NOM: Date: Université de Nice

Département de Mathématiques

Prénom:

Groupe : Année 2009-2010 Licence MASS 2e année

Fiche TD 19Les punaises préfèrent-elles tomber sur le dos?

Intervalle de confiance d'une estimation
Menez vos réflexions sur votre brouillon. Rédigez vos réponses sur cette feuille. $Encadrez$ finalement otre réponse. Lorsqu'on vide une boite de punaises sur la table, on a l'impression qu'une punaise nanifeste une "préférence" p à tomber sur le dos plutôt que sur la pointe.
1. Proposer un modèle probabiliste pour décrire cette situation.
2. On vide une boite de n punaises sur la table et on compte le nombre D_n de punaises tombées sur le dos. Donner un modèle probabiliste pour D_n .
3. Donner un estimateur P_n (ou \hat{P}_n) de p .
4. Ecrire P_n sous la forme $P_n = aZ_n + b$, où Z_n est proche en loi d'une v.a. $Z \rightsquigarrow \mathcal{N}(0,1)$; que valent alors a et b (en fonction de p et n)?
5. On a vidé une boite de 54 punaises et on a trouvé $d_{54}=30$ punaises sur le dos ; quelle est l'estimation \hat{p} de p issue de cette expérience ?

6. On cherche un "intervalle de confiance au seuil $\alpha=5\%$ " du type $[P_n-\Delta,P_n+\Delta]$, c'est-à-dire tel que $\mathbb{P}(\{p\notin [P_n-\Delta,P_n+\Delta]\})\leq \alpha=5\%$. Montrer tout d'abord que

$$\{p\in [P_n-\Delta,P_n+\Delta]\}=\{P_n\in [p-\Delta,p+\Delta]\}.$$

7. Trouver z_- et z_+ tels que $\{P_n \in [p-\Delta, p+\Delta]\} = \{Z_n \in [z_-, z_+]\}.$

8. En déduire finalement une approximation (majoration) Δ de $\Delta_{\alpha}=\Delta_{5\%}.$

9. Peut-on affirmer qu'au vu de l'expérience et de ce calcul, au seuil $\alpha=5\%$, les punaises préfèrent tomber sur le dos?

10. Même question si on avait n=540 et $d_{540}=299$.

Edwin Moore, inventeur, en 1900, de la punaise :

Exercice 1 (Contrôle des fraudes) Un boulanger découpe sa pâte à l'aide d'une machine produisant des boules de masse μ réglable, et d'écart-type $\sigma=20g$.

1. Un contrôle prélève un échantillon de 100 pains. Le poids total se révèle être de 38kg. On modélise le poids du ième pain par une v.a. X_i , où les v.a. (X_i) sont i.i.d. d'espérance μ et d'écart-type σ . Au vu de l'échantillon, donner une estimation μ^* de μ et un intervalle de confiance $[\mu^* - \delta, \mu^* + \delta]$ au seuil

 $\alpha=5\%$ puis $\alpha=1\%$ pour la valeur exacte de $\mu.$

$$[\mu^* - \delta, \mu^* + \delta] =$$

2. On suppose que $\mu=400g$; quelle est la probabilité π qu'un échantillon de 100 pains ait un poids total de moins de 38kg?

 $\pi =$

.