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Introduction
°

Micro-credit

@ In real life, poor people (no jobs, collateral, record of credit
history, etc) = no chance to borrow money from traditional
bank

— Borrow from the Institute of microfinance: Microcredit

@ Microcredit: provide small loan, < 200% to poor-no access to
traditional bank people = help them improve their life.

e My work: build a model to predict the interested result based
on microcredit data on Tunisia, collected by Nahla Dhib.
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Selection variable

Giving: n independent observed data:
output (response) variable + input (predictors) variables

Build a model: Select the "best” subset of predictors

@ Explain data in simplest way = remove redundant predictors.
o Many predictors = difficulty in interpreting data.

@ Save time, money (not measure redundant predictors)
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Problem

Giving: a set of microcredit data on Tunisia:
one response (economic effect) + 23 predictors

= Build an optimal model to predict "economic effect” after
receiving microcredit

Need: Statistical tools + R-software
@ Linear logistic regression model
@ Selection procedure: Backward stepwise elimination algorithm
@ Akaike Information Criterion (AIC)
e function glm(), stepAIC(), option "k = 2"
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Linear logistic regression model

Given a data set of n independent observations:

oY =(Yy,...,Y,)": output vector, Y1,...,Y, are i.id
random variables

o X1, ... XK e&R" input vectors, X1, ..., X¥ are linear
independent, defined on (2, P).

e Y: yes/no, pass/fail, win/lose, alive/dead, etc., = logistic
regression model.

Describe Y by "1" and "0" = Y : Bernoulli distribution.

o Let p(X) =P(Y =1|X), P(Y =0|X) =1— p(X) then

E[Y|X]=1-B(Y =1|X)+0-P(Y =0|X) = p(X) (1)

Nguyen Thi Thuy Van - Selection variables on micro-credit data in Tunisia



Staistical tools
0®000000

Linear logistic regression model

o Define )
p
odds = T p(X) (2)
logit(p(X)) = log(odds) = IOglp(f)f()X) (3)
e p(X) €10,1], odds € [0, c0)

= range(logit(p(X)))= (—o0, c0).
Relationship between p(X) and logit(p(X)) is a continuous
relationship.
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Linear logistic regression model

Given
o n x (k + 1)-dim input matrix X = (1, X%,..., Xk),
X1, ..., Xk € R" are linear independent, X; is i*" row of X

e Output vector Y = (Y1,..., YT, Yi ~ B(1, p(X;)) where
p(Xi)) =P(Yi=1X;),i=1,...,n,

Y1,..., Y, are iid random variables.

Definition 1: (Linear logistic regression model)

The linear logistic regression model is defined by
logit(p(X)) = X5 +¢ (4)

where ¢ is an error, 8 = (Bo, 1, ---,Bk) is k + 1-dim coefficient
vector. )
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Logistic regression model

Estimation of parameters in logistic regression model

Give a data set of n samples:
@ Denote Y = (Y1,...,Y,)", Y €{0,1} is output vector,
X = (1,X%,...,Xk) input matrix as in Definition 1.
o y=(y1,...,¥n)": possible value of Y
X; = (1,x1,...,Xx) is i*" observation.
Problem

Estimate 3 = (B0, B1,-..,0k)| = obtain the best fitting model
with observed data.

—> Use maximum likelihood method,
Denote 3 = (5o, f1,---,Pk)" the MLE of
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Logistic regression model

Estimation of parameters in logistic regression model

For observation (Y}, Xi), we have p(X;) = P(Y; = 1|X;),

i=1....n
ogit(p(x) = log { P00 5 = X, -6 = jioxa &)
then .
15(;(())() —ewX Bl =ew(Y x50 ()
g
() exp{>1o xij - B} )

1+ eXP{ZJI'(:o xij - Bj}
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Logistic regression model

Estimation of parameters in logistic regression model

e Each Y;|X; ~ Bernoulli(p(X;))

fyi, B) = p(X;)V (1 — p(X;)' ™
@ Log-likelihood functions /(3)

= Z[y;/og(p(Xf)) + (1= yi)log(1— p(Xi))]  (8)
e MLE 3 of 8 is the solution of

= 66, ;(’_ Dxig=XT(Y = p(X))  (9)

= not linear wrt 5: Newton—Raphson iteration method
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Logistic regression model

Newton—Raphson iteration method give us

= fim 5 W)Y - p00) )| (o)
|—00 _
B=Bi-1
Properties of estimated parameter (5

o Let 3 be the true parameter. By asymptotic normal property
of MLE,

= XTwx
(11)

Vi(B=B) —— N(O.U(B) ), J(B) = E —62’5(5 !

V(B ~ VO = (XWX) s =T (12)
sd(B) ~ (XWX) V2|, = sd(B) (13)
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Logistic regression model

Properties of estimated parameter 5 (continue)

@ Test the significant of each individual coefficient:

HOZ/B,':O Versus Hl:B,-;AO, iZO,...,k

(14)
using the Wald-test:
w, = (15)
se(pi)
@ Based on Wald test, a 100(1 — «)% confidence interval for j3;
is
(Bi — z1—g5e(3i), Bi + z1—g se(Pi)) (16)
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Akaike Information Criterion (AIC)

@ AIC derived from Kullback-Leibler (K-L) information
o Akaike[1973] defined

AlIC = —2logf(y,B) + 2k (17)

goodness-of_fit term  Penalty term

@ Goodness-of-fit term: distance between the unknown true
likelihood function of the data and the fitted likelihood
function of the model:

Model with smaller AIC — closer to the truth.

@ Penalty term: k reflects the number of variables in the model

= In model selection, we try to balance between the

goodness of fit of model with parsimony. Model with smallest
AIC is chosen.
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selection procedure: Backward stepwise algorithm

o Step 0. Start with full model My. Generate k models by
deleting one by one variable from full model. Compute their
AIC. Delete X,, if model without it has smallest AIC.

e Step 1. Start with My = Mp \ {X;}. Generate k — 1 models
by deleting variable in turn from M;. Compute their AlIC.
Delete X, if current model without it has smallest AIC.

o Step 2. Start with My = My \ {X,,, X;,}. Generate k models
by deleting variable in turn from M,, and adding {X,,, X,,} in
turn to M. Compute their AIC. Delete/add X, if current
model without/with it has smallest AIC.

@ Similarly, procedure continues to remove or add back variable
to the current model as above manner.

@ Stop when adding or removing a variable increases the
criterion of the current model.
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Variable Definition Object
AGE {1.2,3} 1: if young people

1 if male

: if female

if no education

if primary level

if secondary level

if have professional training
higher education

+ if single

- if married

no child

child

new borrower

old borrower

if apply for first contract

if apply for second contract
if apply for third contract

to create hisfher activity

to continue his/her activity
to improve his/her activity

if very poor

if poor

if vulnerable

: if medium

if little improve after the loan
if high improve after the loan
if no problem during the contract

) 1: if some problems during the contract .
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REPAYMENT {0.1} p:if default
1: If absence of default

KINDIMF {1,2} the loan is provided by other IMF
2:if Enda
USEMICRO {1.2.3} 1:if the loan is used to consume
2: if the loan is used to produce
3:if both
FINAINCLUS {0.1} 0 if included in traditional bank before access to
micro-lending
if not (finacial exclusion)
SAVING {0.1} : if no saving after lending
1: if saving after lending
USESAVING {0. 1} - if saving for future investment

saving for future consumsion
COLLATERAL {1.2.3} 1: if guarantee by other person
2: if guarantee by his/her activity
3. if guarantee by bonds
OTHERLOANS {0, 1} 0: if no access to other loans
: if access to other loans
individual lending
group lending
if primary sector
if secondary sector
: if service sector
REA.ACTIVITY {1,2} 1: if the activity follows training
2: if the activity is inherited from family
if not
main reason is unemployment
main reason is lack of fund
3: if main reason is other

INDGROUP 1,2}

BUSISECTOR {1,2,3}

REA.ASKLOAN {1,2,3}
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Logistic regression with all input variable

Variable Coefficient 95%CI Std.Error z-value Pr(> |z|) I
Intercept -10.03804 (-15.015 , -5.061) 2.53913 -3.953  7.Tle-05 ***
AGE 0.14071 (-0.380 , 0.662) 0.26575 0.529 0.59648
GENDER 1.54337 (0.592 , 2.495) 0.48557 3.178 0.00148 **
EDUC 0.77686 (0.276 , 1.278) 0.25569 3.038 0.00238 **
CIVSTATUS 1.05943 (-0.811 , 2.930) 0.95420 1.110 0.26688
DEPCHILD -0.94404 (-2.571 , 0.683) 0.8299-1 -1.137  0.25534
TYPBORR 0.09434 (-0.949 , 1.137) 153214 0.177 0.85928
TYPCONTR 0.29569 (-0.245 , 0.836) ﬂ 27573 1.072  0.28354
OBJLDAN -0.70422 (-1.300 , -0.109) 0.30391 -2.317  0.02049 *
SOCILEVEL -0.10944 (-0.557 , 0.338) 0.22844 -0.479  0.63188
IMPROVEMENT 0.12753 (-0.554 , 0.809) 0.34760 0.367 0.71371
PROBLEM -1.04159 (-2.536 ., 0.453) 0.76249 -1.366  0.17193
REPAYMENT 1.23923 (-0.167 , 2.645) 0.71739 1.727 0.08409 .
KINDIMF 0.86375 (-0.169 , 1.897) 0.52702 1.639 0.10123
USEMICRO 0.05024 (-0.354 , 0.455) 0.20635 0.243 0.80763
FINAINCLUS 19.34092 (-2040.090 , 2078.772)  1050.74925  0.018  0.98531
SAVING 2.70705 (1.000 , 4.414) 0.87104 3.108 0.00188 **
USESAVING 0.87970 (-0.336 , 2.095) 0.62004 1.419 0.15596
COLLATERAL 0.43709 (0.032 , 0.842) 0.20683 2.113 0.03458 *
OTHERLOANS -3.73272 (-12952.687 , 12945.221) 6606.73058  -0.001  0.99955
INDGROUP -0.60229 (-1.362, 0.157) 0.38756 -1.554  0.12017
BUSISECTOR 0.47661 ( 0.010 ., 0.943) 0.23796 2.003 0.04519 *
REA.ACTIVITY -0.22981 (-0.616 , 0.156) 0.19700 -1.167  0.24339

REA . ASKLOAN 0.39250 (-0.112 ", 0.897) 0.25745 1.525 012737
Codes: *** ** * and . denote significance at 0%, 0.1%, 5%, and 10% respectively.
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AIC optimal model

@ Recall AIC; = —2 % log — likelihood + 2 * i
@ Result of running function stepAIC() on R-software, after 10
steps of Backward stepwise procedure.

Variable  Coefficient 95%CI Std.Error z-value Pr(> |z|)
Intercept -8.8147 (-13.091 , -4.539) 2.1817 -4.040  5.34e-05 ***
GENDER 1.4751 (0.598 , 2.352) 0.4476 3.296  0.000981 ***
EDUC 0.7156 (0.314 , 1.117) 0.2049  3.492  0.000480 ***
TYPCONTR 0.3854 (-0.080 , 0.851) 0.2374 1.623  0.104513
OBJLOAN -0.7267 (-1.300 , -0.154) 0.2924 -2.486  0.012937 *
PROBLEM -1.0265 (-2.507 , 0.454) 0.7554 -1.359  0.174201
REPAYMENT 1.0002 (-0.303 | 2.304) 0.6652 1.504  0.132657
KINDIMF 0.9917 (0.011 , 1.972) 0.5003 1982 0.047440 *
FINAINCLUS 19.2869 (-2016.217 , 2054.791)  1038.5415 0.019  0.985183
SAVING 2.8859 (1.255 , 4.517) 0.8322 3.468  0.000525 ***
USESAVING 0.7803 (-0.366 , 1.926) 0.5847 1.334  0.182079
COLLATERAL 0.4680 (0.068 , 0.868) 0.2040 2.295  0.021744 *
INDGROUP -0.6798 (-1.393 , 0.033) 0.3636 -1.869  0.061559 .
BUSISECTOR 0.3323 (-0.082 , 0.747) 0.2115 1.571  0.116133

Codes: *** ** * and . denote significance at 0%, 0.1%, 5%, and 10% respectively.
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A discussion about the values AIC

@ Idea: Continue applying backward stepwise algorithm on AIC
optimal model: how AIC change when deleting more variables
from the optimal model.

@ Record AIC obtained by running backward stepwise algorithm
from full models — all variables are deleted.

@ The results are recorded in following table
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A discussion about the values AIC

Table: AIC of step models and variable dropped at each step:

Step | AIC  dropped variable | Step | AIC dropped variable
0 309.12 12 | 293.90 - REPAYMENT
1 |307.12 - OTHERLOANS 13 | 293.45 - PROBLEM
2 305.15 - TYPBORR 14 | 294.27 - BUSISECTOR
3 |303.22 - USEMICRO 15 | 294.62 - INDGROUP
4 301.41 - SOCILEVEL 16 | 295.14 - TYPCONTR
5 299.62 - AGE 17 | 295.66 - COLLATERAL
6 297.82 - IMPROVEMENT 18 | 297.34 - KINDIMF
7 296.79 - DEPCHILD 19 | 301.49 - OBJLOAN
8 29498 - CIVSTATUS 20 | 305.06 - GENDER
9 294.27 - REA.ACTIVITY 21 | 311.51 - EDUC
10 | 293.88 - REA.ASKLOAN 22 | 336.40 - FINAINCLUS
11 | 293.89 - USESAVING 23 | 519.48 - SAVING
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A discussion about the values AIC

Figure: Values of AIC at each step of backward stepwise
elimination procedure correspond to the number of remaining
variables in each step.
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The fitness of model obtained by stepAIC() function

Divide data into two parts:
+ learning data:300 observations, taken randomly

+ test data: 104 remaining observations.

Generating thirty sub-samples by this manner.

In each sub-sample,

e Learning data: use to build sub-AlIC optimal models
o Test data: Use to test the fitness of these sub-AlC optimal
models with the data, based on j(X;)

Recall

X3 ex k- Xji - 3.
B(X) = exp P{Zj_o i B}

= 5= - _ (18)
1+expXf 1+ exp{3 x5 5}
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The fitness of model obtained by stepAIC() function

@ For each of 104 remaining observations (Y;), X;),
i=1,...,104, compute p(X;),

o If (X;) >0.5and Y; =1or p(X;) < 0.5 and Y; =0, mark
this pair (Y;), X;) as "OK" pair.
o If p(Xj) <0.5and Y;=1or p(X;) > 0.5 and Y; =0, mark
this pair (Y;), X;) as "NOT OK" pair.
@ Count the number of "OK"” pair and "NOT OK" pair to
compare.

Table 3.11 records the number of "OK" pairs and "NOT OK”
pairs in thirty sub-samples and in the whole data sample, using
AIC criterion.
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The fitness of model obtained by stepAIC() function

Sub-sample Samples with AIC Sub-sample Samples with ATIC
"OK” pair  "NOT OK” pair "OK” pair  "NOT OK” pair
1 84 20 16 87 17
2 83 21 17 91 13
3 93 11 18 87 17
4 93 1 19 84 20
5 82 22 20 36 18
6 3l 23 21 88 16
7 88 16 22 89 15
8 83 21 23 87 17
9 92 12 24 89 15
10 90 14 25 93 11
11 93 11 26 84 20
12 83 21 27 83 21
13 83 21 28 85 19
14 91 13 29 87 17
15 83 21 30 99 12
| whole data 351 53
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The frequency of appearances of 23 variables in 30

sub-AlC optimal models

v

Number of variables
0 5 10 15 20 25 30
Ak [l
GENDER

U —

w g P — 2 9 & o=
22%&£2¢253:5:83¢2¢F238¢E%
£ % 359 4352253223 :z8 30 g ¢
2§ 8 ¢ 288 82 %2322 3% 3s 2 88¢GC 8
2 8 2 &€ 8 g z g 2 243 2 w 3 8§ 2 5 < 2
S & F a2 % & E 89 £ 23 < 3
= = 3 o o B 2 w I
H 5 g 3

EDUC and FINAINCLUS appear in all 30 sub-sample models,
SAVING, OBJLOAN, GENDER, COLLATERAL appear in 29, 28, 26
and 23 sub-samples, respectively

— EDUC, FINAINCLUS, SAVING, OBJLOAN, GENDER and
COLLATERAL are the most important variables in the AIC optimal
models.
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Choosing final AIC optimal model

Consider again table 1 and table frequency appearance of variables
in AIC optimal model,

@ The BSA stops at step 10, the final model has 13 variables,
AIC = 293.88,

@ In the next 3 steps, forcing to remove USESAVING,
REPAYMENT and PROBLEM : = model with 10 variables, AIC
= 293.45 (smallest AIC of all). Other step-models have AIC
> 293.88

@ USESAVING, REPAYMENT,PROBLEM have low statistical
significance: their p-value are 0.18, 0.13 and 0.17,
respectively

@ Frequency appearances of USESAVING, REPAYMENT, PROBLEM
in 30 AIC sub-sample models are not really high, just 17, 13
and 12 respectively.
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Choosing final AIC optimal model

o Notice FINAINCLUS has really high p-value, 0.985, a large
Cl of coefficient, (-2016.217, 2054.791), but appears in all 30
AIC sub-sample models. = should not be removed from the

model but can not be trusted

— Reasonable consideration to keep the model at step 13 as the
final optimal model, i.e, the final model will contain 10 variables:
GENDER, EDUC, TYPCONTR, OBJLOAN, KINDIMF, FINAINCLUS,
SAVING, COLLATERAL, INDGROUP, BUSISECTOR
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