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Abstract. In this paper, we prove that Euclidean hypersurfaces with almost ex-
tremal extrinsic radius or λ1 have a spectrum that asymptotically contains the spec-
trum of the extremal sphere in the Reilly or Hasanis-Koutroufiotis Inequalities. We
also consider almost extremal hypersurfaces which satisfy a supplementary bound
on vM‖B‖nα and show that their spectral and topological properties depends on the
position of α with respect to the critical value dimM .

1. Introduction

Throughout the paper, X:Mn → Rn+1 is a closed, connected, immersed Euclidean
hypersurface (with n > 2). We set vM its volume, B its second fundamental form,
H = 1

ntr B its mean curvature, rM its extrinsic radius (i.e. the least radius of the

Euclidean balls containing M), (λMi )i∈N the non-decreasing sequence of its eigenvalues

labelled with multiplicities and X := 1
vM

∫
M Xdv its center of mass. For any function

f : M → R, we set ‖f‖αα = 1
vM

∫
M |f |

αdv.

The Hasanis-Koutroufiotis inequality asserts that

(1.1) rM‖H‖2 > 1,

with equality if and only if M is the Euclidean sphere SM with center X and radius
1
‖H‖2 .

The Reilly inequality asserts that

(1.2) λM1 6 n‖H‖22,

once again with equality if and only if M is the sphere SM (we give some short proof
of these inequalities in section 2).

Our aim is to study the spectral properties of the hypersurfaces that are almost
extremal for each of this Inequalities. The results of this paper are used in [3] to study
the metric shape of the almost extremal hypersurfaces.

We set µSMk = k(n+k−1)‖H‖22 the k-th eigenvalue of SM (labelled without multi-
plicities) and mk its multiplicity. Throughout the paper we shall adopt the notation
that τ(ε|n, · · · ) is a positive function which depends only on the variables ε, n, · · · and
which converges to zero with ε when n, · · · are fixed.
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Theorem 1.1. There exists a function τ(ε|n) such that for any immersed hypersurface

M ↪→ Rn+1 with rM‖H‖2 6 1 + ε (or with
n‖H‖22
λM1

6 1 + ε) and for any k 6 1
τ(ε|n) the

interval [(1−τ(ε|n))µSMk , (1+τ(ε|n))µSMk ] contains at least mk eigenvalues of M counted
with multiplicities.

Note that by Theorem 1.1, almost extremal hypersurfaces for the Reilly inequality

must have at least n + 1 eigenvalues close to λSM1 = n‖H‖22. However, they can have
the topology of any immersed hypersurface of Rn+1 (see below) and can be as close as
possible in Hausdorff distance of any closed, connected subset of Rn+1 containing SM
(see [3]). This is very different from the almost extremal manifolds for the Lichnerowicz
Inequality in positive Ricci curvature (see for instance [1]).

The proof of Theorem 1.1 is based on estimates for the restrictions to M of ho-
mogeneous, harmonic polynomials of the ambient space Rn+1. Such a polynomial of

degree k satisfies the equality ∆SMP = n‖H‖22dP (X) + ‖H‖22D0dP (X,X) = µSMk P

on SM whereas it satisfies ∆MP = nHdP (ν) + D0dP (ν, ν) on M , where D0dP is the
Euclidean Hessian and ν a local unit, normal vector to M . We prove that on almost
extremal hypersurfaces, the quantities ν −HX and |H| − ‖H‖2 are small in L2-norms,
which can be used to get the following estimates (see Lemmas 5.3 and 5.1)∣∣‖ϕP‖2L2(M) − ‖ϕP‖

2
L2(SM )

∣∣ 6 τ(ε|n, k)‖ϕP‖L2(SM ),(1.3)

‖∆MϕP − µSMk ϕP‖L2(M) 6 τ(ε|n, k)‖ϕP‖L2(M),(1.4)

where ϕ is a cut function localized near SM from which we easily infer Theorem 1.1.
Note that these estimates are not so easy to derive since there is no known good local
control of the measure on M involving only the L2-norm of the mean curvature.

Theorem 1.1 gives no information on the part of the spectrum of almost extremal
hypersurfaces that is not close to the spectrum of the limit sphere SM . Our next result
shows that there is essentially no constraint on this part of the spectrum (in dimension
larger than 2), even if we assume a supplementary bound on ‖B‖p for p < n.

Theorem 1.2. Let M1,M2 ↪→ Rn+1 be two immersed compact submanifolds of di-
mension m > 3, M1#M2 be their connected sum and F be any closed subset of
]0,+∞[\Sp(M1) (for the induced topology). Then there exists a sequence of immer-
sions ik : M1#M2 ↪→ Rn+1 with induced metric gk on M1#M2 such that

1) ik(M1#M2) converges to M1 in Hausdorff topology,
2) the curvatures of gk satisfy

1

Vol gk

∫
M1#M2

|H|α → 1

VolM1

∫
M1

|H|α for any α ∈ [1,m),

1

Vol gk

∫
M1#M2

|B|α → 1

VolM1

∫
M1

|B|α for any α ∈ [1,m),

3) the limit spectrum ∩k∈N∪l>kSp(gl) is equal to F ∪ Sp(M1),
4) Vol (gk)→ VolM1.

To get almost extremal submanifolds from the previous result, we just have to con-
sider the case where M1 = Sn (and F ⊂ [n,+∞[ in the Reilly case). It gives almost
extremal hypersurfaces for the Reilly or Hasanis-Koutroufiotis Inequalities with the
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topology of any immersible Euclidean hypersurface, a spectrum arbitrarily close of any
closed set containing Sp(Sn) (and contained in [n,+∞[ in the Reilly case), even if we
assume a bound on vM‖B‖nα for any α < n.

On the other hand, if we assume a bound on ‖B‖α with α > n, we prove in [3]
that the almost extremal hypersrfaces converge to SM in Hausdorff distance, which
combined with the C1,β pre-compactness theorem of [8] (or a Moser iteration as in the
previous version of this paper [2]) imply the following stability in Lipschitz distance.

Proposition 1.3. Let n < α 6 ∞. Any immersed hypersurface M ↪→ Rn+1 with

vM‖B‖nα 6 A and rM‖H‖2 6 1 + ε (or with vM‖B‖nα 6 A and
n‖H‖22
λ1

6 1 + ε) is

diffeomorphic to SM and satisfies dL(M,SM ) 6 τ(ε|n, α,A). In particular, we have

|λMk − λ
SM
k | 6 τ(ε|k, n, α,A) for any k ∈ N.

The critical case, where we assume an upper bound on vM‖B‖nn will be developed
in a forthcoming paper. However, we construct in the present paper some examples of
almost extremal hypersurfaces satisfying such a bound as a preliminary. First of all,
considering the constructions of Theorem 1.2 in the case α = m, we get a sequence of
extremizing hypersurfaces for the two inequalities, with the topology of any immersible
hypersurface, with vM‖B‖nn bounded and whose limit spectrum is equal to Sp(SM )∪F ,
where F is any fixed, finite subset of R \ Sp(SM ) (see section 6.1). Note however that
the bound on vM‖B‖nn for this sequence depends on the topology of the extremal
hypersurfaces and on the subset F .

In section 6.2, we construct almost extremal hypersurfaces for the Hasanis-Koutroufiotis
inequality, not diffeomorphic to SM , not Gromov-Hausdorff close to SM , with limit
spectrum larger than the spectrum of Sn and with ‖H‖∞ bounded. We set E(x) the
integral part of x.

Example 1.4. For any couple (l, p) of integers there exists a sequence of embedded
hypersurfaces Mj ↪→ Rn+1 diffeomorphic to p spheres Sn glued by connected sum along
l points, such that ‖Hj‖∞ 6 C(n), ‖H‖2 = 1, ‖Bj‖n 6 C(n),

∥∥|Xj | − 1
∥∥
∞ → 0,∥∥|Hj | − 1

∥∥
1
→ 0, and for any σ ∈ N we have λ

Mj
σ → λS

n

E(σ
p

). In particular, the Mj have

at least p eigenvalues close to 0 whereas its extrinsic radius is close to 1.

Example 1.5. There exists sequence of immersed hypersurfaces Mj ↪→ Rn+1 diffeo-
morphic to 2 spheres Sn glued by connected sum along 1 great subsphere Sn−2, such
that ‖Hj‖∞ 6 C(n), ‖Hj‖2 = 1, ‖Bj‖2 6 C(n),

∥∥|Xj | − 1
∥∥
∞ → 0,

∥∥|Hj | − 1
∥∥

1
→ 0,

and for any σ ∈ N we have λ
Mj
σ → λS

n,d

E(σ
2

), where Sn,d is the sphere Sn endowed with

the singular metric, pulled-back of the canonical metric of Sn by the map π : (y, z, r) ∈
S1× Sn−2× [0, π2 ] 7→ (yd, z, r) ∈ S1× Sn−2× [0, π2 ], where S1× Sn−2× [0, π2 ] is identified

with Sn ⊂ R2 × Rn−1 via the map Φ(y, z, r) =
(
(sin r)y, (cos r)z

)
. Note that Sn,d has

infinitely many eigenvalues that are not eigenvalues of Sn.

The structure of the paper is as follows: after a preliminary section 2, where we
give short proofs of the Reilly and Hasanis-Koutroufiotis inequalities, we prove some
concentration properties for the volume, mean curvature and position vector X of
almost extremal hypersurfaces in Section 3. Section 4 is devoted to estimates on the
restriction on hypersurfaces of the homogeneous, harmonic polynomials of Rn+1. These
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estimates are used in Section 5 to prove Theorem 1.1. We end the paper in section 6
by the constructions of Theorem 1.2 and of Examples 1.4 and 1.5.

Throughout the paper we adopt the notation that C(n, k, p, · · · ) is function greater
than 1 which depends on p, q, n, · · · . It eases the exposition to disregard the explicit
nature of these functions. The convenience of this notation is that even though C might
change from line to line in a calculation it still maintains these basic features.

Acknowledgments: Part of this work was done while E.A was invited at the MSI, ANU
Canberra, funded by the PICS-CNRS Progress in Geometric Analysis and Applications.
E.A. thanks P.Delanoe, J.Clutterbuck and J.X. Wang for giving him this opportunity.

2. Some geometric optimal inequalities

Any function F on Rn+1 gives rise to a function F ◦ X on M which, for more
convenience, will be also denoted F subsequently. An easy computation gives the
formula

(2.1) ∆F = nHdF (ν) + ∆0F +∇0dF (ν, ν),

where ν denotes a local normal vector field of M in Rn+1, ∇0 is the Euclidean con-
nection, ∆ denotes the Laplace operator of (M, g) and ∆0 is the Laplace operator of
Rn+1. This formula is fundamental to control the geometry of a hypersurface by its
mean curvature. Applied to F (x) = 〈x, x〉, where 〈· , ·〉 is the canonical product on
Rn+1, Formula 2.1 gives the Hsiung formulae,

1

2
∆|X|2 = nH 〈ν,X〉 − n,

∫
M

H〈ν,X〉dv = vM(2.2)

2.1. A rough geometrical bound. The integrated Hsiung formula (2.2) and the
Cauchy-Schwarz inequality give the following

1 =

∫
M

H〈ν,X〉dv
vM

6 ‖H‖2
∥∥X −X∥∥

2
(2.3)

This inequality ‖H‖2‖X −X‖2 > 1 is optimal since M satisfies ‖H‖2
∥∥X −X∥∥

2
= 1 if

and only if M is a sphere of radius 1
‖H‖2 and center X. Indeed, in this case X −X and

ν are collinear on M \ {H = 0}, hence |X −X|2 is locally constant on M \ {H = 0}.
This implies that {H = 0} = ∅ and that X is an isometric-cover of M on the sphere S
of center X and radius ‖X − X̄‖2 = 1

‖H‖2 , hence an isometry.

2.2. Hasanis-Koutroufiotis inequality on extrinsic radius. We set R the ex-
trinsic Radius of M , i.e. the least radius of the balls of Rn+1 which contain M . Then
Inequality (2.3) gives ‖H‖2rM = ‖H‖2 infu∈Rn+1 ‖X−u‖∞ > ‖H‖2 infu∈Rn+1 ‖X−u‖2 =
‖H‖2‖X −X‖2 > 1 and rM = 1

‖H‖2 if and only if we have equality in (2.3).

2.3. Reilly inequality on λM1 . Since we have 1
vM

∫
M (Xi − X̄i) dv = 0 for any com-

ponent function of X − X̄, by the min-max principle and Inequality (2.3), we have
λM1

1
‖H‖22

6 λM1 ‖X − X̄‖22 = λM1
∑

i ‖Xi − X̄i‖22 6
∑

i ‖∇Xi‖22 = n where λM1 is the

first non-zero eigenvalue of M and where the last equality comes from the fact that∑
i |∇Xi|2 is the trace of the quadratic form Q(u) = |p(u)|2 with respect to the canon-

ical scalar product, where p is the orthogonal projector from Rn+1 to TxM . This gives
the Reilly inequality (1.2).
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Here also, equality in the Reilly inequality gives equality in 2.3 and so it characterizes

the sphere of radius 1
‖H‖2 = ‖X‖2 =

√
n
λM1

.

3. Concentration estimates

We say that M satisfies the pinching Pp,ε when ‖H‖p‖X −X‖2 6 1 + ε. From the
proofs of Inequalities (1.1) and (1.2) above, it appears that pinchings rM‖H‖2 6 1 + ε
or n‖H‖22/λ1 6 1 + ε imply the pinching P2,ε.

From now on, we assume, without loss of generality, that X̄ = 0. Let XT (x) denote
the orthogonal projection of X(x) on the tangent space TxM .

Lemma 3.1. If (P2,ε) holds, then we have ‖XT ‖2 6
√

3ε‖X‖2 and ‖X − H
‖H‖22

ν‖2 6√
3ε‖X‖2.

Proof. Since we have 1 = 1
vM

∫
M H〈X, ν〉dv 6 ‖H‖2‖〈X, ν〉‖2, Inequality (P2,ε) gives us

‖X‖2 6 (1+ε)‖〈X, ν〉‖2 and 1 6 ‖H‖2‖X‖2 6 1+ε. Hence ‖X−〈X, ν〉ν‖2 6
√

3ε ‖X‖2
and ‖X − Hν

‖H‖22
‖22 = ‖X‖22 − ‖H‖

−2
2 6 3ε ‖X‖22. �

We set Aη = B0( 1+η
‖H‖2 ) \B0( 1−η

‖H‖2 ).

Lemma 3.2. If (Pp,ε) (for p > 2), or n‖H‖22/λM1 6 1 + ε, or rM‖H‖2 6 1 + ε holds

(with ε 6 1
100), then we have

∥∥‖X‖ − 1
‖H‖2

∥∥
2
6 C
‖H‖2

8
√
ε, ‖|H| − ‖H‖2‖2 6 C 8

√
ε‖H‖2

and Vol (M \ A 8√ε) 6 C 8
√
εvM , where C = 6× 2

2p
p−2 in the case (Pp,ε) and C = 100 in

the other cases.

Proof. When (Pp,ε) holds, we have

‖H‖p‖X‖2 6 (1 + ε) 6 (1 + ε)‖H‖p‖X‖ p
p−1
6 (1 + ε)‖H‖p‖X‖

1− 2
p

1 ‖X‖
2
p

2 ,

hence we get
∥∥|X| − 1

‖H‖2

∥∥2

2
= ‖X‖22 − 2‖X‖1‖H‖2 + 1

‖H‖22
6 2

2p
p−2 1
‖H‖22

ε. Combined with the

second inequality of Lemma 3.1, it gives∥∥|H| − ‖H‖2∥∥2
6 ‖H‖22

∥∥|X| − |H|
‖H‖22

∥∥
2

+ ‖H‖22
∥∥|X| − 1

‖H‖2
∥∥

2
6 C 4
√
ε‖H‖2

Now, by the Chebyshev inequality and Lemma 3.1, we get

Vol
(
M \A 4√ε

)
= Vol

{
x ∈M/

∣∣|X(x)| − 1

‖H‖2
∣∣ > 4

√
ε

‖H‖2

}
6
‖H‖22√
ε

∫
M

∣∣|X| − 1

‖H‖2
∣∣2 6 C(p)

√
εvM

When rM‖H‖2 6 1 + ε holds. We set X0 the center of the circumsphere to M of

radius rM . We have ‖X − X0‖22 = ‖X‖22 + |X0|2 = r2
M 6

(1+ε)2

‖H‖22
and then we have

|X0| 6
√

3ε
‖H‖2 and |X| 6 |X0| + rM 6

1+3
√
ε

‖H‖2 . So we have 1
‖H‖22

− |X|2 ∈ [
4√ε
‖H‖22

, 1
‖H‖2 ] on

M \A 4√ε. Chebyshev inequality and (2.3) give us

Vol (M \A 4√ε)

vM

4
√
ε

‖H‖22
6

1

vM

∫
M\A 4√ε

1

‖H‖22
− |X|2 6 1

vM

∫
M∩A 4√ε

|X|2 − 1

‖H‖22
6

9
√
ε

‖H‖22
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where in the last inequality we have used |X| 6 1+3
√
ε

‖H‖2 and, so we get

∥∥|X| − 1

‖H‖2
∥∥2

2
=

1

vM

∫
M∩A 4√ε

∣∣|X| − 1

‖H‖2
∣∣2 +

1

vM

∫
M\A 4√ε

∣∣|X| − 1

‖H‖2
∣∣2

6

√
ε

‖H‖22
+

Vol (M \A 4√ε)

vM

1

‖H‖22
6

10 4
√
ε

‖H‖22

Combined with the second inequality of Lemma 3.1, we get ‖ 1
‖H‖2 −

|H|
‖H‖22
‖2 6 C 8√ε

‖H‖2 .

When n‖H‖22/λM1 6 1 + ε holds, we have
∫
M (|X|2 − ‖X‖22)dv = 0 and so by the

Poincare inequality we get
∥∥|X|2 − ‖X‖22∥∥2

2
6 4‖XT ‖22

λM1
6 12(1+ε)2ε‖X‖22

n‖H‖22
6 200ε

n‖H‖42
, which

gives 1
‖H‖2

∥∥|X| − 1
‖H‖2

∥∥
2
6
∥∥|X|2 − 1

‖H‖22

∥∥
2
6
∥∥|X|2 − ‖X‖22∥∥2

+
∣∣‖X‖22 − 1

‖H‖22

∣∣ 6 12
√
ε

‖H‖22
and then we get the estimate on the volume of A 4√ε by the same Chebyshev procedure
as for Pp,ε and the estimate on the mean curvature by the same procedure as for
rM‖H‖2 6 1 + ε. �

Let ψ:[0,∞) → [0, 1] be a smooth function with ψ=0 outside [ (1−2 16√ε)2
‖H‖22

, (1+2 16√ε)2
‖H‖22

]

and ψ=1 on [ (1− 16√ε)2
‖H‖22

, (1+ 16√ε)2
‖H‖22

]. Let us consider the function ϕ on M defined by

ϕ(x) = ψ(|Xx|2) and the vector field Z on M defined by Z = ν − HX. The previous
estimates then imply the following.

Lemma 3.3. (Pp,ε) (for p > 2) or n‖H‖22/λ1 6 1 + ε or rM‖H‖2 6 1 + ε implies

‖ϕ2(H2 − ‖H‖22)‖1 6 C 8
√
ε‖H‖22, ‖ϕZ‖2 6 Cε

3
32 and |‖ϕ‖22 − 1| 6 C 8

√
ε, where C is a

constant which depends on p in the case (Pp,ε).

Proof. We have ‖ϕ2(H2 − ‖H‖22)‖1 6
∥∥|H| − ‖H‖2∥∥2

2‖H‖2 6 C 8
√
ε‖H‖22 and

‖ϕZ‖22 =
1

vM

∫
M
ϕ2|Z|2dv =

1

vM

∫
M
ϕ2(1− 2H〈ν,X〉+ H2|X|2)dv

=
‖H‖22
vM

∫
M
ϕ2
∣∣X − H

‖H‖22
ν
∣∣2dv +

1

‖H‖22vM

∫
M

(‖H‖22 −H2)ϕ2(1− |X|2‖H‖22)dv

6‖H‖22
∥∥X − H

‖H‖22
ν
∥∥2

2
+ 8 16
√
ε

∥∥ϕ2(H2 − ‖H‖22)
∥∥

1

‖H‖22
,

which gives the result by Lemma 3.1. Finally, we have 1−
Vol (M\A 8√ε)

vM
6

Vol (A 8√ε∩M)

vM
6

‖ϕ‖22 and ‖ϕ‖22 6 1. �

4. Homogeneous, harmonic polynomials of degree k

In this section, we give some estimates on harmonic homogeneous polynomials re-
stricted to almost extremal hypersurfaces. They will be used subsequently to derive
our result on the spectrum and on the volume of almost extremal manifolds. Let us
begin by general estimates on harmonic, homogeneous polynomials.
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4.1. General estimates. Let Hk(Rn+1) be the space of homogeneous, harmonic poly-
nomials of degree k on Rn+1. Note that Hk(Rn+1) induces on Sn the spaces of eigen-
functions of ∆Sn associated to the eigenvalues µk := k(n + k − 1) with multiplicity

mk :=

(
n+ k − 1

k

)
n+ 2k − 1

n+ k − 1
.

On the space Hk(Rn+1), we set (P,Q)Sn := 1
Vol Sn

∫
Sn PQdvcan , where dvcan denotes

the element volume of the sphere with its standard metric.
Remind that for any P ∈ Hk(Rn+1) and any Y ∈ Rn+1, we have dP (X) = kP (X)

and ∇0dP (X,Y ) = (k − 1)dP (Y ).

Lemma 4.1. For any x ∈ Rn+1 and P ∈ Hk(Rn+1), we have |P (x)|2 6 ‖P‖2Snmk|x|2k.

Proof. Let (Pi)16i6mk be an orthonormal basis of Hk(Rn+1). For any x ∈ Sn, Qx(P ) =
P 2(x) is a quadratic form on Hk(Rn+1) whose trace is given by

∑mk
i=1 P

2
i (x). Since for

any x′ ∈ Sn and any O ∈ On+1 such that x′ = Ox we have Qx′(P ) = Qx(P ◦O) and since
P 7→ P ◦O is an isometry ofHk(Rn+1), we have

∑mk
i=1 P

2
i (x) = tr (Qx) =

∑mk
i=1 P

2
i (x′) =

tr (Qx′). We infer that
∑mk

i=1
1

Vol Sn
∫
Sn P

2
i (x)dv = mk = 1

Vol Sn
∫
Sn
(∑mk

i=1 P
2
i (x)

)
dv and

so
∑mk

i=1 P
2
i (x) = mk. By homogeneity of the Pi we get

(4.1)

mk∑
i=1

P 2
i (x) = mk|x|2k,

and by the Cauchy-Schwarz inequality applied to P (x) =
∑

i(P, Pi)SnPi(x), we get the
result. �

As an immediate consequence, we have the following lemma.

Lemma 4.2. For any x, u ∈ Rn+1 and P ∈ Hk(Rn+1), we have

|dxP (u)|2 6 ‖P‖2Snmk

(µk
n
|x|2(k−1)|u|2 +

(
k2 − µk

n

)
〈u, x〉2|x|2(k−2)

)
.

Proof. Let x ∈ Sn and u ∈ Sn so that 〈u, x〉 = 0. Once again the quadratic forms

Qx,u(P ) =
(
dxP (u)

)2
are conjugate (since On+1 acts transitively on orthonormal

couples) and so

mk∑
i=1

(
dxPi(u)

)2
does not depend on u ∈ x⊥ nor on x ∈ Sn. By choosing

an orthonormal basis (uj)16j6n of x⊥, we obtain that

mk∑
i=1

(
dxPi(u)

)2
=

1

n

mk∑
i=1

n∑
j=1

(
dxPi(uj)

)2
=

1

nVolSn

∫
Sn

mk∑
i=1

|∇SnPi|2

=
1

nVolSn

∫
Sn

mk∑
i=1

Pi∆
SnPi =

mkµk
n
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Now suppose that u ∈ Rn+1. Then u = v+ 〈u, x〉x, where v = u−〈u, x〉x, and we have
mk∑
i=1

(
dxPi(u)

)2
=

mk∑
i=1

(
dxPi(v) + k〈u, x〉Pi(x)

)2
=

mk∑
i=1

(
dxPi(v)

)2
+ 2k〈u, x〉

mk∑
i=1

dxPi(v)Pi(x) +mk〈u, x〉2k2

=
mkµk
n
|v|2 +mk〈u, x〉2k2 = mk

(µk
n
|u|2 +

(
k2 − µk

n

)
〈u, x〉2

)
,

where we have taken the derivative the equality (4.1) to compute

mk∑
i=1

dxPi(v)Pi(x). By

homogeneity of Pi we get

mk∑
i=1

(
dxPi(u)

)2
= mk

(µk
n |x|

2(k−1)|u|2+(k2−µk
n )〈u, x〉2|x|2(k−2)

)
and conclude once again by the Cauchy-Schwarz inequality. �

Lemma 4.3. For any x ∈ Rn+1 and P ∈ Hk(Rn+1), we have

|∇0dP (x)|2 6 ‖P‖2Snmkαn,k|x|2(k−2),

where αn,k = (k − 1)(k2 + µk)(n+ 2k − 3) 6 C(n)k4.

Proof. The Bochner equality gives
mk∑
i=1

|∇0dPi(x)|2 =

mk∑
i=1

(
〈d∆0Pi, dPi〉 −

1

2
∆0
∣∣dPi∣∣2)

= −1

2
mk

(
k2 + µk

)
∆0|X|2k−2 = mkαn,k|X|2k−4(4.2)

�

4.2. Estimates on hypersurfaces. Let Hk(M) = {P ◦ X , P ∈ Hk(Rn+1)} be
the space of functions induced on M by Hk(Rn+1). We will identify P and P ◦ X
subsequently. There is no ambiguity since we have

Lemma 4.4. Let Mn be a compact manifold immersed by X in Rn+1 and let (P1, . . . , Pm)
be a linearly independent set of homogeneous polynomials of degree k on Rn+1. Then
the set (P1 ◦X, . . . , Pm ◦X) is also linearly independent.

Proof. Any homogeneous polynomial P which is zero on M is zero on the cone R+·M .
Since M is compact there exists a point x ∈ M so that Xx /∈ TxM and so R+·M has
non empty interior. Hence P ◦X = 0 implies P = 0. �

We now compare the L2-norm of P on M with L2-norm of P on the sphere SM =
1
‖H‖2S

n. We still denote ψ : [0,∞) −→ [0, 1] a smooth function which is 0 outside

[ (1−η)2

‖H‖22
, (1+η)2

‖H‖22
], is 1 on [ (1−η/2)2

‖H‖22
, (1+η/2)2

‖H‖22
] and satisfies the upper bounds |ψ′| 6 4‖H‖22

η

and |ψ′′| 6 8‖H‖42
η2

. We set ϕ(x) = ψ(|Xx|2) on M .

Lemma 4.5. With the above restrictions on ψ we have

‖∆ϕ2‖1 6
192‖H‖42

η2
‖XT ‖22 +

16n‖H‖22
η

‖ϕZ‖1
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Proof. An easy computation yields that

∆(ϕ2) = −(ψ2)′′(|X|2)|d|X|2|2 + (ψ2)′(|X|2)∆|X|2

= −4(ψ2)′′(|X|2)|XT |2 − 2n(ψ2)′(|X|2) 〈ν, Z〉

But the bound on the derivatives of ψ gives us |(ψ2)′| 6 8‖H‖22
η ψ and |(ψ2)′′| 6 48‖H‖42

η2
.

Hence we get ‖∆ϕ2‖1 6
192‖H‖42

η2
‖XT ‖22 +

16n‖H‖22
η ‖ϕZ‖1. �

Lemma 4.6. Let ϕ : M → [0, 1] be as above. There exists a constant C = C(n) such
that for any isometrically immersed hypersurface M of Rn+1 and any P ∈ Hk(M), we

have
∣∣‖H‖2k2 ‖ϕP‖22 − ‖P‖2Sn∣∣ 6 (1 − ‖ϕ‖22 + DC(n)

∑k
i=1mi(1 + η)2k

)
‖P‖2Sn, where

D = ‖ϕZ‖2 + ‖ϕZ‖22 +
200‖H‖22

η2
‖X⊥‖22 + 16n

η ‖ϕZ‖1 +
‖ϕ2(H2−‖H‖22)‖1

‖H‖22
.

Proof. For any P ∈ Hk(M) we have

‖ϕ∇0P‖22 = ‖ϕdP (ν)‖22 + ‖ϕdP‖22

= ‖ϕdP (Z)‖22 + k2‖ϕHP‖22 +
1

vM

∫
M

(
2kHdP (ϕZ)ϕP + ϕ2P∆P − P 2∆(ϕ2)

2

)
dv

Now, Formula (2.1) applied to P ∈ Hk(Rn+1) gives

(4.3) ∆P = µkH
2P + (n+ 2k − 2)HdP (Z) +∇0dP (Z,Z)

hence, we get

‖ϕ∇0P‖22 =‖dP (ϕZ)‖22 + (µk + k2)‖HϕP‖22

+
1

vM

∫
M

(
ϕ2P∇0dP (Z,Z) + (n+ 4k − 2)ϕHdP (ϕZ)P − P 2∆(ϕ2)

2

)
dv

=
1

vM

∫
M

(
(µk + k2)

(
H2 − ‖H‖22

)
ϕ2P 2 + (n+ 4k − 2)HdP (ϕZ)ϕP

)
dv

+
1

vM

∫
M

(
P∇0dP (ϕZ,ϕZ)− P 2∆(ϕ2)

2

)
dv

+ (µk + k2)‖H‖22‖ϕP‖22 + ‖dP (ϕZ)‖22

Now we have ∥∥∇0P
∥∥2

Sn =
∥∥∥∇SnP

∥∥∥2

Sn
+ k2 ‖P‖2Sn = (µk + k2) ‖P‖2Sn(4.4)

Hence

‖H‖2k−2
2 ‖ϕ∇0P‖22−

∥∥∇0P
∥∥2

Sn = (µk+k2)
(
‖H‖2k2 ‖ϕP‖22−‖P‖

2
Sn
)

+‖H‖2k−2
2 ‖dP (ϕZ)‖22

+
‖H‖2k−2

2

vM

∫
M
ϕ2P

(
(µk + k2)

(
H2 − ‖H‖22

)
P + H(n+ 4k − 2)dP (Z) +∇0dP (Z,Z)

)
dv

−‖H‖
2k−2
2

vM

∫
M

P 2∆(ϕ2)

2
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Which gives

∣∣∣‖H‖2k2 ‖ϕP‖22 − ‖P‖2Sn∣∣∣
(4.5)

6
1

µk + k2

∣∣∣‖H‖2k−2
2 ‖ϕ∇0P‖22 −

∥∥∇0P
∥∥2

Sn

∣∣∣
+
‖H‖2k−2

2

µk + k2

∫
M

(
(n+ 4k − 2)|H|ϕ|P ||dP (ϕZ)|+ |dP (ϕZ)|2 + |P ||∇0dP ||ϕZ|2

)
+
‖H‖2k−2

2

vM

∫
M

(
ϕ2
∣∣H2 − ‖H‖22

∣∣P 2 +
P 2|∆(ϕ2)|

2

)
dv

By Lemma 4.1, we have

‖H‖2k−2
2

vM

∫
M

∣∣H2 − ‖H‖22
∣∣(ϕP )2dv 6

mk ‖P‖2Sn ‖H‖
2k−2
2

vM

∫
M

∣∣ϕ2(H2 − ‖H‖22)
∣∣|X|2kdv

6 ‖P‖2Snmk(1 + η)2k ‖ϕ2(H2 − ‖H‖22)‖1
‖H‖22

In the same way, we have

‖H‖2k−2
2

vM

∫
M

P 2|∆(ϕ2)|
2

dv 6 ‖P‖2Snmk(1 + η)2k ‖∆(ϕ2)‖1
‖H‖22

and using Lemma 4.2, we get

‖H‖2k−2
2

vM

∫
M
ϕ2|PdP (Z)H|dv 6

mkk ‖P‖2Sn ‖H‖
2k−2
2

vM

∫
M
ϕ2|X|2k−1|HZ| dv

6 ‖P‖2Snmkk(1 + η)2k‖ϕZ‖2
and

‖H‖2k−2
2

vM

∫
M
|dP (ϕZ)|2 6 ‖P‖2Snmkk

2 ‖H‖
2k−2
2

vM

∫
M
|ϕZ|2|X|2(k−1) dv

6 ‖P‖2Snmkk
2(1 + η)2k‖ϕZ‖22

Finally, using Lemma 4.3, we get

‖H‖2k−2
2

vM

∫
M
|P ||∇0dP ||ϕZ|2 6 ‖P‖2Snmk

√
αn,k
‖H‖2k−2

2

vM

∫
M
|X|2(k−1)|ϕZ|2 dv

6 ‖P‖2Snmk
√
αn,k(1 + η)2k‖ϕZ‖22

which, combined with (4.5) and equation (4.4), gives∣∣‖H‖2k2 ‖ϕP‖22 − ‖P‖2Sn∣∣
‖P‖2Sn

6

∣∣∣‖H‖2k−2
2 ‖ϕ∇0P‖22 −

∥∥∇0P
∥∥2

Sn

∣∣∣
‖∇0P‖2Sn

+ C(n)mk(1 + η)2k
(
‖ϕZ‖2 + ‖ϕZ‖22 +

‖∆(ϕ2)‖1
‖H‖22

+
‖ϕ2(H2 − ‖H‖22)‖1

‖H‖22

)

6

∣∣∣‖H‖2k−2
2 ‖ϕ∇0P‖22 −

∥∥∇0P
∥∥2

Sn

∣∣∣
‖∇0P‖2Sn

+ C(n)mk(1 + η)2kD
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In particular for k = 1, we have |∇0P | constant equal to (1 + n)‖P‖2Sn and so∣∣‖H‖22‖ϕP‖22 − ‖P‖2Sn∣∣ 6 (1− ‖ϕ‖22 + C(n)m1(1 + η)2D
)
‖P‖2Sn

Now, let Bk = sup
{
|‖H‖2k2 ‖ϕP‖22−‖P‖

2
Sn |

‖P‖2Sn
| P ∈ Hk(Rn+1) \ {0}

}
. Then using that

∇0P ∈ Hk−1(Rn+1) and (4.4), we get

Bk 6 Bk−1 + C(n)mk(1 + η)2kD 6 1− ‖ϕ‖22 + C(n)D
k∑
i=1

mi(1 + η)2k

�

5. Proof of Theorem 1.1

Under the assumption of Theorem 1.1 we can use Lemmas 3.1 and 3.3 to improve
the estimate in Lemma 4.6 in the case η = 2 16

√
ε.

Lemma 5.1. For any isometrically immersed hypersurface M ↪→ Rn+1 with rM‖H‖2 6
1 + ε (or λ1(1 + ε)2 > n‖H‖22 or (Pp,ε) for p > 2) and for any P ∈ Hk(M), we have∣∣‖H‖2k2 ‖ϕP‖22 − ‖P‖2Sn∣∣ 6 C 32

√
ε ‖P‖2Sn ,

where C = C(n, k) in the first two cases and C = C(p, k, n) in the latter case.

As a consequence, the map P 7→ ϕP is injective on Hk(M) for ε small enough.

Lemma 5.2. Under the assumption of Lemma 5.1, if ε 6 1
(2C)32

then dim(ϕHk(M)) =
mk.

Lemma 5.1 allows us to prove the following estimate on ∆P .

Lemma 5.3. Under the assumptions of Lemma 5.1, if ε 6 1
(2C)32

, then for any P ∈
Hk(M), we have

∥∥∆(ϕP ) − µSMk ϕP
∥∥

2
6 C 16

√
εµSMk ‖ϕP‖2 where C = C(n, k) (C =

C(n, k, p) under the pinching (Pp,ε)).

Proof. Let P ∈ Hk(M). Using (2.1) we have

∆(ϕP ) =P∆ϕ− 2〈dP, dϕ〉+ ϕ∆P = P∆ϕ− 2〈dP, dϕ〉+ ϕnHdP (ν) + ϕ∇0dP (ν, ν)

=P∆ϕ− 2〈dP, dϕ〉+ ϕµk|H|‖H‖2P + ϕ(n+ k − 1)
H

|H|
‖H‖2dP (Z)

+ ϕ(n+ k − 1)
H

|H|
(|H| − ‖H‖2)dP (ν) + ϕ∇0dP (ν, Z)

hence, we get

‖∆(ϕP )− µk‖H‖22ϕP‖2 6 ‖(∆ϕ)P‖2 + 2‖ 〈dϕ, dP 〉 ‖2 + µk‖(|H| − ‖H‖2)ϕP‖2‖H‖2

+ (n+k−1)‖H‖2‖ϕ|dP ||Z|‖2 + (n+k−1)
∥∥ϕ(|H| − ‖H‖2)dP (ν)

∥∥
2

+ ‖ϕ|∇0dP ||Z|‖2
(5.1)



12 E. AUBRY, J.-F. GROSJEAN

Let us estimate ‖(∆ϕ)P‖2.

‖(∆ϕ)P‖22 6
1

vM

∫
M

(4|ψ′′(|X|2)||XT |2 + 2n|ψ′(|X|2)||Z|)2P 2dv

6
mk

vM

(∫
M
|X|2k

(
4|ψ′′(|X|2)||XT |2 + 2n|ψ′(|X|2)||Z|

)2
dv
)
‖P‖2Sn

6
mk

vM

(1 + 2 16
√
ε)2k

‖H‖2k2

(∫
A

2 16√ε

(8‖H‖42
8
√
ε
|XT |2 + 2n

2‖H‖22
16
√
ε
|Z|
)2
dv
)
‖P‖2Sn

6
mk

vM

(1 + 2 16
√
ε)2k

‖H‖2k2

(∫
A

2 16√ε

128‖H‖82
4
√
ε
|XT |4 + 32n2 ‖H‖42

8
√
ε
|Z|2dv

)
‖P‖2Sn

Since we have |XT | 6 |X| and since Lemma 3.3 is valid with ‖ϕZ‖22 replaced by
1
vM

∫
A

2 16√ε
|Z|2, we get

‖(∆ϕ)P‖22 6
C(n, k)µk

vM

‖P‖2Sn
‖H‖2k2

∫
A

2 16√ε

(‖H‖62
4
√
ε
|XT |2 +

‖H‖42
8
√
ε
|Z|2

)
dv

6
C(n, k)µk

‖H‖2k2
‖H‖42 16

√
ε ‖P‖2Sn

From the lemma 5.1, ε 6 1
(2C)32

implies that

‖P‖2Sn 6 2‖H‖2k2 ‖ϕP‖22(5.2)

which gives

‖(∆ϕ)P‖22 6 C(n, k)µk‖H‖42 16
√
ε‖ϕP‖22(5.3)

Now

‖ 〈dϕ, dP 〉 ‖22 6 4‖ψ′(|X|2)|XT ||dP |‖22 6
16‖H‖42
16
√
εvM

∫
A

2 16√ε

|XT |2|dP |2dv

6
16‖H‖42
16
√
εvM

‖P‖2Sn
∫
A

2 16√ε

|XT |2mknk
2|X|2(k−1)dv

6 C(n, k)µk
16
√
ε‖H‖4−2k

2 ‖P‖2Sn 6 C(n, k)‖H‖42 16
√
ε‖ϕP‖22(5.4)

By the same way, we get

‖ϕ|dP |Z‖22 6 C(n, k)µk‖H‖22 16
√
ε‖ϕP‖22(5.5)

Now, by Lemma 3.2, we have

‖(|H| − ‖H‖2)ϕP‖22 6
mk

vM
‖P‖2Sn

∫
M
||H| − ‖H‖2|2|X|2kϕ2dv

6
C(n, k)

‖H‖2k2
‖P‖2Sn ‖ϕ(|H| − ‖H‖2)‖22

6 C(n, k)µk‖H‖22 16
√
ε‖ϕP‖22(5.6)

By the same way, we get

‖ϕ(|H| − ‖H‖2)dP (ν)‖22 6 C(n, k)µk
16
√
ε‖H‖42‖ϕP‖22(5.7)
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Now let us estimate the last terms of (5.1)

‖ϕ|∇0dP ||Z|‖22 6
C(n, k)µk

vM
‖P‖2Sn

∫
M
ϕ2|X|2k−4|Z|2dv

6 C(n, k)µk‖H‖42 16
√
ε‖ϕP‖22(5.8)

Reporting (5.3), (5.4), (5.5), (5.6), (5.7) and (5.8) in (5.1) we get

‖∆(ϕP )− µk‖H‖22ϕP‖2 6 C(n, k) 16
√
εµk‖H‖22‖ϕP‖2

�

Let Eεk be the space spanned by the eigenfunctions of M associated to an eigenvalue

in the interval
[
(1 − 16

√
ε2C(n, k))µSMk , (1 + 16

√
ε2C(k, n))µSMk

]
. If dimEεk < mk, then

there exists ϕP ∈ (ϕHk(M)) \ {0} which is L2-orthogonal to Eνk . Let ϕP =
∑
i

fi

be the decomposition of ϕP in the Hilbert basis given by the eigenfunctions fi of M
associated respectively to λi. Putting N := {i/ fi /∈ Eεk}, by assumption on P we have

4C(n, k)2 8
√
ε(µSMk )2‖ϕP‖22 6

∑
i∈N

(
λi − µSMk

)2‖fi‖22 = ‖∆(ϕP )− µSMk ϕP‖22

6 (µSMk )2C(n, k)2 8
√
ε‖ϕP‖22

which gives a contradiction. We then have dimEεk > mk.

6. Some examples

6.1. Proof of Theorem 1.2. We adapt the constructions made in [4, 12, 3]. We first
consider submanifolds obtained by connected sum of a small submanifold εM2 with a
fixed submanifold M1 along a small, adequately pinched cylinder εT ′ε (this is actually
a 2 scales collapsing sequence of submanifolds). It gives Theorem 1.2 in the case where
F is a singleton.

In the case where F is finite, it will suffice to iterate the construction (i.e. to glue
several such cylinders) to add any finite set of eigenvalues to the spectrum of M1. Since
for a general F , F \ Sp(M1) is the Hausdorff limit of a sequence of finite sets, we get
Theorem 1.2 in the general case by a diagonal procedure.

6.1.1. Flattening of submanifolds. For any submanifold M of Rn+1, we set M̃ ε a sub-
manifold of Rn+1 obtained by smooth deformation of M at the neighbourhood of a
point x0 ∈M such that Bx0(4ε) is flat in M̃ ε and M ε \Bx0(10ε) is a subset of M . We

also set M ε = M̃ ε \ Bx0(3ε), whose boundary has a neighbourhood isometric to the
flat annulus B0(4ε) \B0(3ε) in Rm.

We describe precisely how to construct such a flattening M̃ ε in [3] so that it also
satisfies the following curvature estimates for any α > 1.

lim
ε→0

∫
M̃ε

|Hε|αdv = lim
ε→0

∫
Mε

|Hε|αdv =

∫
M
|H|αdv

lim
ε→0

∫
M̃ε

|Bε|αdv = lim
ε→0

∫
Mε

|Bε|αdv =

∫
M
|B|αdv

Note also that by construction, any function on M can be seen as a function on M̃ ε

and this identification of H1(M) with H1(M̃ ε) tends to an isometry as ε tends to 0.
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6.1.2. Control of the curvature of the gluing. LetM1, M2 be 2 manifolds of dimensionm
isometrically immersed in Rn+1 and λ, L be some fixed, positive real numbers, with λ /∈
Sp(M1) and L > max

(C(M1)(1+λ)2

d2
, 1
)
, where d is the distance between λ and Sp(M1) in

R. We consider the flattenings M̃ ε
2 of M2 around the point x2 and M ε

1 of M1 around x1.
Let D be a smooth hypersurface of revolution of Rm+1, composed of three parts, D1,
D2, D3, where D1 is a cylinder of revolution isometric to B0(3) \B0(2) ⊂ Rm+1 at the
neighbourhood of one of its boundary component and isometric to [0, 1]× Sm−1 at the
neighbourhood of its other boundary component, where D2 = [0, L]× Sm−1 and where
D3 is a disc of revolution with pole x3 and isometric to [0, 1] × Sm−1 at its boundary
and to a flat disc at the neighbourhood of x3. Let C be a cylinder of revolution of
dimension m isometric to B0(2) \B0(1) ⊂ Rm at the neighbourhood of its 2 boundary
components.

1 D D32

C
D

D

There exists ν0 > 0 such that for any ν ∈]0, ν0[ the gluing of M̃ ε
2 \ Bx2(2ν), of νC

and of D\Bx3(2ν) along their isometric boundary components is a smoothly immersed
submanifold T ′ν of dimension m. By standard arguments (see for instance [4] or what is
done in section 6.1.3 in a more complicate case), when ν tends to 0, the Dirichlet spec-
trum of T ′ν converges to the disjoint union of the Dirichlet spectrum ofD and of the spec-
trum of M2. Moreover, for ν small enough, λD1 (T ′ν) depends continuously on ν. We infer
that for any ε ∈]0, ε0(M2, λ, L,D1, D3)[ there exists a νε ∈]0, ν0(M2, λ, L,D1, D3)[ such
that λD1 (T ′νε) = ε2λ and λD2 (T ′νε) > Λ2(L,M2, λ,D1, D3) > 0. We set Tε = εT ′νε . Note
that we have

∫
Tε
|B|p 6 εm−pC2(M2, λ, L,D1, D3) for any p < m, limε→0

∫
Tε
|B|m =∫

M2
|B|m +

∫
D1
|B|m +

∫
D3
|B|m +LC(m), λD1 (Tε) = λ and λD2 (Tε) >

Λ2
ε2

for any ε 6 ε0.

M2
ε

Cν D

T’ν

We set Mε the m-submanifold of Rn+1 obtained by gluing M ε
1 and Tε along their

boundaries in a fixed direction ν ∈ Nx1M1. Note that Mε is a smooth immersion of
M1#M2 (resp. an embedding when M1 and M2 are embedded).

Tε

M 1

ε

M ε
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By the computations above, the sequence ik(M1#M2) = M 1
k

converges to M1 in

Hausdorff distance and we have

lim
ε→0

∫
Mε

|Hε|αdv =

∫
M1

|H|αdv lim
ε→0

∫
Mε

|Bε|αdv =

∫
M1

|B|αdv

for any α < m and

lim
ε→0

∫
Mε

|Hε|m =

∫
M1

|H|m +

∫
D1∪D3

|H|m + C(m)L+

∫
M2

|H|m

lim
ε→0

∫
Mε

|Bε|m =

∫
M1

|B|m +

∫
D1∪D3

|B|m + C(m)L+

∫
M2

|B|m

6.1.3. Computation of the spectrum of Mε. We will prove that there exists a sequence
(εp)p∈N such that εp → 0 and the spectrum of Mεp converges to the disjoint union of

Sp(M1) and of {λ̃}, where λ̃ satisfies λ − C(M1)(1+λ)√
L

6 λ̃ 6 λ. Since the collapsing

of Mε is multiscale, the cutting and rescaling technique of [4, 12] has to be adapted.
Indeed, after rescaling of Tε we get another collapsing sequence of submanifolds with
no uniform control of the trace and Sobolev Inequalities.

We denote by (λk)k∈N the union with multiplicities of the spectrum of M1 and of
{λ}, by (λεk)k∈N the spectrum of Mε and by (µεk)k∈N the Dirichlet spectrum of the

disjoint union M ′ε = Tε∪
(
M ε

1 \Bx1(10ε)
)

. By the Dirichlet principle, we have λεk 6 µ
ε
k

for any k ∈ N. It is well known (see for instance [6]) that the Dirichlet spectrum of
M ε

1 \Bx1(10ε) converges to the spectrum of M1. We infer that µεk → λk as ε→ 0 and
so lim supλεk 6 λk for any k ∈ N.

We set αk = lim infε→0 λ
ε
k. To get some lower bound on the αk, we need some

local trace inequalities. We set St = {x ∈ Tε/ d(x, ∂Tε) = −t} for any t 6 0 and
St = {x ∈ M ε

1/ d(x, ∂M ε
1 ) = t} for any t > 0. We also set Bt,r = ∪{s/ |s−t|6r}Ss,

Nr = M ε
1 ∪ B r

2
,−r

2
for any r 6 0 and Nr = M ε

1 \ B r
2
, r
2

for any r > 0. Let aM1 be a

constant such that the volume density θε of Mε in normal coordinates to S−2ε satisfies
1

aM1
(3 + t

ε)
m−1 > θε(t, u) > aM1(3 + t

ε)
m−1 for any t ∈ [−2ε, aM1 ] and any u ∈ S−2ε.

Let εd be the distance in Mε between M ε
1 and εD2 and C(D1) be a constant such that

for any t ∈ [−(L+ d+ 2)ε,−2ε] and any u ∈ S−2ε we have θε(t,u)
θε(−2ε,u) ∈ [ 1

C(D1) , C(D1)].

Let η : [−2ε, aM1 ] → [0, 1] be a smooth function such that η(t) = 1 for any t 6
aM1

2 ,

η(aM1) = 0 and |η′| 6 4
aM1

. For any r ∈ [−2ε, aM1/2] and any f ∈ H1(Mε), we have∫
Sr

f2 =

∫
S−2ε

(∫ aM1

r

∂

∂s
[η(·)f(·, u)]ds

)2
θε(r, u)du

6
∫ aM1

r

supu∈S−2ε
θε(r, u)

infu∈S−2ε θε(s, u)
ds

∫
S−2ε

∫ aM1

r

( ∂
∂s

[η(·)f(·, ε
10
u)]
)2
θε(s, u)

6c(M1)

∫ aM1

r

(3 + r/ε)m−1

(3 + s/ε)m−1
ds‖f‖2H1(Mε)

which gives

(6.1)

∫
Sr

f2 6 c(M1)(3ε+ r)‖f‖2H1(Mε)
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when m > 3. By the same way, for any r ∈ [−(L+ d+ 2)ε,−2ε], we have

(6.2)

∫
Sr

f2 6 −c(M1, D1)(ε+ r)‖f‖2H1(Mε)

We now use this local trace inequality to get some estimates on the eigenfunctions of
Mε. We set ϕ : Mε → [0, 1] be a smooth function equal to 1 on N21ε/2 ∪

(
Mε \N−ε/2

)
,

equal to 0 outside M ′ε and such that |ϕ′| 6 4
ε . For any f1, f2 ∈ H1(Mε), integration of

Inequalities (6.1) and (6.2) gives us∣∣∫
Mε

f1f2 −
∫
Mε

ϕf1ϕf2

∣∣ 6 ∫
Mε

|ϕ2 − 1||f1||f2| 6 c(M1)ε2‖f1‖H1(Mε)‖f2‖H1(Mε)(6.3)

and ∫
Mε

|dϕf1|2 6
∫
Mε

|dϕ|2f2
1 + 2ϕf1(df1, dϕ) + ϕ2|df1|2

6
16

ε2
‖f1‖2L2(Supp(dϕ)) +

8

ε
‖f1‖L2(Supp(dϕ))‖df1‖2 + ‖df1‖22

6 c(M1)‖f1‖2H1(Mε)
(6.4)

Let (f εk) be a L2-orthonormal, complete set of eigenfunctions of Mε. For any k, we set

f̃ εk the function on M1 equal to ϕf εk on N10ε and extended by 0. By Inequality (6.4), we

have ‖f̃ εk‖2H1(M1) 6 c(M1)(1 + λk) for ε small enough. We infer by diagonal extraction

that there exists some sequences (εp)p∈N and (hk)k∈N ∈ H1(M1)N such that λ
εp
k → αk

and (f̃
εp
k )p converges weakly in H1(M1) and strongly in L2(M1) to hk, for any k. It is

easy to prove that hk is a weak solution of ∆hk = αkhk on H1(M1 \ {x1}) = H1(M1).
By elliptic regularity, either hk = 0 or αk is an eigenvalue of M1.

Let k0 ∈ N such that λk0 = λ. Since D2 isometric to [0, L] × Sm−1, any f
εp
k can be

seen as a function on [0, εpL]× εpSm−1. For any f =
∑

i6k0 βif
εp
i ∈ Vect{f εpi / i 6 k0},

we define the rescaling Fp on c = [0, 1]×Sm−1 by Fp(t, x) = ε
m
2
−1

p L−
1
2 f(εpLt, εpx). By

Inequality (6.2), we have∫
c
F 2
p =

1

ε2
pL

2

∫
εpD2

f2 6 c(M1, D1)(1 +
2

L
)(1 + λ)‖f‖22,∫

{0}×Sm−1

F 2
p =

1

Lεp

∫
εp(D1∩D2)

f2 6
c(M1, D1)(1 + λ)‖f‖22

L
,

and

∫
{1}×Sm−1

F 2
p =

1

Lεp

∫
εp(D3∩D2)

f2 6 (1 + λ)c(M1, D1)(1 +
d

L
)‖f‖22,

for p large enough (note that we have d > 2 by construction). Moreover, we have∫
c |dFp|

2 6
∫
εpD2
|df |2 6 λ‖f‖22. So we can assume that there exists F∞ ∈ H1(c) such

that the sequence (Fp) converges to F∞ weakly in H1(c) and strongly in L2(c). We
set jp(t) =

∫
Sm−1 Fp(t, x)dx and j∞(t) =

∫
Sm−1 F∞(t, x)dx, we have jp, j∞ ∈ H1([0, 1])

(with j′p(t) =
∫
Sm−1

∂Fp
∂t (t, x)dx), jp → j∞ strongly in L2([0, 1]) and weakly in H1([0, 1]).

By the estimates above and the compactness of the trace operator on c, we have

|j∞(0)| 6 C(M1)
√

1+λ‖f‖2√
L

and |j∞(1)| 6
√

1 + λ‖f‖2C(M1). Hence l(t) = j∞(t) −
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j∞(0) + (j∞(1) − j∞(0))t

)
is in H1

0 ([0, 1]). For any ψ ∈ C∞c ([0, 1]), we set ψp(t, x) =

εpLψ( t
εpL

) seen as a function in H1
0 (εpD2). We have∫ 1

0
l′ψ′ dt =

∫ 1

0
j′∞ψ

′ dt

= lim
p

∫ 1

0
j′p(t)ψ

′(t) dt = lim
p

∫
c

∂Fp
∂t

ψ′ = lim
p

1

ε
m
2
p

√
L

∫
εpD2

〈df, dψp〉 dt dx

= lim
p

∑
i

βiλ
εp
i

ε
m
2
p

√
L

∫
εpD2

f
εp
i ψp dt dx =

∑
i

αiβiL
2 lim

p
ε2
p

∫
c
Fi,pψ dt dx

= 0,

where Fi,p(t, x) = ε
m
2
−1

p L−
1
2 f

εp
i (εpLt, εpx). We infer l is harmonic and in H1

0 ([0, 1]), i.e.
l = 0 and j∞(t) = j∞(0) + (j∞(1)− j∞(0))t on [0, 1]. Since the Poincare inequality on
Sm−1 gives us∫

Sm−1

Fp(t, x)2 dx 6
1

VolSm−1

(∫
Sm−1

Fp(t, x) dx
)2

+
1

m− 1

∫
Sm−1

|dSm−1Fp|2

6
1

VolSm−1
j2
p(t) +

εp
(m− 1)L

∫
εpSm−1

|dεpSm−1f |2(εpLt, x) dx,

we get that

1

Lε2
p

∫
[0,εp

√
L]×εpSm−1

f2 = L

∫
[0, 1√

L
]×Sm−1

F 2
p

6
L

VolSm−1

∫ 1√
L

0
j2
p(t) dt+

1

(m− 1)L

∫
[0,εp

√
L]×εpSm−1

|dεpSm−1f |2

6
L

VolSm−1

∫ 1√
L

0
j2
p(t) dt+

λ

(m− 1)L
‖f‖2

→ L

VolSm−1

∫ 1√
L

0
j∞(t)2 dt+

λ

(m− 1)L
‖f‖2 6 C(M1)(1 + λ)‖f‖2√

L

If the family (hi)i<k0 is not free in L2(M1), then either one hi is null or they are
all eigenfunctions of M1. Since the eigenspaces are in direct sum, we infer that there
exists µ 6 λk0−1 and (βi) ∈ Rk0 \ {0} such that

∑
i β

2
i = 1,

∑
i βihi = 0 and αi = µ for

any i such that βi 6= 0. We set f =
∑

i βif
εp
i and η : Mεp → [0, 1] a smooth function

equal to 1 on Mεp \N−(2+d+
√
L)εp

, equal to 0 on N−(2+d)εp and such that |ϕ′| 6 2
εp
√
L

.

We then have

|
∫
Mεp

|d(ηf)|2 − µ
∫
Mεp

(ηf)2
∣∣ =

∣∣∫
Mεp

|dη|2f2 + 〈df, d(η2f)〉 − µ
∫
Mεp

(ηf)2
∣∣

6
C(M1)(1 + λ)√

L
‖f‖22 +

∫
Mεp

∑
i,j

(λ
εp
i − µ)βiηf

εp
i βjηf

εp
j(6.5)

Inequalities (6.3) and (6.2) imply that
∫
Mεp

(ηf)2 → 1. Since ηf ∈ H1
0 (Tεp) and since by

construction of Tεp , we have λD1 (Tεp) = λ, we then have
∫
Mεp
|d(ηf)|2 > λ

∫
Mεp

(ηf)2.
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Letting p tend to ∞ in Inequality (6.5) we get that λ − λk0−1 6
C(M1)(1+λ)√

L
, which

contradicts the choice made on L at the beginning of this subsection.
We infer that (hi)i<k0 is free in L2(M1). This implies that αi is an eigenvalue of M1

and hi is an eigenfunction of M1 for any i < k0. Since αi = limλ
εp
i 6 λi = λi(M1)

for any i < k0, we infer that αi = λi for any i < k0 and that the (hi)i<k0 is a basis
of the eigenspaces of M1 associated to the first k0 eigenvalues. By the same way, if
hk0 6= 0, then αk0 = λk0−1 (since it is an eigenvalue of M1 less than λ) and so the
family (hi)i6k0 is not free. The same argument as above gives a contradiction. So we
have that hk0 = 0.

Assume that there exists another index l 6= k0 such that hl = 0. Then, Inequality
(6.3) gives that

∫
Tεp

ϕf
εp
k0
ϕf

εp
l → 0,

∫
Tεp

(ϕf
εp
k0

)2 → 1 and
∫
Tεp

(ϕf
εp
l )2 → 1 and Inequal-

ity (6.4) gives that
∫
Tεp
|dϕfεpk0 |

2 and
∫
Tεp
|dϕfεpl |

2 remain bounded as εp → 0. We set

gp a unitary eigenfunction of Tεp for the Dirichlet problem associated to the eigenvalue

λ. If we set (ϕf
εp
k0

)|Tεp = βpk0gp + δpk0 and (ϕf
εp
l )|Tεp = βpl gp + δpl , with βpk0 , β

p
l ∈ R and

δpk0 , δ
p
l orthogonal to gp in H1

0 (Tεp). The previous relations and the lower bound on

λD2 (Tεp) imply that∫
Tεp

|d(εf
εp
k0

)|2 > λ(βpk0)2 + λD2 (Tεp)‖δ
p
k0
‖2L2(Tεp ) > (βpk0)2λ+

Λ2

ε2
p

‖δpk0‖
2
L2(Tεp ).

By the same way, (βpl )2λ+ Λ2
ε2p
‖δpl ‖

2
L2(Tεp ) is bounded, and so ‖δpk0‖

2
L2(Tεp ) and ‖δpl ‖

2
L2(Tεp )

tend to 0 with εp. Now, we have (βpk0)2+‖δpk0‖
2
L2(Tεp ) → 1 and so |βpk0 | → 1. By the same

way, we have |βpl | → 1, which contradicts the fact that
∫
Tεp

ϕf
εp
k0
ϕf

εp
l → 0. We infer that

for any k ∈ N\{k0} we have that αk is an eigenvalue of M1. Moreover, if we decompose

(ϕf
εp
k )|Tεp = βpkgp + δpk as above, Inequality (6.4) implies that (βpk)2 + Λ2

ε2p
‖δpk‖

2
L2(Tεp )

remains bounded and so we have lim ‖δpk‖
2
L2(Tεp ) = 0 and Inequality (6.3) gives

0 = lim

∫
Mε

f
εp
k0
f
εp
k = limβpkβ

p
k0

= limβpk

and so (ϕf
εp
k )|Tεp → 0 in L2(Tεp) for any k 6= k0. Once again, Inequality (6.3) gives us

that for any k, l ∈ N \ {k0}, we have∫
M1

hkhl = δkl.

From the min-max principle, it gives that we have αk > λk for any k 6= k0. Since we
have αk 6 λk for any k ∈ N, we infer that for any k ∈ N\{k0} we have αk = λk. Finally,

Inequality (6.5), applied to f = f
εp
k0

and µ = αk0 gives that αk0 ∈ [λ− C(M1)(1+λ)√
L

, λ].

6.1.4. End of the proof of Theorem 1.2 and case α = m. Since we can take L as large
as needed while keeping

∫
Mε
|B|α →

∫
M1
|B|α for any α < n, we get Theorem 1.2

for F = Sp(M1) ∪ {λ} by diagonal extraction. Iterating the construction (with M2

replaced by Sm for any supplementary gluing) we get the result for any disjoint union
F = Sp(M1) ∪ {finite set} and then for any F , since any closed set F is the limit in
pointed-Hausdorff topology of a sequence of finite sets.
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In the case α = m, the limit
∫
Mε
|B|m depend on L and so we are only able to

get a weak version of Theorem 1.2 with F = Sp(M1) ∪ G, where G is a finite set
whose elements are known up to an error term and where the point 2) is replaced by∫
ik(M1#M2) |B|

m is bounded by a constant that depend on M1, M2, D1, D3, G and on

the error term.

6.2. Example 1.4. We set Iε = [ε, π2 ] for ε > 0 and let ϕ : Iε −→ (−1,+∞) be a
function continuous on Iε and smooth on (ε, π2 ]. For any 0 6 k 6 n − 2, we consider
the map

Φϕ : Sn−k−1 × Sk × Iε −→ Rn+1 = Rn−k ⊕ Rk+1

x = (y, z, r) 7−→ (1 + ϕ(r))(y sin r + z cos r)

whose image Xϕ is a smooth embedded submanifold (with boundary) diffeomorphic

to Sn \ B(Sk, ε). We denote respectively by Bq(ϕ) and Hq(ϕ) the second fundamental
form and the mean curvature of Xϕ at the point q. They are given by the following
formulae.

Lemma 6.1. Let x = (y, z, r) ∈ Sn−k−1 × Sk × Iε, q = Φϕ(x) and (u, v, h) ∈ TxXε.
Then we have

nHq(ϕ) =
(
ϕ′2 + (1 + ϕ)2

)−3/2
[
−(1 + ϕ(r))ϕ′′(r) + (1 + ϕ(r))2 + 2ϕ′2(r)

]
+

(
ϕ′2 + (1 + ϕ)2

)−1/2

1 + ϕ(r)

[
−(n− k − 1)ϕ′(r) cot r + (n− 1)(1 + ϕ(r)) + kϕ′(r) tan r

]
|Bq(ϕ)| =

(1 + ϕ(r))−1(
1 + ( ϕ′(r)

1+ϕ(r))2
)1/2 max

(∣∣1− ϕ′

1 + ϕ
cot r

∣∣, ∣∣1 +
ϕ′

1 + ϕ
tan r

∣∣, ∣∣1 +
(ϕ′)2 − (1 + ϕ)ϕ′′

ϕ′2 + (1 + ϕ)2

∣∣)
To prove Theorem 1.4, we set a < π

10 and define the function ϕε on Iε by

ϕε(r) =


fε(r) = ε

∫ r
ε

1

dt√
t2(n−k−1) − 1

if ε 6 r 6 a+ ε,

uε(r) if r > a+ ε,

bε if r > 2a+ ε,

where bε is a constant and uε is chosen so that ϕε is smooth on (ε, π2 ] and strictly
concave on (ε, 2a + ε]. Since we have fε(x) → 0, f ′ε(x) → 0, f ′′ε (x) → 0 for any fixed
x ∈ (ε, a + ε], the concavity implies that bε → 0 as ε → 0 (hence bε can be chosen
less than 1

2), that ϕε → 0 uniformly on Iε and that ϕ′ε converges uniformly to 0 on
any compact subset of (ε, π2 ]. Moreover, uε can be chosen such that ϕ′′ε converges to 0
uniformly on any compact subset of (ε, π2 ].

On (ε, a+ ε], ϕε satisfies

ϕ′′ε = −(n− k − 1)(1 + ϕ′2ε )

r
ϕ′ε,(6.6)

ϕε(ε) = 0 and lim
t→ε

ϕ′ε(t) = +∞ = − lim
t→ε

ϕ′′ε(t). On (−bε, bε), we define ϕ̃ε by ϕ̃ε(t) =

ϕ−1
ε (|t|). Since ϕ̃ε satisfies the equation yy′′ = (n− k − 1)

(
1 + (y′)2

)
with initial data

ϕ̃ε(0) = ε and ϕ̃′ε(0) = 0, it is smooth at 0, hence on (−bε, bε).
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Now we consider the two applications Φϕε and Φ−ϕε defined as above, and we set

M+
ε = Xϕε , M

−
ε = X−ϕε and Mk

ε = M+
ε ∪M−ε . Mk

ε is a smooth submanifold of Rn+1

since the function Fε(p1, p2) = |p1|2 − |p|2 sin2
(
ϕ̃ε(|p| − 1)

)
, defined on

U = {p = (p1, p2) ∈ Rn−k ⊕ Rk+1/ p1 6= 0, p2 6= 0, −bε + 1 < |p| < bε + 1}

gives a smooth, local equation of Mk
ε at the neighborhood of M+

ε ∩M−ε that satisfies

∇Fε(p1, p2) = 2p1 cos2 ε− 2p2 sin2 ε 6= 0

on M+
ε ∩M−ε .

We denote respectively by Hε and Bε, the mean curvature and the second funda-
mental form of Mk

ε .

Theorem 6.2. ‖Hε‖∞ and ‖Bε‖n−k remain bounded whereas ‖Hε − 1‖1 → 0 and∥∥|X| − 1
∥∥
∞ → 0 when ε→ 0.

Remark 6.3. We have ‖Bε‖q →∞ when ε→ 0, for any q > n− k.

Proof. From the lemma 6.1 and the definition of ϕε, Hε and |Bε| converge uniformly
to 1 on any compact of Mk

ε \M+
ε ∩M−ε . On the neighborhood of M+

ε ∩M−ε , we have
n(Hε)x = nh±ε (r) and |nh±ε | 6 h±1,ε + h±2,ε + h±3,ε, where

h±2,ε(r) =
k| tan(r)|

1± ϕε
ϕ′ε

(ϕ′2ε + (1± ϕε)2)1/2
6

k

1− bε
tan

π

5

h±3,ε(r) =
1

(ϕ′2ε + (1± ϕε)2)1/2

(
n− 1 + +

2ϕ′2ε + (1± ϕε)2

ϕ′2ε + (1± ϕε)2

)
6
n+ 1

1− bε
and by differential Equation (6.6) we have

h±1,ε(r) =
∣∣∣(n− k − 1)

(ϕ′2ε + (1± ϕε)2)−1/2

1± ϕε
ϕ′ε cot(r) + (ϕ′2ε + (1± ϕε)2)−3/2(1± ϕε)ϕ′′ε

∣∣∣
6 (n− k − 1)

(ϕ′2ε + (1± ϕε)2)−1/2

1± ϕε
ϕ′ε

∣∣∣cot(r)− 1

r

∣∣∣
+
n− k − 1

r

∣∣∣(ϕ′2ε + (1± ϕε)2)−1/2

1± ϕε
ϕ′ε − (ϕ′2ε + (1± ϕε)2)−3/2(1± ϕε)(1 + ϕ′2ε )ϕ′ε

∣∣∣
6

n

1− bε

(1

r
− cot(r)

)
+
n
(
ϕ′2ε + (1± ϕε)2

)−3/2

r(1± ϕε)
ϕ′ε

∣∣∣ϕ′2ε + (1± ϕε)2 − (1± ϕε)2(1 + ϕ′2ε )
∣∣∣

6
n

1− bε

(1

r
− cot(r)

)
+
n

r
ϕε

2± ϕε
1± ϕε

ϕ′3ε
[ϕ′2ε + (1± ϕε)2]3/2

6
n

1− bε

(1

r
− cot(r)

)
+
ϕε
r
n

2 + bε
1− bε

Since
ϕε
r

=
ε

r

∫ r/ε

1

dt√
t2(n−k−1) − 1

6
ε

r

∫ r/ε

1

dt√
t2 − 1

and 1
x

∫ x
1

dt√
t2−1

∼+∞
lnx
x , we get

that h±1,ε is bounded on Mk
ε , hence Hε is bounded on Mε. By the Lebesgue theorem

we have ‖Hε − 1‖1 → 0.
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We now bound ‖Bε‖q with q = n− k. The volume element at the neighbourhood of
M+
ε ∩M−ε is

(6.7) dvgε = (1± ϕε)n(1 + (
ϕ′ε

1± ϕε
)2)1/2 sinn−k−1(r) cosk(r)dvn−k−1dvkdr

where dvn−k−1 and dvk are the canonical volume element of Sn−k−1 and Sk respectively.
By Lemma 6.1 and Equation (6.6), we have

|Bε|qdvgε =
1

(ϕ′2ε + (1± ϕε)2)
q
2

max
(∣∣1− ϕ′ε

1± ϕε
cot r

∣∣, ∣∣1 +
ϕ′ε

1± ϕε
tan r

∣∣,
∣∣1 +

ϕ′2ε + (n− k − 1)(1± ϕε)(1 + ϕ′2ε )ϕ′ε/r

ϕ′2ε + (1± ϕε)2

∣∣)]qdvgε
Noting that x√

1+x2
6 min(1, x), it is easy to see that, if we set hε = min(1, |ϕ′ε|)∣∣1− ϕ′ε

1±ϕε cot r
∣∣√

ϕ′2ε + (1± ϕε)2
6

1√
ϕ′2ε + (1± ϕε)2

+

ϕ′ε
1±ϕε√
ϕ′2ε

(1±ϕε)2 + 1

cot r

1± ϕε

6
1

1− ϕε
+

hε cot r

(1− ϕε)2
6 4

(
1 +

hε
r

)
Similarly for r ∈ [ε, π/5 + ε] and ε small enough, we have∣∣1 + ϕ′ε

1±ϕε tan r
∣∣√

ϕ′2ε + (1± ϕε)2
6 4(1 + hε tan r) 6 8(1 + hεr) 6 8

(
1 +

hε
r

)
And since ϕ′ε = 0 for r > π/5 + ε, this inequality is also true for r ∈ (ε, π/2]. Moreover

1√
ϕ′2ε + (1± ϕε)2

∣∣∣1 +
ϕ′2ε + (n− k − 1)(1± ϕε)(1 + ϕ′2ε )ϕ′ε/r

ϕ′2ε + (1± ϕε)2

∣∣∣
6

1

1± ϕε
+

ϕ′2ε
(ϕ′2ε + (1± ϕε)2)3/2

+
n

r

(1± ϕε)(1 + ϕ′2ε )

ϕ′2ε + (1± ϕε)2

|ϕ′ε|
(ϕ′2ε + (1± ϕε)2)1/2

6
2

1± ϕε
+

nhε
r(1− ϕε)

(1± ϕε)(1 + ϕ′2ε )

ϕ′2ε + (1± ϕε)2
6

2

1± ϕε
+ 2

nhε
r

(1 + ϕε)
2

(1− ϕε)2

6 2
(
2 + 9

nhε
r

)
It follows that

|Bε|qdvgε 6 C(n, k)
(
1 +

hε
r

)q
dvgε 6 C(n, k)(r + hε)

qr−1
(
1 +

ϕ′ε
1± ϕε

)
dvn−k−1dvkdr

6 C(n, k)r−1(r + hε)
q
(

1 +
1√

(r/ε)2(n−k−1) − 1

)
dvn−k−1dvkdr
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Now∫
Mk
ε

|Bε|qdvgε 6 C(n, k)
(∫ 2

1
2(n−k−1) ε

ε
r−1
(

1 +
1√

(r/ε)2(n−k−1) − 1

)
dr

+

∫ 2a+ε

2
1

2(n−k−1) ε
rn−k−1

(
1 +

1

r
√

(r/ε)2(n−k−1) − 1

)q
dr
)

6 C(n, k)
(∫ 2

1
2(n−k−1)

1
s−1
(

1 +
1√

s2(n−k−1) − 1

)
ds+

∫ 2a/ε+1

2
1

2(n−k−1)

sn−k−1
(
ε+

1

sq
)q
ds
)

Since ε
−1
q 6 2a

ε + 1 for ε small enough we have∫
Mk
ε

|Bε|qdvgε 6 C(n, k)
(

1 +

∫ ε
−1
q

2
1

2(n−k−1)

2sn−k−1

sq2
ds+

∫ 2a/ε+1

ε
−1
q

2sn−k−1εqds
)

6 C(n, k)
(
1 + εn−k−1

)
which remains bounded when ε→ 0. �

Since ϕε is constant outside a neighborhood of M+
ε ∩ M−ε (given by a), Mk

ε is
a smooth submanifold diffeomorphic to the sum of two spheres Sn along a (great)
subsphere Sk ⊂ Sn.

If we denote M̃k
ε one connected component of the points of Mk

ε corresponding to r 6 3a,
we get some pieces of hypersurfaces

that can be glued together along pieces of spheres of constant curvature to get a smooth
submanifold Mε, diffeomorphic to p spheres Sn glued each other along l subspheres Si,
and with curvature satisfying the bounds of Theorem 1.4 (when all the subspheres have
dimension 0) or of the remark before Theorem 1.3.

Since the surgeries are performed along subsets of capacity zero, the manifold con-
structed have a spectrum close to the spectrum of p disjoints spheres of radius close
to 1 (i.e. close to the spectrum of the standard Sn with all multiplicities multiplied
by p). More precisely, we set η ∈ [2ε, π20 ], and for any subsphere Si, we set Ni,η,ε the

tubular neighborhood of radius η of the submanifold S̃i = M+
ε,i ∩ M

−
ε,i in the local

parametrization of Mε given by the map Φϕε,i associated to the subsphere Si. We have
Mε = Ω1,η,ε∪· · ·∪Ωp,η,ε∪N1,η,ε∪· · ·∪Nl,η,ε where Ωi,η,ε are the connected component
of M \ ∪iNi,η,ε. The Ωi,η,ε are diffeomorphic to some Si,η (which does not depend on ε
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and η) open set of Sn which are complements of neighborhoods of subspheres of dimen-
sion less than n− 2 and radius η, endowed with metrics which converge in C1 topology
to standard metrics of curvature 1 on Si,η. Indeed, ϕε converge to 0 in topology C2

on [ri,±ε,η ,
π
2 ], where

∫ ri,±ε,η
ε

√
(1± ϕε,i)2 + (ϕ′ε,i)

2 = η since it converges in C1 topology on

any compact of [ε, π2 ] and since we have

η >
∫ ri,±ε,η

ε
(1− bi,ε) dt = (ri,±ε,η − ε)(1− bi,ε)

η 6
∫ ri,±ε,η

ε
(1 + bi,ε) dt+

∫ ri,±ε,η

ε

dt√
( tε)

2(n−k−1) − 1
= (ri,±ε,η − ε)(1 + bi,ε)

+ε

∫ +∞

1

dt√
t2(n−k−1) − 1

so r±ε,η → η when ε → 0. So the spectrum of ∪iΩi,η,ε ⊂ Mε for the Dirichlet problem
converges to the spectrum of qiSi,η ⊂ qiSn for the Dirichlet problem as ε tends to 0
(by the min-max principle). Since any subsphere of codimension at least 2 has zero
capacity in Sn, we have that the spectrum of qiSi,η ⊂ qiSn for the Dirichlet problem
converges to the spectrum of qiSn when η tends to 0 (see for instance [6] or adapt
what follows). Since the spectrum of qiSn is the spectrum of Sn with all multiplicities
multiplied by p, by diagonal extraction we infer the existence of two sequences (εm)
and (ηm) such that εm → 0, ηm → 0 and the spectrum of ∪iΩi,ηm,εm ⊂ Mεm for the
Dirichlet problem converges to the spectrum of Sn with all multiplicities multiplied by
p. Finally, note that λl(Mε) 6 λl(∪iΩi,2η,ε) for any l by the Dirichlet principle.

On the other hand, by using functions of the distance to the S̃i we can easily construct
on Mε a function ψε with value in [0, 1], support in ∪iΩi,η,ε, equal to 1 on ∪iΩi,2η,ε and
whose gradient satisfies |dψε|gε 6

2
η . It readily follows that

‖1− ψ2
ε‖1 + ‖dψε‖22 6 (1 +

4

η2
)
∑
i

VolNi,2η,ε

VolMε

To estimate
∑

i VolNi,2η,ε, note that Ni,2η,ε corresponds to the set of points with ri,± 6
ri,±ε,2η in the parametrization of Mε given by Φϕε,i at the neighborhood of S̃i, where, as

above, ri,±ε,2η is given by ∫ ri,±ε,2η

ε

√
(1± ϕε,i)2 + (ϕ′ε,i)

2 = 2η

hence satisfies 1
2(ri,±ε,2η − ε) 6 2η (since we have 1− ϕε,i > 1

2). By formula 6.7, we have

VolNi,2η,ε 6 C(n)

∫ r−η

ε
(1− ϕε,i)n−1

√
(1− ϕε,i)2 + (ϕ′ε,i)

2tn−k−1dt

+C(n)

∫ r+η

ε
(1 + ϕε,i)

n−1
√

(1 + ϕε,i)2 + (ϕ′ε,i)
2tn−k−1dt

6 C(n)(4η + ε)n−k−1η 6 C(n, k)ηn−k
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where we have used that ϕε,i 6 2 and 2ε 6 η. We then have

‖1− ψ2
ε‖1 + ‖dψε‖22 6 C(n, k, l, p)ηn−k

To end the proof of the fact that Mεm has a spectrum close to that of ∪iΩi,ηm,εm we
need the following proposition, whose proof is a classical Moser iteration (we use the
Simon and Michael Sobolev Inequality).

Proposition 6.4. For any q > n there exists a constant C(q, n) so that if (Mn, g) is
any Riemannian manifold isometrically immersed in Rn+1 and EN = 〈f0, · · · , fN 〉is
the space spanned by the eigenfunctions associated to λ0 6 · · · 6 λN , then for any
f ∈ EN we have

‖f‖∞ 6 C(q, n)
(

(vM )1/n(λ
1/2
N + ‖H‖q)

)γ
‖f‖2

where γ = 1
2
qn
q−n .

Since we already know that λσ(Mεm) 6 λσ(∪iΩi,ηm,εm) → λE(σ/p)(Sn) for any σ
when m→∞, we infer that for any N there exists m = m(N) large enough such that
on Mεm and for any f ∈ EN , we have (with q = 2n and since ‖H‖∞ 6 C(n))

‖f‖∞ 6 C(p,N, n)‖f‖2
By the previous estimates, if we set

Lεm : f ∈ EN 7→ ψεmf ∈ H1
0(∪iΩi,ηm,εm)

then we have

‖f‖22 > ‖Lεm(f)‖22 > ‖f‖22 − ‖f‖2∞‖1− ψ2
εm‖1 > ‖f‖

2
2

(
1− C(k, l, p,N, n)ηn−km

)
and

‖dLεm(f)‖22 =
1

VolMεm

∫
Mεm

|fdψεm + ψεmdf |2

6 (1 + h)‖df‖22 + (1 +
1

h
)

1

VolMεm

∫
Mεm

f2|dψεm |2

6 (1 + h)‖df‖22 + (1 +
1

h
)C(k, l, p,N, n)‖f‖22ηn−km

for any h > 0. We set h = η
n−k
2

m . For m = m(k, l, p,N, n) large enough, Lεm : EN →
H1

0(∪iΩi,ηm,εm) is injective and for any f ∈ EN , we have

‖dLεm(f)‖22
‖Lεm(f)‖22

6 (1 + C(k, l, p,N, n)η
n−k
2

m )
‖df‖22
‖f‖22

+ C(k, l, p,N, n)η
n−k
2

m

By the min-max principle, we infer that for any σ 6 N , we have

λσ(Mεm) 6 λσ(∪iΩi,ηm,εm) 6 (1 + C(k, l, p,N, n)η
n−k
2

m )λσ(Mεm) + C(k, l, p,N, n)η
n−k
2

m

Since λσ(∪iΩi,ηM ,εm) → λE(σ/p)(Sn), this gives that λσ(Mεm) → λE(σ/p)(Sn) for any
σ 6 N . By diagonal extraction we get the sequence of manifolds (Mj) of Theorem 1.4.

To construct the sequence of Theorem 1.5, we consider the sequence of embedded
submanifolds (Mj) of Theorem 1.4 for p = 2, k = n− 2 and l = 1. Each element of the

sequence admits a covering of degree d given by y 7→ yd in the local charts associated
to the maps Φ. We endow these covering with the pulled back metrics. Arguing as
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above, we get that the spectrum of the new sequence converge to the spectrum of two
disjoint copies of(

S1 × Sn−2 × [0,
π

2
], dr2 + d2 sin2 rgS1 + cos2 rgSn−2

)
.
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Appendix A. Proof of Lemma 6.1

Let (u, v, h) ∈ TxSε and put w = d(Φϕ)x(u, v, h) ∈ TqXϕ where Sε = Sn−k−1×Sk×Iε.
An easy computation shows that

w = (1 + ϕ(r))((sin r)u+ (cos r)v)

+ ϕ′(r)((sin r)y + (cos r)z)h+ (1 + ϕ(r))((cos r)y − (sin r)z)h(A.1)

We set

Ñq = −ϕ′(r)((cos r)y − (sin r)z) + (1 + ϕ(r))((sin r)y + (cos r)z)

and Nq =
Ñq

(ϕ′2 + (1 + ϕ)2)1/2
is a unit normal vector field on Xϕ. Then we have

Bq(ϕ)(w,w) =
〈
∇0
wN,w

〉
=
(
ϕ′2 + (1 + ϕ)2

)−1/2 〈∇0
wÑ , w

〉
=
(
ϕ′2 + (1 + ϕ)2

)−1/2
〈n+1∑
i=1

w(Ñ i)∂i, w
〉

(A.2)
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where (∂i)16i6n+1 is the canonical basis of Rn+1. A straightforward computation shows
that

n+1∑
i=1

w(Ñ i)∂i =− ϕ′(r)((cos r)u− (sin r)v) + (1 + ϕ(r))((sin r)u+ (cos r)v)

− ϕ′′(r)((cos r)y − (sin r)z)h+ 2ϕ′(r)((sin r)y + (cos r)z)h

+ (1 + ϕ(r))((cos r)y − (sin r)z)h

Reporting this in (A.2) and using (A.1) we get

Bq(ϕ)((u, v, h), (u, v, h)) =
1√

ϕ′2 + (1 + ϕ)2

[
−ϕ′(r)

(
1 + ϕ(r)

)
sin r cos r(|u|2 − |v|2)

+(1 + ϕ(r))2(sin2 r|u|2 + cos2 r|v|2)−
(
1 + ϕ(r)

)
ϕ′′(r)h2 + 2ϕ′2(r)h2 + (1 + ϕ(r))2h2

]
Now let (ui)16i6n−k−1 and (vi)16i6k be orthonormal bases of respectively Sn−k−1 at y
and Sk at z. We set g = Φ?

ϕcan and ξ = (0, 0, 1), then we have

g(ui, uj) = (1 + ϕ(r))2 sin2 rδij , g(vi, vj) = (1 + ϕ(r))2 cos2 rδij , g(ui, vj) = 0,

g(ξ, ξ) = ϕ′2 + (1 + ϕ)2, g(ui, ξ) = g(vj , ξ) = 0.

Now setting ũi = d(Φϕ)x(ui), ṽi = d(Φϕ)x(ui) and ξ̃ = d(Φϕ)x(ξ), the relation above
allows us to compute the trace and norm

|Bq(ϕ)| = max
(

max
i

|Bq(ϕ)(ũi, ũi)|
g(ui, ui)

,max
j

|Bq(ϕ)(ṽj , ṽj)|
g(vj , vj)

,
|Bq(ϕ)(ξ̃, ξ̃)|
g(ξ, ξ)

)
=

1√
ϕ′2 + (1 + ϕ)2

max
(∣∣1− ϕ′

1+ϕ
cot r

∣∣, ∣∣1 +
ϕ′

1+ϕ
tan r

∣∣, ∣∣1+
(ϕ′)2 − (1 + ϕ)ϕ′′

ϕ′2 + (1 + ϕ)2

∣∣)
of the second fundamental form.
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