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Abstract

In a previous paper [4], we have introduced a mathematical version of a microcredit model build on the pio-
neering work in 2006, of G.A. Tedeschi [10] based on dynamic incentives for borrowers to repay their loans. In
this paper we extend the model to the case of a group of two borrowers with joint liability in order to compare
individual and group lending efficiency. The extended model shows that group lending is preferable not only in
increasing the borrowers expected return, when the joint liability coefficient is not too hight, but also in offering
loans to more beneficiaries and in allowing the lender to charge lower interest rates.
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1 Introduction
Microcredit consists of very small loans given by microfinance institutions (MFIs) to poor people to help them to
develop micro entreprises. common borrowers belong to group of people who have no access to credits from banks
because they can not put up any collateral for a loan. They are also mainly women.

Microcredit has been shown since its beginning and especially after the success of the Grameen Bank, to be
really efficient in helping poor people all around the world. In addition microcredit appears to be a sustainable
activity and even profitable for investors mainly due to a really low default rate.

There has been several important contributions that seek to explain the success of microcredit. Stiglitz [9]
provide explanations based on peer monitoring. Besley and Coate [2] analyze a strategic repayment game with
joint liability and demonstrate that successful group members may have an incentive to repay the loans of the less
successful ones. They also highlight the effect of social collateral in ensuring repayment. Ghatak and Guinnane
[5], on the other hand, analyze moral hazard problems in group-lending. But the first dynamical model who was
not only a 1 ou 2 steps model1 but takes into account all futurs steps is a model of Tedeschi [10]. In this model,
she assumes as a rule that a borrower who reimbourses his loan will automatically have access to a new loan. The
model also introduces an exclusion phase when reimboursement not occurs in order to enhance the incentive to
repay. In this paper we first recall in the section 2 a mathematical version of the Tedeschi model, introduced as a
Markov chain, and propose in section 3 a new mathematical model, also build on dynamic incentives and exclusion
phase, but for group lending (group of two borrowers). This allows a comparaison between group and individual
lending.

2 Model for individual lending
In the Tedeschi model, each borrower (usually woman) has a project that requires one unit of capital and bring an
amount w of profit if it is successfull. The project lasts for one period and will be successfull with probability α
and fails (due to external shocks) with probability 1 − α. In case of success, the borrower will pay 1 + r to the
lender, where r is the interest rate for one period, and will be entitled to get (with certainty) a new loan of one unit.

∗Corresponding author. Tel.: +33 4 92 07 62 03; fax: +33 4 93 51 79 74. E-mail addresses: khodr@unice.fr, diener@unice.fr
1For exemple, see Armendariz de Aghion [1], and Hulm an Mosley [7].
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If not, she2 will pay nothing but will not be allowed to get a new loan during the next T periods. Then, when this
credit-exclusion phase ends, she can apply again for a new loan but, depending on the number of eligible borrowers
seeking a loan and the limit of the size of the lender’s portfolio, she will become beneficiary only with probability
γ the first period after the exclusion phase, and with probability (1 − γ) she will not get a loan and have to wait
one more period to apply again with the same chance to become beneficiary or not.

These rules of becoming a beneficiary or exclude can be summarized in a Markov chain (Xt)t∈N with the set
of states

E := {B,ET , ET−1, . . . , E1}, (2.1)

where B denotes the state of being a beneficiary of a loan, E1 the state of being an applicant for a loan with the
possibility to become a beneficiary for the next period, and Ei, i = 2, . . . , T , the state of being in the exclusion
phase for the next i periods. The transition matrix of this Markov chain is given by

P1 =



α 1− α 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
. . .

...
0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1
γ 0 0 0 · · · 0 1− γ


(2.2)

The following diagramme summarizes the dynamic of this Markov chain (2.1,2.2):

B E E E E ET T−1 i i−1 11−α 1 1

γ

1−γα

. . .. . .

Figure 1: Diagramme of the Markov chain Xt

2.1 Principal hypothesis
The purpose of introducing this model of individual lending is to find an optimal contract (r∗, T ∗) which maximize
the borrower return calculated in the next section, where r∗ is the optimal interest rate and T ∗ is the optimal
duration of the exclusion phase. In searching such contract, we take into account three kind of hypothesis as
following :

1. Participation hypothesis: this constraint describes the fact that the borrower will only take a loan when she
is able to make a profit on the venture:

w > 1 + r (2.3)

2. Sustainability hypothesis: the interest rate should be set as low as possible in order to maximize the bor-
rower’s profit, but either it should be as long as possible to satisfy the sustainability constraint of the lender:

α(1 + r) > 1 + z (2.4)

where z is the lending cost per unit, including operating costs.

2A borrower is always a women.
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3. Absence of strategic default hypothesis: in order to induce the borrower to pay when she is able, the
deprivation imposed by the punishment phase must be larger than the gain from non-repayment. If the profit
from investing, repaying the loan, and having a new investment phase (with a new loan) is bigger than the
one periode gain and going into an exclusion phase, than strategic default will not occur. This would be
presented by

[w − (1 + r)] + δVs(B) > w + δVs(E
T ) (2.5)

where δ ∈ (0, 1) is the (fixed) discount factor for one period3 and Vs(x) is the total expected return for a
borrower being at state x in time s. This Vs(x) is calculated in the next section for all x ∈ E.

2.2 Total expected return
In this model, when a borrower having α as probability of success of his project, knows that her expected return
for one period is

α[w − (1 + r)]

But as she knows also that she will benefit automatically of a new loan if she reimbourses the current one, she can
also evaluate the expected discounted present value of the total return for all futur periods, that we will simply call
total expected return . To compute it, let us introduce the function f : E × E → R defined by

f(x, y) =

{
w − (1 + r) if (x, y) = (B,B)
0 if not

For each trajectory (X0, X1, . . .) of the Markov chain, we define the total discounted return at time s by

F (Xs, Xs+1, ....) := Σ∞
t=1δ

t−s−1f(Xt−1, Xt)

Notice that the function F is well defined, and bounded, because the serie converges since 0 ≤ δ < 1 and f is
bounded.

Finally let define the total expected return at time s, Vs : E → R, as a function of the state x ∈ E, by

Vs(x) = E[F (Xs, Xs+1, ....) | Xs = x].

The following computation of the total expected return at time s, Vs, already given by Tedeschi, was proved in
[4], in the case of the Markov Chain (2.1), (2.2).

Theorem 2.1. In the model of individual lending defined by the Markov Chain (2.1), (2.2), the total expected
return for an individual being in state x at time s is given by

Vs(x) =

{
α[w − (1 + r)] 1

1−(αδ+(1−α)δTΣ)
if x = B

α[w − (1 + r)] δi−1Σ
1−(αδ+(1−α)δTΣ)

if x = Ei , i = 1, . . . , T
(2.6)

where Σ = γδ
1−δ(1−γ) .

Notice that as α[w − (1 + r)] is just the expected return of the current loan, the total expected return Vs(x) is
the product of this immediat expected return by a factor that increases it to take into account the possible return of
futur loans.

Proof. Notice first that, as Xt is a Markov chain, for all s ≥ 0 and all x ∈ E we have

Vs(x) = E[F (Xs, Xs+1, . . .) | Xs = x]
= E[F (X0, X1, . . .) | X0 = x]
= V0(x)

Thus, instead of computing Vs(x), it is enough to compute V0(x) at time s = 0. Now, as
F (X0, X1, . . .) = f(X0, X1) + δF (X1, X2, . . .), we have for all x ∈ E

V0(x) = E[f(X0, X1) + δF (X1, X2, . . .) | X0 = x]

3Remark that this factor δ can be taken equal to 1/(1 + r).
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But, using first conditional expectation and then Markov property 4, we have

V0(x) =
∑
y∈E

[f(x, y) + δV0(y)]p(X1 = y | X0 = x) (2.7)

where p(X1 = y | X0 = x) is the porbability of transition, in one step, from state x to state y. So, all we have to
do is to calculate V0(x) for all x ∈ E

• for x = B, then we have
V0(B) = α[w − (1 + r)] + (1− α)δV0(E

T )

• for x = Ei, i = 2, . . . , T , we have
V0(E

i) = δV0(E
i−1)

• For x = E1, some more computations are needed. Notice first that, when X0 = E1, using the definition of
f , F (X0, X1, . . .) = δτF (Xτ , Xτ+1, . . .) where τ := Min{t > 0 | Xt = B} is a stopping time. Thus, we
have

V0(E
1) = E[F (X0, X1, . . .) | X0 = E1]

= E[E[δτF (Xτ , Xτ+1, . . .) | X0 = E1, . . . , Xτ−1 = E1, Xτ = B] | X0 = E1]

= E[E[δτF (Xτ , Xτ+1, . . .) | Xτ = B] | X0 = E1] [strong Markov property]
= E[δτE[F (Xτ , Xτ+1, . . .) | Xτ = B] | X0 = E1] [δτ is τ -measurable]
= E[δτV0(B) | X0 = E1]

= E[δτV0(B)]

= V0(B)E[δτ ]

Finally, as the stopping time τ follows a geometric law [11]). G(γ), then we have

E(δτ ) =
∑
k≥1

δk(1− γ)k−1γ =
δγ

1− δ(1− γ)

2.3 The optimal contract
The optimal contract is a contract that maximize the borrower profit in respecting the constraintes (2.3), (2.4) et
(2.5). But a borrower will sign a contract only if it will make him a positif return, then I assume that the constraint
(2.3) is usually satisfied. Then, the optimal contrat (r∗, T ∗) is a solution of the following optimization problem:

(P) =

{
Max J(r, T )
(r, T ) ∈ C

where

J(r, T ) = α[w − (1 + r)]
1

1− (αδ + (1− α)δTΣ)
,

C = {(r, T ) ∈ K; h1(r, T ) ≥ 0, h2(r, T ) ≥ 0},K is a compact.

h1(r, T ) = α(1 + r)− (1 + z),

and
h2(r, T ) = (δ − ΣδT )J(r, T )− (1 + r).

4For more informations about Markov properties, for exemple, see Çinlar [3].
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The resolution5 of this optimization problem gives:

r∗ =
1 + z

α
− 1

and

T ∗ =
1

ln(δ)
ln

(
[1− δ(1− γ)][αδw − (1 + r∗)]

γ[αw − (1 + r∗)]

)
− 1

Notice that this optimal contract corresponds to the saturation of constraint (2.4). That means, the interest rate
r∗ that both maximizes the borrower welfare and makes lending sustainable will exactly cover the total cost of
lending.

2.4 Proportion of beneficiaries among the population
One interesting consequence of introducing a Markov chain to modelize this dynamic is that it eases the study of
the evolution of the distribution of the population into the different states B, E1, E2, . . .. Indeed, we have the
following result:

Proposition 2.2. For any initial state distribution π0 = (π0
0 , . . . , π

T
0 ) of the population among the different states,

the Markov dynamic π0P
t
1 tends to the distribution π∗ when t tends to infinity, with

π∗ =
1

1
(1−α) +

1
γ + (T − 1)

(
1

1− α
, 1, 1, . . . , 1,

1

γ

)
. (2.8)

Proof. The stochastic matrix P1 is primitive, because P 2T
1 > 0. Moreover the Perron-Frobenius theorem6 shows

that limt→+∞ π0P
t
1 = π∗, thus the distribution of the population among the different states becomes closer and

closer to the limiting distribution π∗ when t tends to infinity.

Notice that saying that the distribution π∗ = (π0
∗, π

1
∗, . . . , π

T
∗ ) is a stationary distribution, means that if N is

the total (large and fixed) number of potential borrowers involved, then, at equilibrium for t large enough, π0
∗N

is the actual number of beneficiaries whereas (1 − π0
∗)N is the number of the people involved waiting for a loan.

It is now possible to build up a prescribed dynamic increasing number N(t) of involved potential borrowers or,
similarly, a prescribed dynamic number b(t) of actual beneficiaries of a loan. It suffices to add newcommers in
each states in order to put the number of people in each states to N(t)π∗. This can be useful in order to meet some
predetermined social-business plan of an increasing number of beneficiaries, taking advantage of the necessary
waiting time to involve the candidates in some preparatory activity.

3 Model for group lending with joint liability
To study group lending, we consider for simplicity a group composed of only two identical borrowers. At the
beginning of each lending period, the group has a loan of two units of capital, one for each borrower. Each
borrower invests in a project and we assume that the returns of the two projects are independant. The duration of
each investment is one period. At maturity of each period, the next situations describe the different possible states
and consequences according to the ivestment results:

1. The two borrowers are successfull, this happens with probability α2 . They both will repay their loan7 that is
2(1+r), r is the interest rate for one period, and then they both will benefit of a new loan for the next period.

2. The two borrowers fail in their projects, this happens with probability (1 − α)2. They are not able to
reimbourse, then they both will be excluded for T periods (to allow comparaison between individual and
group lending, we choose the same length T as in individual lending).

5The two funtions h1 and h2 satisfy the regularity conditions (or constraint qualifications), then by Karush-Kuhn-Tucker, we obtain the
solution of the optimization problem (P), see [6].

6For more details, see Serre [8].
7In this model of group lending, the interest rate r is different from the interest rate in the individual lending model.
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3. One borrower is successfull and the other fails, this happens with probability α(1 − α). Here, we assume
that the first will repay not only his own loan (1+r) but also an amount q that represents the joint liability
component of contract. We assume that 0 ≤ q ≤ 1 + r. In this case where only one of the two borrower is
successfull and repays 1 + r + q, she will get a new loan for the next period with another partner and the
borrower who repays nothing will enter in an exclusion phase for T1 periods, with T1 ≤ T .

4. As like as in the model of individual lending in section 2, we assume that after the exclusion phase (T or
T1 periods), an excluded apply for a new loan and his chance to get it depends on the number of eligible
applicants and the limited number of borrower in the lender portfolio. Then γ represents the probability to
have a new loan the first period following the exclusion phase, 1-γ is the probability to still applicant, and
γ(1− γ) the probability to get it the second period following the exclusion phase, ...

The rules of a borrower participating to group lending can be summarized in a Markov chain (Xt)t∈N with the
set of states

H = {B0, B1, ET , ET−1, . . . , ET1 , . . . , E1} (3.1)

where B0 represents the state of being a beneficiary of a loan for a borrower who has the same partner as in the
previous period, B1 is the state of being a beneficiary of a loan for a borrower who changes his partner8 and the
Ei’s are the states of being in the exclusion phase for the next i periods.
The transition matrix of this Markov chain is :

P2 =



α2 α(1− α) (1− α)2 0 0 0 · · · 0 α(1− α) 0 · · · 0 0
α2 α(1− α) (1− α)2 0 0 0 · · · 0 α(1− α) 0 · · · 0 0
0 0 0 1 0 0 · · · 0 0 0 · · · 0 0
. . . . 1 0 · · · 0 0 0 · · · 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . 0 · · · 1 0
0 0 0 0 0 0 · · · 0 0 0 · · · 0 1
γ 0 0 0 0 0 · · · 0 0 0 · · · 0 1− γ


(3.2)

The following diagram summarizes the dynamic of the Markov chain (Xt)t∈N ((3.1), (3.2))

(1−α)

B

E E E ET

γ

1−γ

2

11T T−1 1. . . . . .1 1
α2

α
(1−

α
)

(1−α)2

1α(1−α)

α2

α(1−α)

α(1−α)

γ

0B

Figure 2: Various states for a participant to group lending with the corresponding transition probabilities

8In other words, Bi presents the state of a success borrower in a groupe of i defaulter, i = 0, 1.
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3.1 Total Expected Return
In this model, the one period expected return, for a single borrower who has α as probability9 of success of his
project, is given by :

α2(w − (1 + r)) + α(1− α)(w − (1 + r + q)) = α[w − (1 + r)− (1− α)q],

where, as before, w is the profit for each borrower when she is successful and q is the joint liability part of the
contract. But each borrower knows also that she benefits automatically of a new loan if she reimbourses the current
one, plus the joint part q in case of having a partner in default. Thus she can also, as the previous model, evaluate
the expected discounted present value of the total return for all futur periods, still called total expected return for
simplicity.
In order to compute the total expected return, let us introduce the function g : H ×H −→ R

g(x, y) =


w − (1 + r) if (x, y) = (Bi, B0), i=1,2
w − (1 + r + q) if (x, y) = (Bi, B1), i=1,2
0 else

For each trajectory (X0, X1, . . .) of the Markov chain, we define the total discounted return at time s by

G(Xs, Xs+1, ....) := Σ∞
t=1δ

t−s−1g(Xt−1, Xt)

Finally we define the total expected return at time s, Ws : H −→ R, as a function of the state x ∈ H by

Ws = E[G(Xs, Xs+1, . . .) | Xs = x].

In the next theorem, Σ is the same quantity as in the previous theorem.

Theorem 3.1. In the model of group lending defined by the Markov chain (3.1), (3.2), and under the rules defined
in section 3, the total expected return for member who is at state x at time s is given by :

Ws(x) =


α[w − (1 + r)− (1− α)q] 1

1−[αδ+(1−α)(αδT1+(1−α)δT )Σ]
if x ∈ {B0, B1}

α[w − (1 + r)− (1− α)q] δi−1Σ
1−[αδ+(1−α)(αδT1+(1−α)δT )Σ]

if x = Ei, i = 1, · · · , T
(3.3)

Proof. The proof is very similar to the previous theorem’s proof. As before, by the Markov properties we have
Ws(x) = W0(x). we have only to compute W0(x) for all x ∈ H .
As G(X0, X1, . . .) = g(X0, X1) + δG(X1, X2, . . .), the same arguments show that

W0(x) =
∑
y∈E

[g(x, y) + δW0(y)]p(X1 = y | X0 = x)

where p(X1 = y | X0 = x) is the porbability of transition, in one step, from state x ∈ H to state y ∈ H .
Now let us compute W0(x) for each x ∈ H .

• For x = B0

W0(B
0) = α2[w − (1 + r) + δW0(B

0)] + α(1− α)[w − (1 + r + q) + δW0(B
1)]

+α(1− α)δW0(E
T1) + (1− α)2δW0(E

T ).

• For x = B1, we obtain that
W0(B

0) = W0(B
1).

• For x = Ei, i = 2, . . . , T , as like as the previous theorem, we have

W0(E
i) = δi−1W0(E

1)

9His partner has the same probability of success α.
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• For x = E1, as like as the previous theorem, we obtain

W0(E
1) = W0(B

0)Σ

From the theorem above and the theorem (2.1), we have the following corollary:

Corollary 3.2. For two contracts at the same interest rate, individual contract (r, T ) and group contract with joint
liability (r, q, T1, T ) where T1 ≤ T , the group contract is more profitable for a borrower if and only if q takes a
small values, more precisely if q ≤ A, where

A = α[w − (1 + r)]
(δT1 − δT )Σ

1− (αδ + (1− α)δTΣ)

Proof. As we saw

V =
α[w − (1 + r)]

1− (αδ + (1− α)δTΣ)

and

W =
α[w − (1 + r)− (1− α)q]

1− [αδ + (1− α)(αδT1 + (1− α)δT )Σ]

V is the total expected return for a beneficiary of an individual lending contract (r, T ), and W is the total expected
return for a beneficiary of a group lending contract with joint liability (r, q, T1, T ) (we fixe the same interest rate r,
the same T exclusion periods for both contracts, and we assume that T1 ≤ T and q ≤ 1+ r). We find that W ≥ V
is equivalent to q ≤ A.

Notice that the maximal value A for q becomes zero when T1 = T which is easy to understand from the rules
we have adapted for the liability constraint, thus it is natural to assume that T1 < T (and in that case A > 0).

3.2 Proportion of beneficiaries among the population
As in the model of individual lending, the evolution of the distribution of the population into the different states,
B0, B1, ET , . . ., when t tends to infinity, is easy to compute.

Proposition 3.3. For any initial state distribution Π0 = (Π0
0,Π

1
0, · · · ,ΠT+1

0 ), the Markov dynamic, (Π0P
t
2)t∈N,

tends to the distribution Π∗ when t tends to infinity, with

Π∗ =
1

1
1−α + 1

γ + (1− α)(T − T1) + (T1 − 1)

 α2

1− α
, 1 + α, 1− α, 1− α, · · · , 1− α︸ ︷︷ ︸

(T − T1)

, 1, 1, · · · , 1︸ ︷︷ ︸
(T1 − 1)

,
1

γ


Proof. The stochastic matrix P2 is primitive because that P 2T

2 > 0. The dominant associeted left eigenvector,
with positive coefficients adding up to 1, is equal to Π∗. Moreover the Perron-Frobenius theorem shows that
limt→+∞ Π0P

t
2 = Π∗.

From the proposition above and the proposition (2.2), the following corollory results:

Corollary 3.4. Under assumption T1 < T , the proportion of beneficiaries among all participant tends to be larger
in the case of group lending then in individual lending.

Proof. At equilibrium, the proportion of being a beneficiary in the case of group lending is the sum of the two first
components of Π∗. Comparing this sum with the proportion of being a beneficiary in the case of individual lending
(first component of π∗ in the expression (2.8) ), it is easy to show that if T1 < T then

Π0
∗ +Π1

∗ > π0
∗
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3.3 Optimal interest rate
In order to maintain a sustainable lending activity, the MFI has to charge an appropriate interest rate, usually chosen
in such a way that the average repayment is larger than the costs for the MFI, assumed equal to 1 + z for each unit
of capital lent. In the case of group lending, the sustainabality constraint is :

α2(2(1 + r)) + 2α(1− α)(1 + r + q) > 2(1 + z)

As in the model of individual lending, the profit is a decreasing function in r, then the interest rate that both
maximizes the borrower welfare and makes lending sustainable will exactly cover the cost of lending. Then the
optimal rate, r∗ satisfies

1 + r∗ =
1 + z

α
− (1− α)q

As result, we see that an MFI can achieve its equilibrium in charging , for the same cost 1+ z, a lower interest rate
in case of group lending than in the case of individual lending.

4 Conclusion
This paper analyses two models of microlending using dynamic incentives, one for an individual lending contract
and the other for a group lendign contract (group of two borrowers) with joint liability. In this analysis we have
assumed that a borrower who repays his loan, plus the part of joint liability in group lending in cas of having a
default partner, becomes a beneficiary of a new loan in the next lending period.

Under some circumstances, we show that a loan could be more profitable possibly for a borrower participating
to group lending. Further more, the lender could offer more loan in case of group lending than in case of individuel
lending.

A generalisation of these results to the case of n borrowers group (n > 2) will be done in a further paper and
we would try to find an optimal number of borrowers in a group (5 for Grameen bank [11]).
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