Mathématiques pour la Biologie (semestre 2) : Feuille-réponses du TD 6 Méthode d'Euler

On a vu déjà comment calculer à l'aide de la méthode d'Euler une approximation de la solution y(t) de l'équation différentielle y'=f(y) de condition initiale $y(0)=y_0$ pour une suite d'instants $t_0,t_1,\ldots,t_n,\ldots$ Pour cela on calcule la valeur approchée de $y(t_{n+1})$, notée y_{n+1} , par récurrence à partir de celle de $y(t_n)$, notée y_n par

$$y_{n+1} = y_n + hf(y_n)$$

où $h = t_{n+1} - t_n$. L'idée de cette méthode est d'approcher la solution y(t) par sa tangente (car on connait y' qui vaut f(y)) sur l'intervalle de temps $[t_n, t_{n+1}]$.

En utilisant la même idée, on peut également calculer une approximation de la solution (x(t), y(t)) du système différentiel

$$\begin{cases} x' = f(x,y) \\ y' = g(x,y) \end{cases}$$
 (1)

issue du point $(x(0) = x_0, y(0) = y_0)$ par la récurrence suivante appelée schéma d'Euler

$$\begin{cases} x_{n+1} = x_n + hf(x_n, y_n) \\ y_{n+1} = y_n + hg(x_n, y_n) \end{cases}$$
 (2)

où h est un pas de temps, supposé petit.

Exercice 1. : On considère le système différentiel suivant

$$\begin{cases} x' = 3x(1 - 0.02y) \\ y' = 0.1y(x - 50) \end{cases}$$
 (3)

1. On considère la trajectoire (x(t), y(t)) de ce système issue du point $M_0 = (x(0), y(0)) = (30, 30)$. Que savez-vous de cette trajectoire?

2. Calculer la valeur du champ de vecteurs associé à ce système au point M_0 , c'est-à-dire les deux composantes du vecteur $V_0 = (f(x(0), y(0)), g(x(0), y(0)))$, puis représenter sur un dessin le point M_0 et le vecteur V_0 .

3. Voici la suite des valeurs obtenues par le schéma d'Euler pour cette trajectoire :

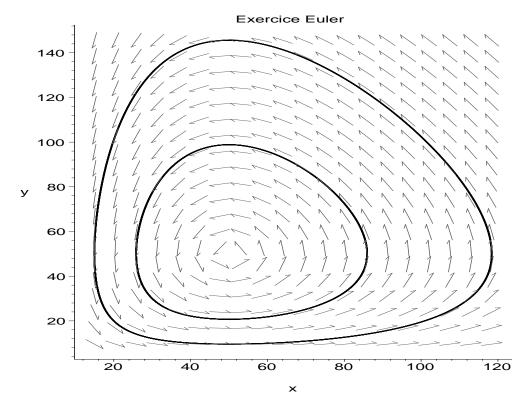
t	0	h	2h	3h	4h	5h	6h	7h	8h	9h
x_n	30	33.6	38.84	45.52	53.62		72.79	81.85	87.46	85.86
y_n	30	24	21.32	20.37	21.10		29.26	38.58	53.04	72.05

A partir des deux premières valeurs de cette suite, déterminer combien vaut h ici puis tracer sur la figure précédente le vecteur hV_0 .

4. Toujours sur la même figure, tracer le point M_1 de coordonnées (x_1, y_1) , le vecteur V_1 en ce point et le point M_2 .

5. Compéter les deux valeurs manquantes du tableau en expliquant vos calculs ci-dessous.

6. Placer les points de la suite (x_n, y_n) sur la figure suivante. Sont-ils situés sur la solution elle-même? Pourquoi?



7. Après un tour complet, les points de cette suite for spirale sortante? Expliquez.	meront-ils un cycle, une spirale entrante, une

8. Pouvez-vous donner une valeur indicative de la période de la trajectoire issue du point (30,30)? Expliquer.

Exercice 2. : On considère le système

$$\begin{cases} x' = x \\ y' = x - y \end{cases} \tag{4}$$

1. Vérifier qu'il n'y a qu'un seul équilibre et qu'il s'agit d'un col.

2. Vérifier que $(e^t,\frac{1}{2}e^t)$ est une solution. Que vaut cette solution en $t=0\,?$

3.	Représenter les	isoclines	ainsi o	que la	trajectoire	issue	du	point	M_0	=	$(1,\frac{1}{2})$	(on	notera	que	si
	$x(t) = e^t \text{ et } y(t)$. 2	,			

4. Calculer quelques points de la suite (x_n,y_n) issue de M_0 et les placer sur la figure. Sont-ils situés sur la solution elle-même? Pourquoi?

5. Reprendre la question précédente en remplaçant M_0 par $N_0=(1,2).$