### Selection variables on micro-credit data in Tunisia

### Nguyen Thi Thuy Van Thesis Advisor: Prof Francine Diener

Laboratory of Mathematics JA Dieudonn University of Nice Sophia Antipolis

July 4, 2017

(4 同) (4 回) (4 回) (4

### Introduction

- Micro-credit
- Selection variable

### 2 Staistical tools

- Linear logistic regression model
- Model Selection
  - Akaike Information Criterion (AIC)
  - Model selection procedure

### 3 Variable selection to explain Economic effect

- Data
- Variable selection by AIC criterion

### Micro-credit

 In real life, poor people (no jobs, collateral, record of credit history, etc) ⇒ no chance to borrow money from traditional bank

 $\Longrightarrow$  Borrow from the Institute of microfinance: Microcredit

- Microcredit: provide small loan, < 200\$ to poor-no access to traditional bank people ⇒ help them improve their life.
- My work: build a model to predict the interested result based on microcredit data on Tunisia, collected by Nahla Dhib.

### Selection variable

Giving: *n* independent observed data:

output (response) variable + input (predictors) variables

Build a model: Select the "best" subset of predictors

- Explain data in simplest way  $\Rightarrow$  remove redundant predictors.
- Many predictors  $\Rightarrow$  difficulty in interpreting data.
- Save time, money (not measure redundant predictors)

Problem

▲ロト ▲冊ト ▲ヨト ▲ヨト 三日 - のへの

Giving: a set of microcredit data on Tunisia:

```
one response (economic effect) + 23 predictors
```

 $\Longrightarrow$  Build an optimal model to predict "economic effect" after receiving  $\mbox{microcredit}$ 

### Need: Statistical tools + R-software

- Linear logistic regression model
- Selection procedure: Backward stepwise elimination algorithm
- Akaike Information Criterion (AIC)
- function glm(), stepAIC(), option "k = 2"

Introduction 000 Staistical tools

Variable selection to explain Economic effect

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

### Linear logistic regression model

Given a data set of n independent observations:

- **Y** = (*Y*<sub>1</sub>,..., *Y<sub>n</sub>*)<sup>*T*</sup>: output vector, *Y*<sub>1</sub>,..., *Y<sub>n</sub>* are i.i.d random variables
- $X^1, \ldots, X^k \in \mathbb{R}^n$ : input vectors,  $X^1, \ldots, X^k$  are linear independent, defined on  $(\Omega, \mathbb{P})$ .
- Y: yes/no, pass/fail, win/lose, alive/dead, etc., ⇒ logistic regression model.
   Describe Y by "1" and "0" ⇒ Y : Bernoulli distribution.

• Let 
$$p(X) = \mathbb{P}(Y = 1 | X)$$
,  $\mathbb{P}(Y = 0 | X) = 1 - p(X)$  then

$$\mathbb{E}[Y|X] = 1 \cdot \mathbb{P}(Y = 1|X) + 0 \cdot \mathbb{P}(Y = 0|X) = p(X) \quad (1)$$

۲

Staistical tools

Variable selection to explain Economic effect

### Linear logistic regression model

# • Define $odds = \frac{p(X)}{1 - p(X)}$ (2)

$$logit(p(X)) = log(odds) = log \frac{p(X)}{1 - p(X)}$$
(3)

• 
$$p(X) \in [0, 1]$$
, odds  $\in [0, \infty)$   
 $\implies$  range(logit( $p(X)$ ))=  $(-\infty, \infty)$ .

• Relationship between p(X) and logit(p(X)) is a continuous relationship.

### Linear logistic regression model

Given

• 
$$n \times (k + 1)$$
-dim input matrix  $X = (\mathbf{1}, X^1, \dots, X^k)$ ,  
 $X^1, \dots, X^k \in \mathbb{R}^n$  are linear independent,  $X_i$  is  $i^{th}$  row of  $X$ 

• Output vector 
$$Y = (Y_1, \dots, Y_n)^T$$
,  $Y_i \sim \mathcal{B}(1, p(X_i))$  where  
 $p(X_i) = \mathbb{P}(Y_i = 1 | X_i), i = 1, \dots, n,$ 

 $Y_1, \ldots, Y_n$  are iid random variables.

### Definition 1: (Linear logistic regression model)

The linear logistic regression model is defined by

$$logit(p(X)) = X\beta + \varepsilon$$
 (4)

・ロト ・ 同ト ・ ヨト ・ ヨト

э

where  $\varepsilon$  is an error,  $\beta = (\beta_0, \beta_1, \dots, \beta_k)$  is k + 1-dim coefficient vector.

### Estimation of parameters in logistic regression model

Give a data set of n samples:

• Denote  $Y = (Y_1, \ldots, Y_n)^T$ ,  $Y \in \{0, 1\}$  is output vector,  $X = (\mathbf{1}, X^1, \ldots, X^k)$  input matrix as in Definition 1.

Variable selection to explain Economic effect

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

• 
$$y = (y_1, \dots, y_n)^T$$
: possible value of  $Y$   
 $X_i = (1, x_{i1}, \dots, x_{ik})$  is  $i^{th}$  observation.

Staistical tools

### Problem

Introduction

Estimate  $\beta = (\beta_0, \beta_1, \dots, \beta_k)^T \implies$  obtain the best fitting model with observed data.

 $\implies \text{Use maximum likelihood method,} \\ \text{Denote } \hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k)^T \text{ the MLE of } \beta \\ \end{cases}$ 

Variable selection to explain Economic effect

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

### Logistic regression model

### Estimation of parameters in logistic regression model

For observation  $(Y_i, X_i)$ , we have  $p(X_i) = \mathbb{P}(Y_i = 1|X_i)$ , i = 1, ..., n

$$logit(p(X_i)) = log \frac{p(X_i)}{1 - p(X_i)} = X_i \cdot \beta = \sum_{j=0}^k x_{ij} \cdot \beta_j$$
(5)

then

$$\frac{p(X_i)}{1 - p(X_i)} = \exp\{X_i \cdot \beta\} = \exp\{\sum_{j=0}^k x_{ij} \cdot \beta_j\}$$
(6)  
$$p(X_i) = \frac{\exp\{\sum_{j=0}^k x_{ij} \cdot \beta_j\}}{1 + \exp\{\sum_{j=0}^k x_{ij} \cdot \beta_j\}}$$
(7)

Variable selection to explain Economic effect

・ロト ・同ト ・ヨト ・ヨト ・ヨー うへの

### Logistic regression model

### Estimation of parameters in logistic regression model

• Each 
$$Y_i | X_i \sim Bernoulli(p(X_i))$$
  
 $f(y_i, \beta) = p(X_i)^{y_i} (1 - p(X_i))^{1 - y_i}$ 

• Log-likelihood functions  $I(\beta)$ 

$$I(\beta) = \sum_{i=1}^{n} [y_i \log(p(X_i)) + (1 - y_i)\log(1 - p(X_i))]$$
 (8)

• MLE  $\hat{\beta}$  of  $\beta$  is the solution of

$$\mathbf{0} = \frac{\partial I(\beta)}{\partial \beta_j} = \sum_{i=1}^n (y_i - p(X_i)) x_{ij} = X^T (Y - p(X))$$
(9)

 $\implies$  not linear wrt  $\beta$ : Newton-Raphson iteration method

Introduction 000 Staistical tools

Variable selection to explain Economic effect

### Logistic regression model

Newton-Raphson iteration method give us

$$\hat{\beta} = \lim_{l \to \infty} \beta^{l-1} + \left[ (X^t W^{l-1} X)^{-1} (X^t (Y - \rho(X))^{l-1}) \right]_{\beta = \beta_{l-1}}$$
(10)

### Properties of estimated parameter $\beta$

• Let  $\bar{\beta}$  be the true parameter. By asymptotic normal property of MLE,

$$\sqrt{n}(\hat{\beta}-\bar{\beta}) \xrightarrow[n\to\infty]{\mathbb{P}} \mathcal{N}(\mathbf{0}, [J(\bar{\beta})]^{-1}), J(\bar{\beta}) = \mathbb{E}\left[-\frac{\partial^2 I(\bar{\beta})}{\partial \beta^2}\right] = X^T W X$$
(11)

Hence,

$$\mathbb{V}(\hat{\beta}) \approx [J(\hat{\beta})]^{-1}) = (X^{t}WX)^{-1}|_{\beta=\hat{\beta}} := \hat{\mathbb{V}}(\hat{\beta})$$
(12)  
$$sd(\hat{\beta}) \approx (X^{t}WX)^{-1/2}|_{\beta=\hat{\beta}} := \hat{sd}(\hat{\beta})$$
(13)

### Logistic regression model

Introduction

Properties of estimated parameter  $\beta$  (continue)

Staistical tools

• Test the significant of each individual coefficient:

$$H_0: \beta_i = 0$$
 versus  $H_1: \beta_i \neq 0, \quad i = 0, \dots, k$ 
(14)

using the Wald-test:

$$W_i = \frac{\hat{\beta}_i}{\hat{se}(\hat{\beta}_i)} \tag{15}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Variable selection to explain Economic effect

• Based on Wald test, a  $100(1 - \alpha)\%$  confidence interval for  $\beta_i$  is

$$(\hat{\beta}_i - z_{1-\frac{\alpha}{2}}\hat{s}e(\hat{\beta}_i), \hat{\beta}_i + z_{1-\frac{\alpha}{2}}\hat{s}e(\hat{\beta}_i))$$
(16)

Introduction 000 Staistical tools

Variable selection to explain Economic effect

- 本部 とくほう くほう 一日

### Akaike Information Criterion (AIC)

- AIC derived from Kullback-Leibler (K-L) information
- Akaike[1973] defined

$$AIC = \underbrace{-2logf(y, \hat{\beta})}_{\text{goodness-of-fit term}} + \underbrace{2k}_{\text{penalty term}}$$
(17)

• Goodness-of-fit term: distance between the unknown true likelihood function of the data and the fitted likelihood function of the model:

Model with smaller AIC  $\rightarrow$  closer to the truth.

• Penalty term: k reflects the number of variables in the model

 $\Rightarrow$  In model selection, we try to balance between the goodness of fit of model with parsimony. Model with smallest AIC is chosen.



- **Step 0.** Start with full model  $M_0$ . Generate *k* models by deleting one by one variable from full model. Compute their AIC. Delete  $X_{r_1}$  if model without it has smallest AIC.
- Step 1. Start with M<sub>1</sub> = M<sub>0</sub> \ {X<sub>r1</sub>}. Generate k − 1 models by deleting variable in turn from M<sub>1</sub>. Compute their AIC. Delete X<sub>r2</sub> if current model without it has smallest AIC.
- Step 2. Start with  $M_2 = M_1 \setminus \{X_{r_1}, X_{r_2}\}$ . Generate k models by deleting variable in turn from  $M_2$ , and adding  $\{X_{r_1}, X_{r_2}\}$  in turn to  $M_2$ . Compute their AIC. Delete/add  $X_{r_3}$  if current model without/with it has smallest AIC.
- Similarly, procedure continues to remove or add back variable to the current model as above manner.
- Stop when adding or removing a variable increases the criterion of the current model.

・ロン ・ 「ア・ ・ ヨン・ ・ ヨン・ ・ ヨ

Ξ.

### Data

| Variable    | Definition      | Object                                  |
|-------------|-----------------|-----------------------------------------|
| AGE         | $\{1, 2, 3\}$   | 1: if young people                      |
|             |                 | 2: if adult                             |
|             |                 | 3: if retired                           |
| GENDER      | $\{1, 2\}$      | 1: if male                              |
|             |                 | 2: if female                            |
| EDUC        | $\{0,1,2,3,4\}$ | 0: if no education                      |
|             |                 | 1: if primary level                     |
|             |                 | 2: if secondary level                   |
|             |                 | 3: if have professional training        |
|             |                 | 4: if higher education                  |
| CIVSTATUS   | {0,1}           | 0: if single                            |
|             |                 | 1: if married                           |
| DEPCHILD    | {0,1}           | 0: if no child                          |
|             |                 | 1: if child                             |
| TYPBORR     | $\{0, 1\}$      | 0: if new borrower                      |
|             |                 | 1: if old borrower                      |
| TYPCONTR    | $\{1, 2, 3\}$   | 1: if apply for first contract          |
|             |                 | 2: if apply for second contract         |
|             |                 | 3: if apply for third contract          |
| OBJLOAN     | $\{1, 2, 3\}$   | 1: to create his/her activity           |
|             |                 | 2: to continue his/her activity         |
|             |                 | 3: to improve his/her activity          |
| SOCILEVEL   | $\{0,1,2,3\}$   | 0: if very poor                         |
|             |                 | 1: if poor                              |
|             |                 | 2: if vulnerable                        |
|             |                 | 3 : if medium                           |
| IMPROVEMENT | $\{1, 2\}$      | 1: if little improve after the loan     |
|             |                 | 2: if high improve after the loan       |
| PROBLEM     | $\{0, 1\}$      | 0: if no problem during the contract    |
|             |                 | 1: if some problems during the contract |

э

### Data

| REPAYMENT    | $\{0, 1\}$    | D: if default                                            |
|--------------|---------------|----------------------------------------------------------|
|              |               | 1: If absence of default                                 |
| KINDIMF      | $\{1, 2\}$    | <ol> <li>if the loan is provided by other IMF</li> </ol> |
|              |               | 2: if Enda                                               |
| USEMICRO     | $\{1, 2, 3\}$ | 1: if the loan is used to consume                        |
|              |               | <ol><li>if the loan is used to produce</li></ol>         |
|              |               | 3: if both                                               |
| FINAINCLUS   | {0, 1}        | 0 if included in traditional bank before access to       |
|              |               | micro-lending                                            |
|              |               | 1: if not (finacial exclusion)                           |
| SAVING       | {0, 1}        | 0: if no saving after lending                            |
|              |               | 1: if saving after lending                               |
| USESAVING    | {0, 1}        | 0: if saving for future investment                       |
|              |               | 1: if saving for future consumsion                       |
| COLLATERAL   | $\{1, 2, 3\}$ | 1: if guarantee by other person                          |
|              |               | 2: if guarantee by his/her activity                      |
|              |               | 3 : if guarantee by bonds                                |
| OTHERLOANS   | $\{0, 1\}$    | 0: if no access to other loans                           |
|              |               | 1: if access to other loans                              |
| INDGROUP     | {1, 2}        | 1: if individual lending                                 |
|              |               | 2: if group lending                                      |
| BUSISECTOR   | $\{1, 2, 3\}$ | 1: if primary sector                                     |
|              |               | 2: if secondary sector                                   |
|              |               | 3: if service sector                                     |
| REA.ACTIVITY | {1, 2}        | 1: if the activity follows training                      |
|              |               | 2: if the activity is inherited from family              |
|              |               | 3: if not                                                |
| REA.ASKLOAN  | $\{1, 2, 3\}$ | 1: if main reason is unemployment                        |
|              |               | 2: if main reason is lack of fund                        |
|              |               | 3: if main reason is other                               |

Variable selection to explain Economic effect

### Logistic regression with all input variable

| Variable     | Coefficient | 95%CI                   | Std.Error  | z-value | $\Pr(> \mathbf{z} )$ |
|--------------|-------------|-------------------------|------------|---------|----------------------|
| Intercept    | -10.03804   | (-15.015, -5.061)       | 2.53913    | -3.953  | 7.71e-05 ***         |
| AGE          | 0.14071     | (-0.380, 0.662)         | 0.26575    | 0.529   | 0.59648              |
| GENDER       | 1.54337     | (0.592, 2.495)          | 0.48557    | 3.178   | 0.00148 **           |
| EDUC         | 0.77686     | (0.276, 1.278)          | 0.25569    | 3.038   | 0.00238 **           |
| CIVSTATUS    | 1.05943     | (-0.811, 2.930)         | 0.95420    | 1.110   | 0.26688              |
| DEPCHILD     | -0.94404    | (-2.571, 0.683)         | 0.82994    | -1.137  | 0.25534              |
| TYPBORR      | 0.09434     | (-0.949, 1.137)         | 0.53214    | 0.177   | 0.85928              |
| TYPCONTR     | 0.29569     | (-0.245, 0.836)         | 0.27573    | 1.072   | 0.28354              |
| OBJLOAN      | -0.70422    | (-1.300, -0.109)        | 0.30391    | -2.317  | 0.02049 *            |
| SOCILEVEL    | -0.10944    | (-0.557, 0.338)         | 0.22844    | -0.479  | 0.63188              |
| IMPROVEMENT  | 0.12753     | (-0.554, 0.809)         | 0.34760    | 0.367   | 0.71371              |
| PROBLEM      | -1.04159    | (-2.536, 0.453)         | 0.76249    | -1.366  | 0.17193              |
| REPAYMENT    | 1.23923     | (-0.167, 2.645)         | 0.71739    | 1.727   | 0.08409.             |
| KINDIMF      | 0.86375     | (-0.169, 1.897)         | 0.52702    | 1.639   | 0.10123              |
| USEMICRO     | 0.05024     | (-0.354, 0.455)         | 0.20635    | 0.243   | 0.80763              |
| FINAINCLUS   | 19.34092    | (-2040.090, 2078.772)   | 1050.74925 | 0.018   | 0.98531              |
| SAVING       | 2.70705     | (1.000, 4.414)          | 0.87104    | 3.108   | 0.00188 **           |
| USESAVING    | 0.87970     | (-0.336, 2.095)         | 0.62004    | 1.419   | 0.15596              |
| COLLATERAL   | 0.43709     | (0.032, 0.842)          | 0.20683    | 2.113   | 0.03458 *            |
| OTHERLOANS   | -3.73272    | (-12952.687, 12945.221) | 6606.73058 | -0.001  | 0.99955              |
| INDGROUP     | -0.60229    | (-1.362, 0.157)         | 0.38756    | -1.554  | 0.12017              |
| BUSISECTOR   | 0.47661     | (0.010, 0.943)          | 0.23796    | 2.003   | 0.04519 *            |
| REA.ACTIVITY | -0.22981    | (-0.616, 0.156)         | 0.19700    | -1.167  | 0.24339              |
| REA.ASKLOAN  | 0.39250     | (-0.112, 0.897)         | 0.25745    | 1.525   | 0.12737              |

Codes: \*\*\*, \*\*, \*, and . denote significance at 0%, 0.1%, 5%, and 10% respectively.

Nguyen Thi Thuy Van - Selection variables on micro-credit data in Tunisia

~ ~ ~ ~ ~

| Introduction |  |
|--------------|--|
|              |  |

Variable selection to explain Economic effect

### AIC optimal model

- Recall  $AIC_i = -2 * log likelihood + 2 * i$
- Result of running function stepAIC() on R-software, after 10 steps of Backward stepwise procedure.

| Variable   | Coefficient | 95%CI                 | Std.Error | z-value | $\Pr(> \mathbf{z} )$ |
|------------|-------------|-----------------------|-----------|---------|----------------------|
| Intercept  | -8.8147     | (-13.091, -4.539)     | 2.1817    | -4.040  | 5.34e-05 ***         |
| GENDER     | 1.4751      | (0.598, 2.352)        | 0.4476    | 3.296   | 0.000981 ***         |
| EDUC       | 0.7156      | (0.314, 1.117)        | 0.2049    | 3.492   | 0.000480 ***         |
| TYPCONTR   | 0.3854      | (-0.080, 0.851)       | 0.2374    | 1.623   | 0.104513             |
| OBJLOAN    | -0.7267     | (-1.300, -0.154)      | 0.2924    | -2.486  | 0.012937 *           |
| PROBLEM    | -1.0265     | (-2.507, 0.454)       | 0.7554    | -1.359  | 0.174201             |
| REPAYMENT  | 1.0002      | (-0.303, 2.304)       | 0.6652    | 1.504   | 0.132657             |
| KINDIMF    | 0.9917      | (0.011, 1.972)        | 0.5003    | 1.982   | 0.047440 *           |
| FINAINCLUS | 19.2869     | (-2016.217, 2054.791) | 1038.5415 | 0.019   | 0.985183             |
| SAVING     | 2.8859      | (1.255, 4.517)        | 0.8322    | 3.468   | 0.000525 ***         |
| USESAVING  | 0.7803      | (-0.366, 1.926)       | 0.5847    | 1.334   | 0.182079             |
| COLLATERAL | 0.4680      | (0.068, 0.868)        | 0.2040    | 2.295   | 0.021744 *           |
| INDGROUP   | -0.6798     | (-1.393, 0.033)       | 0.3636    | -1.869  | 0.061559.            |
| BUSISECTOR | 0.3323      | (-0.082, 0.747)       | 0.2115    | 1.571   | 0.116133             |

Codes: \*\*\*, \*\*, \*, and . denote significance at 0%, 0.1%, 5%, and 10% respectively. Nguyen Thi Thuy Van - Selection variables on micro-credit data in Tunisia

Variable selection to explain Economic effect

### A discussion about the values AIC

- Idea: Continue applying backward stepwise algorithm on AIC optimal model: how AIC change when deleting more variables from the optimal model.
- Record AIC obtained by running backward stepwise algorithm from full models  $\rightarrow$  all variables are deleted.
- The results are recorded in following table

Variable selection to explain Economic effect

イロト イポト イヨト イヨト

### A discussion about the values AIC

### Table: AIC of step models and variable dropped at each step:

| Step | AIC    | dropped variable | Step | AIC    | dropped variable |
|------|--------|------------------|------|--------|------------------|
| 0    | 309.12 |                  | 12   | 293.90 | - REPAYMENT      |
| 1    | 307.12 | - OTHERLOANS     | 13   | 293.45 | - PROBLEM        |
| 2    | 305.15 | - TYPBORR        | 14   | 294.27 | - BUSISECTOR     |
| 3    | 303.22 | - USEMICRO       | 15   | 294.62 | - INDGROUP       |
| 4    | 301.41 | - SOCILEVEL      | 16   | 295.14 | - TYPCONTR       |
| 5    | 299.62 | - AGE            | 17   | 295.66 | - COLLATERAL     |
| 6    | 297.82 | - IMPROVEMENT    | 18   | 297.34 | - KINDIMF        |
| 7    | 296.79 | - DEPCHILD       | 19   | 301.49 | - OBJLOAN        |
| 8    | 294.98 | - CIVSTATUS      | 20   | 305.06 | - GENDER         |
| 9    | 294.27 | - REA.ACTIVITY   | 21   | 311.51 | - EDUC           |
| 10   | 293.88 | - REA.ASKLOAN    | 22   | 336.40 | - FINAINCLUS     |
| 11   | 293.89 | - USESAVING      | 23   | 519.48 | - SAVING         |

Introduction 000 Staistical tools

Variable selection to explain Economic effect

### A discussion about the values AIC

Figure: Values of AIC at each step of backward stepwise elimination procedure correspond to the number of remaining variables in each step.





ヘロト 人間 ト 人 ヨト 人 ヨト

### The fitness of model obtained by stepAIC() function

• Divide data into two parts:

+ learning data:300 observations, taken randomly

+ test data: 104 remaining observations.

- Generating thirty sub-samples by this manner.
- In each sub-sample,
  - Learning data: use to build sub-AIC optimal models
  - Test data: Use to test the fitness of these sub-AIC optimal models with the data, based on 
     *p*(X<sub>i</sub>)
- Recall

$$\hat{p}(X_i) = \frac{exp^{X_i\hat{\beta}}}{1 + exp^{X_i\hat{\beta}}} = \frac{exp\{\sum_{j=0}^k x_{ij} \cdot \hat{\beta}_j\}}{1 + exp\{\sum_{j=0}^k x_{ij} \cdot \hat{\beta}_j\}}$$
(18)

Introduction Staistical tools Variable selection to explain Economic effect

The fitness of model obtained by stepAIC() function

- For each of 104 remaining observations  $(Y_i), X_i)$ , i = 1, ..., 104, compute  $\hat{p}(X_i)$ ,
  - If  $\hat{p}(X_i) \ge 0.5$  and  $Y_i = 1$  or  $\hat{p}(X_i) < 0.5$  and  $Y_i = 0$ , mark this pair  $(Y_i), X_i$ ) as "OK" pair.
  - If  $\hat{p}(X_i) < 0.5$  and  $Y_i = 1$  or  $\hat{p}(X_i) \ge 0.5$  and  $Y_i = 0$ , mark this pair  $(Y_i), X_i$ ) as "NOT OK" pair.
- Count the number of "OK" pair and "NOT OK" pair to compare.

Table 3.11 records the number of "OK" pairs and "NOT OK" pairs in thirty sub-samples and in the whole data sample, using AIC criterion.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Introduction 000 Staistical tools

Variable selection to explain Economic effect

・ロト ・ 同ト ・ ヨト ・ ヨト

э

### The fitness of model obtained by stepAIC() function

| Sub-sample | Samples with AIC |               | Sub-sample | Sample    | es with AIC   |
|------------|------------------|---------------|------------|-----------|---------------|
|            | "OK" pair        | "NOT OK" pair |            | "OK" pair | "NOT OK" pair |
| 1          | 84               | 20            | 16         | 87        | 17            |
| 2          | 83               | 21            | 17         | 91        | 13            |
| 3          | 93               | 11            | 18         | 87        | 17            |
| 4          | 93               | 11            | 19         | 84        | 20            |
| 5          | 82               | 22            | 20         | 86        | 18            |
| 6          | 81               | 23            | 21         | 88        | 16            |
| 7          | 88               | 16            | 22         | 89        | 15            |
| 8          | 83               | 21            | 23         | 87        | 17            |
| 9          | 92               | 12            | 24         | 89        | 15            |
| 10         | 90               | 14            | 25         | 93        | 11            |
| 11         | 93               | 11            | 26         | 84        | 20            |
| 12         | 83               | 21            | 27         | 83        | 21            |
| 13         | 83               | 21            | 28         | 85        | 19            |
| 14         | 91               | 13            | 29         | 87        | 17            |
| 15         | 83               | 21            | 30         | 92        | 12            |
| whole data | 351              | 53            |            |           |               |

Introduction 000 Staistical tools

Variable selection to explain Economic effect

## The frequency of appearances of 23 variables in 30 sub-AIC optimal models



EDUC and FINAINCLUS appear in all 30 sub-sample models, SAVING, OBJLOAN, GENDER, COLLATERAL appear in 29, 28, 26 and 23 sub-samples, respectively  $\implies$  EDUC, FINAINCLUS, SAVING, OBJLOAN, GENDER and COLLATERAL are the most important variables in the AIC optimal models.

### Choosing final AIC optimal model

Consider again table 1 and table frequency appearance of variables in AIC optimal model,

- The BSA stops at step 10, the final model has 13 variables, AIC = 293.88,
- In the next 3 steps, forcing to remove USESAVING, REPAYMENT and PROBLEM : ⇒ model with 10 variables, AIC = 293.45 (smallest AIC of all). Other step-models have AIC > 293.88
- USESAVING, REPAYMENT, PROBLEM have low statistical significance: their p-value are 0.18, 0.13 and 0.17, respectively
- Frequency appearances of USESAVING, REPAYMENT, PROBLEM in 30 AIC sub-sample models are not really high, just 17, 13 and 12 respectively.

Variable selection to explain Economic effect

### Choosing final AIC optimal model

 Notice FINAINCLUS has really high p-value, 0.985, a large CI of coefficient, (-2016.217, 2054.791), but appears in all 30 AIC sub-sample models. ⇒ should not be removed from the model but can not be trusted

 $\implies$  Reasonable consideration to keep the model at step 13 as the final optimal model, i.e, the final model will contain 10 variables: GENDER, EDUC, TYPCONTR, OBJLOAN, KINDIMF, FINAINCLUS, SAVING, COLLATERAL, INDGROUP, BUSISECTOR

・ロト ・ 同ト ・ ヨト ・ ヨト

### References

- D. Collett 2003, *Modelling binary data*, chapter 3, Appendix B1.
- D.W. Hosmer 2000, *Applied logistic regression*, chapter 2.
- H. Akaike 1973, Information theory and an extension of the Maximum likelihood principle, page 619.
- J.Newton 1999, Course Statistic 604, , chapter 2, 4. http://www.stat.tamu.edu/~jnewton/604/604index.html
- J. Schwarz 1978, *Estimating the dimension of a model*, page 461.
- J.S. Cavanaugh 2012, *Course 171:290 Model Selection*, lecture 2, 5. http://www.maths.lth.se/matstat/kurser/masm22/lectures

(本語) (本語) (本語) (

### References

- L. Wasserman 2004, *Course Intermediate Statistic 36-705*, Lecture note 16.
  - http://www.stat.cmu.edu/ larry/=stat705/Lecture16.pdf
- L. Wasserman 2010, All of Statistics: A Concise Course in Statistical Inference, chapter 10.
- N. Tuan 2015, Lectures on R-software.
- Pheakdei Mauk 2013, *PhD thesis: Mathematical modeling of microcredit*, chapter 4.
- S. Konishi 2008, *Information Criteria and Statistical Modelling*, chapter 3.
- T.S. Ferguson, A course in large sample theory, page 39.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

### THANK YOU FOR YOUR LISTENING