 0.985, a large
confident interval of coefficient, (-2016.217, 2054.791), but it appears in all 30 AIC sub-sample
models. Thus, it should not be removed from the model but we can not trust in this variable.

These above observing give us a reasonable consideration to keep the model at step 13 as the

final optimal model, i.e, the final model will contain 10 variables: GENDER, EDUC, TYPCONTR,
OBJLOAN, KINDIMF, FINAINCLUS, SAVING, COLLATERAL, INDGROUP, and BUSISECTOR.
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Appendix A

R codes used in the thesis

Logistic regression for the whole data set

setwd(" D:/Thesis/Data in Tunisia")

Tunisia.data <- read.csv( "data.csv’, head=TRUE)
attach(Tunisia.data)

save( Tunisia.data, file=""Tunisia.data.rda" );

data.logit <- gIm(Y ~ AGE + GENDER + EDUC + CIVSTATUS + DEPCHILD + TYPBORR
+ TYPCONTR + OBJLOAN + SOCILEVEL + IMPROVEMENT + PROBLEM
+ REPAYMENT + KINDIMF + USEMICRO + FINAINCLUS + SAVING
+ USESAVING + COLLATERAL + OTHERLOANS + INDGROUP + BUSISECTOR
+ REA.ACTIVITY + REA.ASKLOAN, data = Tunisia.data, family = binomial())

summary(data.logit);

Commpute confident interval of coefficients, OR and confidence interval of OR in the
whole data

round(cbind(confint.default(data.logit)),3)
round(cbind(exp(cbind(OR=data.logit$coefficients)), exp(confint.default(data.logit))),3);

AIC Backward Stepwise Elimination
Running "stepAlC" for the whole data
library(MASS)

dataAlC.step <- stepAlC(data.logit, trace = 1, keep = NULL, k=2, data=Tunisia.data, direc-
tion="both");

summary(dataAlC.step);

AlCmodel <- glm(Y ~ GENDER + EDUC + TYPCONTR +OBJLOAN + PROBLEM
+ REPAYMENT + KINDIMF + FINAINCLUS + SAVING +USESAVING
+ COLLATERAL +INDGROUP + BUSISECTOR, data = Tunisia.data,
family = binomial())
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round(cbind(confint.default(dataAlC.step)),3);
round(cbind(exp(cbind(OR=dataAlC.stepS$coefficients)), exp(confint.default(dataAlC.step))),3);

Delete variable in AlIC optimal model by Backward stepwise elimination procedure

Delete "USESAVING”, p-value = 0.182

USESAVING.logit <- glm(Y GENDER + EDUC + TYPCONTR + OBJLOAN + PROBLEM
+ REPAYMENT + KINDIMF + FINAINCLUS + SAVING + COLLATERAL
+ INDGROUP + BUSISECTOR, data = Tunisia.data, family = binomial())

USESAVING.AIC <- stepAIC(USESAVING.logit , trace = 1, keep = NULL, k=2, data=Tunisia.data,
direction="both")

summary(USESAVING.AIC)

Delete " REPAYMENT”, p-value = 0.148

REPAYMENT .logit <- gim(Y GENDER + EDUC + TYPCONTR +OBJLOAN + PROBLEM
+ KINDIMF + FINAINCLUS + SAVING + COLLATERAL +INDGROUP
+ BUSISECTOR, data = Tunisia.data, family = binomial())

REPAYMENT.AIC <- stepAIC(REPAYMENT .logit , trace = 1, keep = NULL, k=2, data=Tunisia.data,
direction="both")

summary(REPAYMENT.AIC)

Delete "PROBLEM”, p-value = 0.262

PROBLEM.logit <- gim(Y GENDER + EDUC + TYPCONTR +OBJLOAN + KINDIMF
+ FINAINCLUS + SAVING + COLLATERAL +INDGROUP + BUSISECTOR,

data = Tunisia.data, family = binomial())

PROBLEM.AIC <- stepAIC(PROBLEM.logit , trace = 1, keep = NULL, k=2, data=Tunisia.data,
direction="both")

summary(PROBLEM.AIC)

Delete "BUSISECTOR”, p-value = 0.095

BUSISECTOR .logit <- glm(Y GENDER + EDUC + TYPCONTR +OBJLOAN + KINDIMF
-+ FINAINCLUS + SAVING + COLLATERAL +INDGROUP,

data = Tunisia.data, family = binomial())

BUSISECTOR.AIC <- stepAIC(BUSISECTOR .logit , trace = 1, keep = NULL, k=2, data=Tunisia.data,
direction="both")

summary(BUSISECTOR.AIC)
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Delete "INDGROUP ”, p-value = 0.124

INDGROUP.logit <- gim(Y GENDER + EDUC + TYPCONTR +OBJLOAN + KINDIMF
+ FINAINCLUS + SAVING + COLLATERAL, data = Tunisia.data, family = binomial())

INDGROUP.AIC <- stepAIC(INDGROUP.logit , trace = 1, keep = NULL, k=2, data=Tunisia.data,
direction="both")

summary(INDGROUP.AIC)
Delete "TYPCONTR”, p-value = 0.11

TYPCONTR.logit <- glm(Y GENDER + EDUC +OBJLOAN + KINDIMF + FINAINCLUS +
SAVING + COLLATERAL , data = Tunisia.data, family = binomial())

TYPCONTR.AIC <- stepAIC( TYPCONTR.logit , trace = 1, keep = NULL, k=2,
data=Tunisia.data, direction="both")

summary( TYPCONTR.AIC)
Delete " COLLATERAL”, p-value = 0.119

COLLATERAL.logit <- glm(Y GENDER + EDUC +OBJLOAN + KINDIMF + FINAINCLUS +
SAVING, data = Tunisia.data, family = binomial())

COLLATERAL.AIC <- stepAlC( COLLATERAL.logit , trace = 1, keep = NULL, k=2, data=Tunisia.data,
direction="both")

summary( COLLATERAL.AIC)
Delete " KINDIMF”, p-value = 0.051

KINDIMF .logit <- gim(Y GENDER + EDUC +OBJLOAN + FINAINCLUS + SAVING,
data = Tunisia.data, family = binomial())

KINDIMF.AIC <- stepAIC(KINDIMF.logit , trace = 1, keep = NULL, k=2, data=Tunisia.data,
direction="both")

summary(KINDIMF.AIC)
Delete "OBJLOAN ”, p-value = 0.014

OBJLOAN.logit <- gim(Y GENDER + EDUC + FINAINCLUS + SAVING , data = Tunisia.data,
family = binomial())

OBJLOAN.AIC <- stepAIC(OBJLOAN.logit , trace = 1, keep = NULL, k=2, data=Tunisia.data,
direction="both")

summary(OBJLOAN.AIC)
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Delete "GENDER”, p-value = 0.023

GENDER.logit <- glm(Y EDUC + FINAINCLUS + SAVING , data = Tunisia.data,
family = binomial())

GENDER.AIC <- stepAIC(GENDER«.logit , trace = 1, keep = NULL, k=2, data=Tunisia.data, di-
rection="both")

summary( GENDER.AIC)
Delete "EDUC ", p-value = 0.0048
EDUC.logit <- gim(Y FINAINCLUS + SAVING, data = Tunisia.data, family = binomial())

EDUC.AIC <- stepAIC(EDUC.logit , trace = 1, keep = NULL, k=2, data=Tunisia.data, direc-
tion="both")

summary( EDUC.AIC)
Delete "FINAINCLUS ", p-value = 0.979
FINAINCLUS.logit <- glm(Y SAVING, data = Tunisia.data, family = binomial())

FINAINCLUS.AIC <- stepAIC(FINAINCLUS .logit , trace = 1, keep = NULL, k=2, data=Tunisia.data,
direction="both")

summary( FINAINCLUS.AIC)
Delete "SAVING”, p-value j 2e-16
SAVING.logit <- gim(Y 1, data = Tunisia.data, family = binomial())

SAVING.AIC <- stepAIC(SAVING.logit , trace = 1, keep = NULL, k=2, data=Tunisia.data, direc-
tion="both")

summary(SAVING.AIC)

BIC Backward Stepwise Elimination

Running "stepAlC" for the whole data, "k = log (n)"
library(MASS)

dataBIC.step <- stepAlC(data.logit, trace = TRUE, k=log(219), data=Tunisia.data, direction="both");
summary(dataBIC.step);

round(cbind(confint.default(dataBIC.step)), 3 ); round(cbind(exp(cbind(OR=dataBIC.step$coefficients)),
exp(confint.default(dataBIC.step))),3);
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Delete variable in BIC optimal model by Backward stepwise elimination procedure
Delete "OBJLOAN ”, p-value = 0.0138

OBJLOAN.logit <- gim(Y GENDER + EDUC + FINAINCLUS + SAVING , data = Tunisia.data,
family = binomial())

OBJLOAN.BIC <- stepAIC(OBJLOAN.logit , trace = TRUE, k=log(219), data=Tunisia.data, di-
rection="both")

summary(OBJLOAN.BIC)
Delete " GENDER”, p-value = 0.0226

GENDER.logit <- glm(Y EDUC + FINAINCLUS + SAVING , data = Tunisia.data,
family = binomial())

GENDER.BIC <- stepAIC(GENDER«.logit, trace = TRUE, k=log(219), data=Tunisia.data, direc-
tion="both")

summary( GENDER.BIC)

Delete "EDUC”, p-value = 0.0048

EDUC.logit <- gim(Y FINAINCLUS + SAVING, data = Tunisia.data, family = binomial())
EDUC.BIC <- stepAIC(EDUC.logit , trace = TRUE, k=log(219), data=Tunisia.data, direction="both")
summary( EDUC.BIC)

Delete "FINAINCLUS”, p-value = 0.979

FINAINCLUS.logit <- gim(Y SAVING, data = Tunisia.data, family = binomial())

FINAINCLUS.BIC <- stepAIC(FINAINCLUS .logit , trace = 1, keep = NULL, k=2, data=Tunisia.data,
direction="both")

summary( FINAINCLUS.BIC)
Delete "SAVING ”, p-value j 2e-16
SAVING.logit <- gim(Y 1, data = Tunisia.data, family = binomial())

SAVING.BIC <- stepAIC(SAVING.logit , trace = 1, keep = NULL, k=2, data=Tunisia.data, direc-
tion="both")

summary(SAVING.BIC)

Plot AIC values of models obtained from deleting or adding variables to the full model
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numberofvar <- ¢(23:0)

AlCvalue <- ¢(309.12,307.12,305.15,303.22,301.41,299.62,297.82 ,296.79,294.98,294.27,293.88,
293.89, 293.90,293.45,294.27,294.62,295.14,295.66,297.34,301.49,305.06 ,311.51,336.40,519.48)

plot(numberofvar, AlCvalue, col ="blue” ,pch = 20, xlab="Number of variables in the models”,
ylab="AIC of coresponding models")

lines(numberofvar, AIC)
Plot BIC values of models obtained from deleting or adding variables to the full model
numberofvar <- ¢(23:0)

BIC <-¢(390.46,385.07,379.71, 374.39,369.19,364.02,358.82,354.41,349.20,345.11, 341.33,337.95,
334.56,330.73,328.16, 325.12,322.25,319.38, 317.68,318.43,318.62,321.68,343.17,522.87)

plot(numberofvar,BIC, col ="blue",pch = 20, xlab=""Number of variables in the models”, ylab="AIC
of coresponding models”)

lines(numberofvar,BIC)

Create 30 sub-samples to compute PY=1—X to test the fitness of the model and test
the stability of variables in AIC optimal model

u=1:404;

Se.learning=sample(u,300, replace=FALSE)
learning.data=Tunisia.data[Se.learning, |
remain=u[-Se.learning]
test.data=Tunisia.data[remain,]

learning.logit <- glm( Y ~ AGE + GENDER + EDUC + CIVSTATUS + DEPCHILD + TYPBORR
+ TYPCONTR + OBJLOAN + SOCILEVEL + IMPROVEMENT + PROBLEM
+ REPAYMENT + KINDIMF + USEMICRO + FINAINCLUS + SAVING
+ USESAVING + COLLATERAL 4+ OTHERLOANS + INDGROUP + BUSISECTOR
+ REA.ACTIVITY + REA.ASKLOAN, data = learning.data, family = binomial())

learning.stepAlC= stepAlC(learning.logit, trace = 1, keep = NULL, k=2, data=learning.data, di-
rection="both");

summary(learning.stepAlC);

Allvar=names(data.logit$coefficients)
Selectvar=names(learning.stepAlC$coefficients);
SelectBeta=learning.stepAlCS$coefficients;
Res<-numeric(length(Allvar))

for (i in 1 : length(Allvar) )

for (j in 1: length(Selectvar))
if (Allvar[i] == Selectvar(j])

56



Res[i]<- SelectBetalj]
Res[i]<- 0

Beta=as.matrix(Res)
const=matrix(data=1, nrow=length(remain), ncol=1)

test <- cbind(const,test.data$AGE, test.dataS§GENDERtest.data$EDUC, test.data$CIVSTATUS,
test.data$DEPCHILD,test.data$ TYPBORR, test.data$TYPCONTR,test.data$OBJLOAN,
test.data$SOCILEVEL, test.data$IMPROVEMENT, test.data$PROBLEM , test.dataSsREPAYMENT,
test.data$KINDIMF test.data$USEMICRO, test.data$FINAINCLUS , test.data$SAVING,
test.dataSUSESAVING,test.data$COLLATERAL, test.dataSOTHERLOANS, test.data$INDGROUP,
test.data$BUSISECTOR, test.dataSREA.ACTIVITY, test.dataSREA.ASKLOAN)

Xt=as.matrix(test) (input matrix of test sample)
Yt=as.matrix(test.data$Y) (output vector of test sample)

Using Beta obtained from learning.step to compute p(x) = P{Y = 1| X} and the number of OK pairs
pi.test=exp(Xt% * %Beta)/(1+exp(Xt% x %Beta))

a<-0;b<-0
for (i in 1 : length(row(Yt)))
if (Yt[i] == 1 & pi.test[i] >= 0.5)
a=a+tl
for (i in 1 : length(row(Yt)))
if (Yt[i] == 0 & pi.test[i] < 0.5)
b= b+1

c<-0;,d<-0
for (i in 1 : length(row(Yt)))
if (Yt[i] == 1 & pi.test[i] < 0.5)
c=c+l
for (i in 1 : length(row(Yt)))
if (Yt[i] == 0 & pi.test[i] >= 0.5)
d= d+1
a+b
c+d

Compute pi for the model obtained from the whole data using AIC criterion

dataAlC= stepAlC(data.logit, trace = 1, keep = NULL, k=2, data=Tunisia.data, direction="both");
summary(dataAlC);

Allvar=names(data.logit$coefficients)

Selectvar=names(dataAlC$coefficients);

SelectBeta=dataAlCS$coefficients;
Res <- numeric(length(Allvar))
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for (i in 1 : length(Allvar) )
for (j in 1: length(Selectvar))
if (Allvar[i] == Selectvar(j])
Res[i]<- SelectBetalj]
Res[i] <- 0

Beta=as.matrix(Res)
const=matrix(data=1, nrow=404, ncol=1)

whole <- cbind(const, Tunisia.data$AGE, Tunisia.dataS$GENDER, Tunisia.data$EDUC,
Tunisia.data$CIVSTATUS, Tunisia.data$DEPCHILD, Tunisia.data$TYPBORR,
Tunisia.data$TYPCONTR, Tunisia.data$OBJLOAN, Tunisia.data$SOCILEVEL,
Tunisia.data$IMPROVEMENT, Tunisia.data$PROBLEM, Tunisia.dataSREPAYMENT,
Tunisia.data$KINDIMF, Tunisia.dataSUSEMICRO, Tunisia.dataSFINAINCLUS,
Tunisia.data$SAVING, Tunisia.dataSUSESAVING, Tunisia.data$COLLATERAL,
Tunisia.data$OTHERLOANS, Tunisia.data$INDGROUP, Tunisia.data$BUSISECTOR,
Tunisia.data3REA.ACTIVITY, Tunisia.dataSREA.ASKLOAN)

X=as.matrix(whole) (input matrix of whole data)
Y=as.matrix(Tunisia.data$Y) (output vector of whole data)

pi=exp(X% * %Beta)/(1+exp(X% * %Beta))

a<-0;b<-0
for (iin 1 : length(row(Y)))
if (Y[i] ==1 & pi.[i] >=0.5)
a=a+l
for (iin 1 : length(row(Y)))
if (Y[i] == 0 & pi[i] < 0.5)
b= b+1

c<-0;d<-0
for (i in 1 : length(row(Y)))
if (Y[i] == 1 & pi[i] < 0.5)
c=c+l
for (i in 1 : length(row(Y)))
if (Y[i] == 0 & pi[i] >= 0.5)
d=d+1
a+b
c+d

Create 30 sub-samples to compute PY=1—X to test the fitness of the model and test
the stability of variables in BIC optimal model

u=1:404;

Se.learning=sample(u,300, replace=FALSE)
learning.data=Tunisia.data[Se.learning, ]
remain=u[-Se.learning]
test.data=Tunisia.data[remain,]
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learning.logit <- glm(' Y AGE + GENDER + EDUC + CIVSTATUS + DEPCHILD + TYPBORR
+ TYPCONTR + OBJLOAN + SOCILEVEL + IMPROVEMENT + PROBLEM + REPAY-
MENT
+ KINDIMF + USEMICRO + FINAINCLUS + SAVING + USESAVING + COLLATERAL
+ OTHERLOANS + INDGROUP + BUSISECTOR + REA.ACTIVITY + REA.ASKLOAN,
data = learning.data, family = binomial())

learning.stepBIC= stepAlC(learning.logit, trace = TRUE, k=log(219), data=learning.data, direc-
tion="both");
summary(learning.stepBIC);

Allvar=names(data.logit$coefficients)
BICSelectvar=names(learning.stepBIC$coefficients);
BICSelectBeta=learning.stepBlIC$coefficients;

Res <- numeric(length(Allvar))

for (i in 1 : length(Allvar) )
for (j in 1: length(BICSelectvar))
if (Allvar[i] == BICSelectvar[j])
Res[i] <- BICSelectBetalj]
Res[i] <- 0

BlCbeta=as.matrix(Res)
const=matrix(data=1, nrow=length(remain), ncol=1)

test <- cbind(const,test.data$AGE, test.dataS§GENDERtest.data$EDUC, test.data$CIVSTATUS,
test.data$DEPCHILD,test.data3TYPBORR, test.data$TYPCONTR,test.data$OBJLOAN,
test.data$SOCILEVEL, test.data$IMPROVEMENT, test.data$PROBLEM, test.dataSREPAYMENT,
test.data$KINDIMF test.dataSUSEMICRO, test.data$FINAINCLUS , test.data$SAVING,
test.data$USESAVING,test.data§COLLATERAL, test.data$OTHERLOANS, test.data$INDGROUP,
test.data3BUSISECTOR test.data$REA.ACTIVITY, test.dataSREA.ASKLOAN)

Xt=as.matrix(test) (input matrix of test sample)
Yt=as.matrix(test.data$Y) (output vector of test sample)

Using Beta obtained from learning.stepBIC to compute p(x) = P{Y = 1|X} and the number of
OK pairs

BICpi.test=exp(Xt% * %BICbeta)/(1+exp(Xt% * %BICbeta))

a<-0;b<-0
for (i in 1 : length(row(Yt)))
if (Yt[i] == 1 & BICpi.test[] >= 0.5)
a=a+l
for (iin 1 : length(row(Yt)))
if (Yt[i] == 0 & BICpi.test[i] < 0.5)
b= b+1

c<-0,d<-0
for (i in 1 : length(row(Yt)))
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if (Yt[i] == 1 & BICpi.test[i] < 0.5)
c=c+l
for (i in 1 : length(row(Yt)))
if (Yt[i] == 0 & BICpi.test[i] >= 0.5)
d= d+1
a+b
c+d

Compute pi for the model obtained from the whole data using BIC criterion
dataBIC= stepAlC(data.logit, , trace = TRUE, k=log(219), data=Tunisia.data, direction="both" );
summary(dataBIC);

Allvar=names(data.logit$coefficients)
Selectvar=names(dataBlC$coefficients);
SelectBeta=dataBICScoefficients;

Res <- numeric(length(Allvar))

for (i in 1 : length(Allvar) )
for (j in 1: length(Selectvar))
if (Allvar[i] == Selectvar(j])
Res|i] <- SelectBetalj]
Res[i] <- 0

Beta=as.matrix(Res)
const=matrix(data=1, nrow=404, ncol=1)

whole <- cbind(const, Tunisia.data$AGE, Tunisia.dataS$GENDER, Tunisia.data$EDUC,
Tunisia.data$CIVSTATUS, Tunisia.data$DEPCHILD, Tunisia.data$TYPBORR,
Tunisia.data3TYPCONTR, Tunisia.data$OBJLOAN, Tunisia.data$SOCILEVEL,
Tunisia.dataSIMPROVEMENT, Tunisia.data$PROBLEM, Tunisia.dataSREPAYMENT,
Tunisia.data$KINDIMF, Tunisia.dataSUSEMICRO, Tunisia.dataSFINAINCLUS,
Tunisia.data$SAVING, Tunisia.dataSUSESAVING, Tunisia.data$COLLATERAL,
Tunisia.data$OTHERLOANS, Tunisia.data$INDGROUP, Tunisia.data$BUSISECTOR,
Tunisia.data3REA.ACTIVITY, Tunisia.dataSREA.ASKLOAN)

X=as.matrix(whole) (input matrix of whole data)
Y=as.matrix(Tunisia.data$Y) (output vector of whole data)

pi=exp(X% * %Beta)/(1+exp(X% * %Beta))

a<-0;b<-0
for (i in 1 : length(row(Y)))
if (Y[i] ==1 & pi.[]i] >= 0.5)
a=atl

for (iin 1 : length(row(Y)))
if (Y[i] == 0 & pili] < 0.5)
b= b+1
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c<-0;,d<-0
for (iin 1 : length(row(Y)))
if (Y[i] == 1 & pi[i] < 0.5)
c=c+l
for (i in 1 : length(row(Y)))
if (Y[i] == 0 & pi[i] >= 0.5)
d=d+1
a+b
ct+d

Plot the frequency of variables in 30 AIC samples

AlCsample <- matrix(c(2,26,30,4,2,4,12,28,3,3,12,17,19,2,30,29,13,23,0,15,14,5,12),nrow =1,
ncol = 23,byrow=TRUE)

barplot(AlCsample, main = " Frequency of variables appearing in 30 AIC learning optimal models”,
beside = TRUE, names.arg =c("AGE", "GENDER", "EDUC", "CIVSTATUS ",
"DEPCHILD", "TYPBORR", "TYPCONTR",”OBJLOAN", "SOCILEVEL", "IMPROVE-

MENT",
"PROBLEM", "REPAYMENT", "KINDIMF", "USEMICRO", "FINAINCLUS ",
"SAVING", "USESAVING", "COLLATERAL", "OTHERLOANS", "INDGROUP",
"BUSISECTOR", "REA.ACTIVITY ", "REA.ASKLOAN"), xlab="Variables",
ylab="Number of variables")

Plot the frequency of variables in 30 BIC samples

BlCsample <- matrix(c(0,13,27,0,0,0,0,10,0,0,0,2,3,0,30,30,6,2,0,0,0,0,7),nrow = 1,
ncol = 23,byrow=TRUE)

barplot(AlCsample, main = " Frequency of variables appearing in 30 AIC learning optimal models”,
beside = TRUE, names.arg =c("AGE", "GENDER", "EDUC", "CIVSTATUS ",
"DEPCHILD", "TYPBORR", "TYPCONTR",”OBJLOAN", "SOCILEVEL", "IMPROVE-

MENT",
"PROBLEM", "REPAYMENT", "KINDIMF", "USEMICRO", "FINAINCLUS ",
"SAVING", "USESAVING", "COLLATERAL", "OTHERLOANS", "INDGROUP",
"BUSISECTOR", "REA.ACTIVITY ", "REA.ASKLOAN"), xlab="Variables",
ylab="Number of variables")
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