Date: NOM:

Université de Nice Département de Mathématiques Prénom:

Groupe : Année 2011-2012 Licence MASS 2e année

Fiche TD 10 Décorrelation et indépendance

Menez vos réflexions sur votre brouillon. Rédigez vos réponses sur cette feuille. Encadrez finalement votre réponse.

1. Montrer que si les v.a. X et Y sont indépendantes, alors $\mathrm{Cov}\,(X,Y)=0.$

2. Soit X une v.a. prenant ses valeurs dans $\{-1,0,+1\}$, avec $\mathbb{P}(\{-1\}) = \frac{1}{4} = \mathbb{P}(\{+1\})$. Vérifier que $X^3 = X$. Calculer $\mathbb{E}(X)$.

3. On pose $Y=X^2$ qui est donc X-mesurable; vérifier que X et Y ne sont pas indépendantes (Indication : considérer les évènements $A=\{X\leq -1\}$ et $B=\{Y\leq 0\}$ qui seraient indépendants si X et Y étaient indépendantes.)

- 4. Vérifier que néanmoins Cov(X, Y) = 0.
- **Exercice 2** 1. Soient X_0 et Y_0 deux v.a.; on suppose que $\mathbb{E}(X_0) = 0 = \mathbb{E}(Y_0)$ et $\text{Var}(X_0) = 1 = \text{Var}(Y_0)$. Montrer que si $\rho(X_0, Y_0) = 1$, alors $\mathbb{E}((X_0 Y_0)^2) = 0$.
 - (N.B. : On dit que $X_0 = Y_0$ dans $L^2(\Omega)$; nous verrons que ceci implique que $\mathbb{P}(\{X_0 \neq Y_0\}) = 0$: on dit que les v.a. X_0 et Y_0 sont égales presque-sûrement et on écrit $X_0 = Y_0$ p.s.)

2. Soient X et Y dans $L^2(\Omega)$; montrer que si $\rho(X,Y)=1$ alors Y=aX+b dans $L^2(\Omega)$ pour des valeurs de a et b que l'on déterminera. **Indication :** considérer X_0 la "centrée-réduite" de X et Y_0 la centrée-réduite de Y et montrer qu'on peut leur appliquer la question précédente.

3. Même question si $\rho(X,Y) = -1$.

Exercice 3 (Loi d'une somme) Soient X et Y deux v.a. supposées indépendantes, de densité f_X et f_Y respectivement, et soit S = X + Y.

1. Montrer que S admet pour densité $f_S = f_X \ast f_Y,$ où $f \ast g$ est défini par

$$f * g(s) := \int_{-\infty}^{+\infty} f(s-t)g(t)dt.$$

Indication : Effectuer le changement de variable (s,t)=(x+y,y) dans l'intégrale double

$$\int_{s=-\infty}^{s_0} f_{X+Y}(s) ds = \mathbb{P}(\{X+Y \leq s_0\}) = \mathbb{E}(\mathbb{I}_{\{s \leq s_0\}}(X+Y)) = \int \int_{\{x+y \leq s_0\}} f_{(X,Y)}(x,y) dx dy,$$

Le domaine $D(s_0) := \{(x,y) \in \mathbb{R}^2 \mid x+y \leq s_0\}$ correspond au domaine $D'(s_0) = \{(s,t) \in \mathbb{R}^2 | s \leq s_0\}$, et la formule de changement de variable multidimensionnelle donne dsdt = j(x,y)dxdy, où $j(x,y) := \text{jac}\left(s(x,y),t(x,y)\right) = \text{det}(\text{Jac}\left(s(x,y),t(x,y)\right))$, avec $\text{Jac}\left(s,t\right) = \begin{pmatrix} \partial s/\partial x & \partial s/\partial y \\ \partial t/\partial x & \partial t/\partial y \end{pmatrix}$.