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ABSTRACT. In this paper, we prove that Euclidean hypersurfaces with almost ex-
tremal extrinsic radius or A1 have a spectrum that asymptotically contains the spec-
trum of the extremal sphere in the Reilly or Hasanis-Koutroufiotis Inequalities. We
also consider almost extremal hypersurfaces which satisfy a supplementary bound
on vu||B|ln and show that their spectral and topological properties depends on the
position of o with respect to the critical value dim M.

1. INTRODUCTION

Throughout the paper, X: M™ — R"*! is a closed, connected, immersed Euclidean
hypersurface (with n > 2). We set vy its volume, B its second fundamental form,
H = %trB its mean curvature, rjs its extrinsic radius (i.e. the least radius of the
Euclidean balls containing M), (/\fw )ien the non-decreasing sequence of its eigenvalues
labelled with multiplicities and X := i Jor Xdv its center of mass. For any function

f:M =R, weset [|[f|2 = ﬁ fM | f|*dv.

The Hasanis-Koutroufiotis inequality asserts that
(1.1) ru|[Hl[2 > 1,

with equality if and only if M is the Euclidean sphere Sy; with center X and radius
1

H]l2
The Reilly inequality asserts that

(1.2) A< nl|H3,

once again with equality if and only if M is the sphere Sy, (we give some short proof
of these inequalities in section 2).

Our aim is to study the spectral properties of the hypersurfaces that are almost
extremal for each of this Inequalities. The results of this paper are used in [3] to study
the metric shape of the almost extremal hypersurfaces.

We set ,ufM = k(n+k—1)||H||2 the k-th eigenvalue of Sy, (labelled without multi-
plicities) and my its multiplicity. Throughout the paper we shall adopt the notation
that 7(g|n,---) is a positive function which depends only on the variables e, n, - -+ and
which converges to zero with € when n,--- are fixed.
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Theorem 1.1. There exists a function T(g|n) such that for any immersed hypersurface
2

M — R with rpf||H|l2 < 1+ ¢ (or with n!\?/flb < 1+¢) and for any k < ﬁ the

interval [(1—7‘(5|n))ufM, (1+7’(5|n)),u£M] contains at least my, eigenvalues of M counted

with multiplicities.

Note that by Theorem 1.1, almost extremal hypersurfaces for the Reilly inequality
must have at least n + 1 eigenvalues close to A;™ = n||H||2. However, they can have
the topology of any immersed hypersurface of R"*! (see below) and can be as close as
possible in Hausdorff distance of any closed, connected subset of R"*! containing Sys
(see [3]). This is very different from the almost extremal manifolds for the Lichnerowicz
Inequality in positive Ricci curvature (see for instance [1]).

The proof of Theorem 1.1 is based on estimates for the restrictions to M of ho-
mogeneous, harmonic polynomials of the ambient space R"*!. Such a polynomial of
degree k satisfies the equality ASM P = n||H||3dP(X) + ||[H|3DdP(X,X) = MSMP
on Sy whereas it satisfies AM P = nHdP(v) + D%dP(v,v) on M, where DdP is the
Euclidean Hessian and v a local unit, normal vector to M. We prove that on almost
extremal hypersurfaces, the quantities v — HX and |H| — ||H||2 are small in L?-norms,
which can be used to get the following estimates (see Lemmas 5.3 and 5.1)

(1.3) lPlIZ2(ar) — 10PI72(5,)| < T(eln ) 9P| L2(50095
(1.4) HAMWD - MfMSDPHB(M) < 7(eln, k)H(PPHL2(M)a
where ¢ is a cut function localized near Sjp; from which we easily infer Theorem 1.1.

Note that these estimates are not so easy to derive since there is no known good local
control of the measure on M involving only the L?-norm of the mean curvature.

Theorem 1.1 gives no information on the part of the spectrum of almost extremal
hypersurfaces that is not close to the spectrum of the limit sphere Sp;. Our next result
shows that there is essentially no constraint on this part of the spectrum (in dimension
larger than 2), even if we assume a supplementary bound on ||B||, for p < n.

Theorem 1.2. Let M, My — R be two immersed compact submanifolds of di-
mension m = 3, Mi#Ms be their connected sum and F be any closed subset of
10, +00[\Sp(M1) (for the induced topology). Then there exists a sequence of immer-
sions iy : My#My — R with induced metric g, on Mi#Ms such that

1) ip(M1#Ms) converges to My in Hausdorff topology,
2) the curvatures of gy satisfy

i, i,
H|* — H|* for any o € [1,m),
VOlgk Ml#M2| ‘ VOlMl M1| | [ )
1

|B|* for any a € [1,m),

i),
B|* —
VOlgk M # Mo | ‘ Vol M1 M

3) the limit spectrum NgenUi=kSp(g;) is equal to F'U Sp(My),
4) Vol (gx) — Vol M.

To get almost extremal submanifolds from the previous result, we just have to con-
sider the case where M; = S"™ (and F' C [n,+oo[ in the Reilly case). It gives almost
extremal hypersurfaces for the Reilly or Hasanis-Koutroufiotis Inequalities with the
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topology of any immersible Euclidean hypersurface, a spectrum arbitrarily close of any
closed set containing Sp(S") (and contained in [n, +oo[ in the Reilly case), even if we
assume a bound on vy ||B||2 for any a < n.

On the other hand, if we assume a bound on [|B||, with a > n, we prove in [3]
that the almost extremal hypersrfaces converge to Sp; in Hausdorff distance, which
combined with the C1# pre-compactness theorem of [8] (or a Moser iteration as in the
previous version of this paper [2]) imply the following stability in Lipschitz distance.

Proposition 1.3. Let n < a < co. Any immersed hypersurface M — R with
2

o ||BIE < A and ry||H|l2 < 1+ ¢ (or with vy |B||2 < A and %Hl"? < 1l4¢)is

diffeomorphic to Sy and satisfies dr, (M, Syr) < 7(eln,a, A). In particular, we have

IAM — )\21”] < 7(elk,n, o, A) for any k € N.

The critical case, where we assume an upper bound on vy/||B||}; will be developed
in a forthcoming paper. However, we construct in the present paper some examples of
almost extremal hypersurfaces satisfying such a bound as a preliminary. First of all,
considering the constructions of Theorem 1.2 in the case @ = m, we get a sequence of
extremizing hypersurfaces for the two inequalities, with the topology of any immersible
hypersurface, with vy || B||} bounded and whose limit spectrum is equal to Sp(Sy)UF,
where F' is any fixed, finite subset of R\ Sp(Sas) (see section 6.1). Note however that
the bound on vy/||B||7 for this sequence depends on the topology of the extremal
hypersurfaces and on the subset F.

In section 6.2, we construct almost extremal hypersurfaces for the Hasanis-Koutroufiotis
inequality, not diffeomorphic to Sjs, not Gromov-Hausdorff close to Sps, with limit
spectrum larger than the spectrum of S" and with ||H||oc bounded. We set E(x) the
integral part of x.

Example 1.4. For any couple (I,p) of integers there exists a sequence of embedded
hypersurfaces M; — R diffeomorphic to p spheres S™ glued by connected sum along
I points, such that |Hj||, < C(n), |[H|2 = 1, ||Bj|,, < C(n), H|XJ| — 1HOO — 0,
H|H]| — 1”1 — 0, and for any o € N we have )\yj — )\SEn(%). In particular, the M; have

at least p eigenvalues close to O whereas its extrinsic radius is close to 1.

Example 1.5. There exists sequence of immersed hypersurfaces M; — R+ diffeo-
morphic to 2 spheres S™ glued by connected sum along 1 great subsphere S"~2, such
that ||Hjll < C(n), Hjll2 = 1, [B;lly < C(n), [[1X;] = 1|, — 0, [[[H;] = 1[[; — 0,

n

and for any o € N we have )xi\,/[j — /\%(’;), where S™® is the sphere S™ endowed with
2

the singular metric, pulled-back of the canonical metric of S™ by the map « : (y, z,7) €
St xS"2 % [0, 3]+ (y4, 2,r) € St x S"2 x [0, Z], where S' x S""2 x [0, Z] is identified
with S* C R* x R"™! via the map ®(y, z,r) = ((sinr)y, (cosr)z). Note that S has

infinitely many eigenvalues that are not eigenvalues of S™.

The structure of the paper is as follows: after a preliminary section 2, where we
give short proofs of the Reilly and Hasanis-Koutroufiotis inequalities, we prove some
concentration properties for the volume, mean curvature and position vector X of
almost extremal hypersurfaces in Section 3. Section 4 is devoted to estimates on the
restriction on hypersurfaces of the homogeneous, harmonic polynomials of R**!. These



4 E. AUBRY, J.-F. GROSJEAN

estimates are used in Section 5 to prove Theorem 1.1. We end the paper in section 6
by the constructions of Theorem 1.2 and of Examples 1.4 and 1.5.

Throughout the paper we adopt the notation that C(n,k,p,---) is function greater
than 1 which depends on p, ¢, n, ---. It eases the exposition to disregard the explicit
nature of these functions. The convenience of this notation is that even though C' might
change from line to line in a calculation it still maintains these basic features.

Acknowledgments: Part of this work was done while E.A was invited at the MSI, ANU
Canberra, funded by the PICS-CNRS Progress in Geometric Analysis and Applications.
E.A. thanks P.Delanoe, J.Clutterbuck and J.X. Wang for giving him this opportunity.

2. SOME GEOMETRIC OPTIMAL INEQUALITIES

Any function F on R"*! gives rise to a function F o X on M which, for more
convenience, will be also denoted F' subsequently. An easy computation gives the
formula

(2.1) AF = nHdF (v) + A°F + VdF (v,v),

where v denotes a local normal vector field of M in R*™!, VY is the Euclidean con-
nection, A denotes the Laplace operator of (M, g) and A° is the Laplace operator of
R™*1. This formula is fundamental to control the geometry of a hypersurface by its
mean curvature. Applied to F(z) = (z,x), where (-,-) is the canonical product on
R™*! Formula 2.1 gives the Hsiung formulae,

1
(2.2) iA]X\Q =nH (v, X) —n, / H(v, X)dv = vy
M

2.1. A rough geometrical bound. The integrated Hsiung formula (2.2) and the
Cauchy-Schwarz inequality give the following

H(v, X)dv —
(2.3) 1 :/ B 20 mpy | x - X,
M UM
This inequality [|[H||2[|X — X||2 > 1 is optimal since M satisfies ||H|[2|| X — X||, = 1 if
and only if M is a sphere of radius m and center X. Indeed, in this case X — X and

v are collinear on M \ {H = 0}, hence |X — X|? is locally constant on M \ {H = 0}.
This implies that {H =0} = @_and that X is an isometric-cover of M on the sphere S
of center X and radius || X — X2 = m, hence an isometry.

2.2. Hasanis-Koutroufiotis inequality on extrinsic radius. We set R the ex-
trinsic Radius of M, i.e. the least radius of the balls of R"*! which contain M. Then
Inequality (2.3) gives [Hyrar = [[H | infyeqn s | X—uloo > [Hllz infy e | X —ulls =
IIH[]2]| X — X||2 > 1 and rp = m if and only if we have equality in (2.3).

2.3. Reilly inequality on AM. Since we have i [ (Xi — X;)dv = 0 for any com-
ponent function of X — X, by the min-max principle and Inequality (2.3), we have
M < MIX = X5 = N2 X = Xl < X5 1VXGlJ3 = n where A} is the
first non-zero eigenvalue of M and where the last equality comes from the fact that
>, IVX;|? is the trace of the quadratic form Q(u) = |p(u)|? with respect to the canon-
ical scalar product, where p is the orthogonal projector from R™*! to T, M. This gives

the Reilly inequality (1.2).
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Here also, equality in the Reilly inequality gives equality in 2.3 and so it characterizes
the sphere of radius HHle = [| X2 = \//\%
1

3. CONCENTRATION ESTIMATES

We say that M satisfies the pinching P, . when [|H|,||X — X||2 < 1 +&. From the
proofs of Inequalities (1.1) and (1.2) above, it appears that pinchings rps||[Hlls <1+ ¢
or n||H||3/A1 < 1+ ¢ imply the pinching Pa_.

From now on, we assume, without loss of generality, that X = 0. Let X7 (x) denote
the orthogonal projection of X (z) on the tangent space T, M.

Lemma 3.1. If (Py.) holds, then we have || XT||2 < V3e||X|]2 and || X — ‘HHQVHQ <
A 36||X||2

Proof. Since we have 1 = fM (X, v)ydv < |H||2]|(X, v) ]2, Inequality (P>.) gives us
1X12 < (AA)IX, )12 and 1 < [Hl[2[| X[z < 1+e. Hence || X — (X, v)vl; < v3e || X,

and || X — X113 = [1H]13* < 3¢ [|X 3.

1—

s )-

Lemma 3.2. If (P,.) (forp > 2), or nHHH 2N <14 e, or ry||H|l2 < 1+ ¢ holds
(with < < 7). then we have X1 = il < i V5, 1] = 1K all < CEIH]L
and Vol (M '\ Agz) < C{/evn, where C' =6 X 9527 in the case (Ppe) and C =100 in

the other cases.

Proof. When (P, ) holds, we have

HHII2 5=

We set A, = Bo( 1;7 )\ Bol

1—-2 2
[Hlp X1z < (L +e) < (L+e)[Hllp [ X2y < (T +e)|[H[lp[1 X, " 1X])3,

||X||1 1 2
||X||2 2 + < 2p-2 IIHH2€ Combined with the

hence we get ||| X| — Hl2 " JHIZ

1
1H]]2 H2
second inequality of Lemma 3.1, it glves

[H]
1] = ]2, < [HIE]1X] - HHH%HQ + [[H3][1X] ”H” l,< CVelH],

Now, by the Chebyshev inequality and Lemma 3.1, we get

Vol(M\A%)zvol{xeM/UX(a; %}

HHH = [[H]]2
HH||2/
1 X| = 1= p)Veun
| ||HH <
When 7p/||H||y < 14 € holds. We set Xy the center of the circumsphere to M of
radius 7p7. We have || X — Xolj3 = || X3 + | Xo? = 73, < % and then we have
2
4
[ Xo| < il and [X] < [Xo| +rar < §EE. So we have (m — |X[? € [, pap;] on
M\ Ayz. Chebyshev inequality and (2.3) give us
VIO A Ve 1 f e L e 10V
UM 3 var Jana, [HI3 " on Junay, [EEAEE
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< 14346

where in the last inequality we have used |X| < I and, so we get
1 02 1 1
Xl - = = X] - X| - e
1= 0 = e, = T 5 S, 1
¢E+WMM\A%)1 mJ*
T UM [

H| o CVE
TH]13 l2 <

When n|H||3/A7 < 1+ £ holds, we have [, (|X|? — [|X||3)dv = 0 and so by the

Combined with the second inequality of Lemma 3.1, we get || HHlHQ -

Poincare inequality we get ||| X]? — HXH2H§ < 4“?1;”% S 12(17%—:\1“)(”% 2||0P(I]ﬁ3’ which
gives mm)ﬂ ||HH2H2 [1X1% = ||H||2H2 12 = IX13]], + 1013 — ||H||2} S ﬁ%ﬁ

and then we get the estimate on the volume of A iz by the same Chebyshev procedure
as for P,. and the estimate on the mean curvature by the same procedure as for
TMHHH2§1—|-€ O

Let 1:[0,00) — [0, 1] be a smooth function with =0 outside [(1_”21;”\645)2, (1+”2Hl”{3§g)2]
2 2
_ (1-We)? (1+ 'Ve)?
and =1 on [z, S
o(z) = (] X;|?) and the vector field Z on M defined by Z = v — HX. The previous
estimates then imply the following.

Let us consider the function ¢ on M defined by

Lemma 3.3. (P,.) (for p > 2) or n||H||3/M\1 < 1+ ¢ or ry||H|l2 < 1 + & implies

lp? (12 — [H3)]l < CYEIHIZ. [lpZll2 < Ce32 and || @]} — 1] < OV, where C is a
constant which depends on p in the case (Ppe).

Proof. We have [|g2(H2 — [H|2)|1 < || — [Hl-2],2/H]l2 < C-¥2|H]3 and
1 1

loZ|3 =1 / 2o = - / S(1— 2H{v, X) + H[X|?)do
UM JMm U™ JMm

_ I / Ax - B o L / (I — H2)2(1 — | X PIH|)do
ont s B 2o Jue

2 (172 2
2 l*(H — [H]B)]],
<[HIGX = v, +8 Ve :
TR [
Vol (M\ A Vol (A g, -NM
which gives the result by Lemma 3.1. Finally, we have 1 — oL 0N y) <= (4 g=nM)

~X

VM VM

<
ll3 and [j¢]l3 < 1 O

4. HOMOGENEOUS, HARMONIC POLYNOMIALS OF DEGREE k

In this section, we give some estimates on harmonic homogeneous polynomials re-
stricted to almost extremal hypersurfaces. They will be used subsequently to derive
our result on the spectrum and on the volume of almost extremal manifolds. Let us
begin by general estimates on harmonic, homogeneous polynomials.
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4.1. General estimates. Let #*(R™*!) be the space of homogeneous, harmonic poly-
nomials of degree k on R™*!. Note that H*(R"*!) induces on S™ the spaces of eigen-
functions of AS" associated to the eigenvalues py := k(n 4+ k — 1) with multiplicity
— <n+k—1> n+2k—1

b k n+k—1"

On the space H*(R"1), we set (P, Q)gn = W fS” PQdvcan , where dveq, denotes
the element volume of the sphere with its standard metric.

Remind that for any P € H*¥(R"*!) and any Y € R™"!, we have dP(X) = kP(X)
and V%dP(X,Y) = (k — 1)dP(Y).

Lemma 4.1. For any x € R™! and P € HF(R™Y), we have |P(z)|? < || P2 mu|=|?k.

Proof. Let (P;)1<i<m, be an orthonormal basis of H¥(R"*1). For any x € S*, Q,(P) =
P?(z) is a quadratic form on H*(R"*1) whose trace is given by >_/** P?(x). Since for
any 2’ € S” and any O € Op41 such that 2’ = Ox we have Q,/(P) = Q4 (PoO) and since
P+ PoOQ is an isometry of H*(R"*1), we have Y "% P2(x) = tr (Q,) = S_it% P2(z)) =
tr (Q). We infer that > 1" e [sn P2(2)dv = mi = voige Jon (i P2(2)) dv and
so Y. P2(z) = my. By homogeneity of the P; we get

mg
(4.1) > Pi(x) = mylaf,
=1

and by the Cauchy-Schwarz inequality applied to P(z) =) _.(P, P;)s» Pi(x), we get the
result. O

As an immediate consequence, we have the following lemma.

Lemma 4.2. For any x,u € R"*! and P € HF*(R"*1), we have
o P()]? < [P (B Pl (B — ) f, 2262,
n n
Proof. Let x € S™ and u € S™ so that (u,z) = 0. Once again the quadratic forms
Qzu(P) = (de(u))2 are conjugate (since O,y1 acts transitively on orthonormal
my
couples) and so z:(dgcl’%(u))2 does not depend on u € z1 nor on x € S”. By choosing

i=1
an orthonormal basis (u)1<j<n of 2, we obtain that

mp 9 1 mE n 9 1 mp N
S (P = 1SS (daPw)) = e [ SR
=1 =1 j=1 =1

1 / gk: s Mg b,
= PAS" P, =
nVolS" Jgn pa n
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Now suppose that « € R**!. Then u = v + (u, z)z, where v = u — (u, )z, and we have

mg mg

S (@Piw)? = 3 (duP(v) + k{u, 2 ()
=1 =1
_ Z(dxpi(v))Q + 2k (u, z) dePi(v)Pi(x) + my(u, )2k
=1 =1
B %\W + my(u, 2) k% = my, <%|u,2 T (kQ - %) <u’x>2) ’

my,
where we have taken the derivative the equality (4.1) to compute ZdeZ(v)PZ(:c) By
i=1

my

homogeneity of P; we get Z(dzPi(u))Q = my (%\x!mk*l) Ju?+(k*— B2 ) (u, x>2\x]2(k*2))
i=1

and conclude once again by the Cauchy-Schwarz inequality. O

Lemma 4.3. For any x € R"! and P € HF(R™1), we have
VOdP(@)* < || Pllgampcrn k|2 **2),

where a g = (k — 1)(k* + ux) (n + 2k — 3) < C(n)k*.

Proof. The Bochner equality gives

mi mi 1
> IV0dP(z))? =) ((dAOR-,dB) - 2A0\dPi\2>
=1 =1
1 _ _
(4.2) = =g (K + ) A% X P72 = g | X4
O

4.2. Estimates on hypersurfaces. Let H*(M) = {Po X , P € HF¥R")} be
the space of functions induced on M by H¥(R"*!). We will identify P and P o X
subsequently. There is no ambiguity since we have

Lemma 4.4. Let M™ be a compact manifold immersed by X in R"* and let (Py, ..., Py,)
be a linearly independent set of homogeneous polynomials of degree k on R*™1. Then
the set (P1o X, ..., Py 0X) is also linearly independent.

Proof. Any homogeneous polynomial P which is zero on M is zero on the cone R*-M.
Since M is compact there exists a point € M so that X, ¢ T,M and so RT-M has
non empty interior. Hence P o X = 0 implies P = 0. U

We now compare the L?-norm of P on M with L?>-norm of P on the sphere Sy; =
AeS”. We still denote 1) : [0,00) — [0,1] a smooth function which is 0 outside

[[H]2

(1= (14n)%7 - (1-n/2)> (14n/2) - 1« AIHI3
[ TERNIE ], is 1 on [ R HE | and satisfies the upper bounds |¢/| < ;
and [¢"] < 8”;{2”2. We set p(x) = (| X,|?) on M.

Lemma 4.5. With the above restrictions on 1 we have

192|/H||3 16n|/H||3
At < P2 g 4 2000 o



Proof. An easy computation yields that
A(p?) = =) (X)X + () (1 X °)AlX [

= —4(*)"(IXP)| X[ = 20(0?) (IX[) (v, Z)

But the bound on the derivatives of 1 gives us |(¢?)'| < g

192||H||4 16n|/H||2
Hence we get |Ap?||; < %HXTH% + %H‘PZHL [

Lemma 4.6. Let ¢ : M — [0,1] be as above. There ezists a constant C = C(n) such
that for any isometrically immersed hypersurface M of R"*1 and any P € H¥(M), we

k
have [[HIBIPI3 — I1PI3.] < (1= llpl3 + DO() STy ma(1 + ) ) I1PY2., where

200]|H||3 2(H2—|/H]|3
D = |lpZll2 + e 23 + Z5FRIX I + S2llpZll + It

Proof. For any P € H*(M) we have

loVOPII3 = llpdP@)|3 + lledPl3

= ||pdP(Z)|5 + K*||HP||3 + :M /M(2I<:HdP(ng)<pP + @?PAP — ]DZA?“DZ))du
Now, Formula (2.1) applied to P € H*(R"*1) gives
(4.3) AP = uH?P + (n + 2k — 2)HdP(Z) + V°dP(Z, Z)
hence, we get
leVOP3 =[dP(pZ)|5 + (1 + k) [HePll3
+ UL /M(¢2PV0dP(Z, Z) + (n+ 4k — 2)oHdP(¢Z)P — PzAQ(SOz))dU

1
= / ((,U«k + k) (H? — |H|3)*P? + (n + 4k — 2)HdP(<pZ)goP> dv
VM M

1 P2A(p?
+ L[ (pvoappz,pz) - TAY g,
UM Jm 2

+ (ue + K2 [HI3 0PI + ldP(02)]13

Now we have

(14) I90P|3, = ||V P, + B 1P = G+ K 1 PI,

Hence

IH2E 2o VOPI3 — [ VOP|2, = i+ k) (IHIZ 0PI~ | PIIZ.) + 2P (0 2)|3
L H% 2/ o p(( +k2)(H2—||H||§)P+H(n+4k—2)dp(2)+v0dP(Z,Z))du

”HHQk 2/ PQA
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Which gives
(4.5)

2
\HHH%’“HwPH% ~11PI.

[IHI3=2 VPl — | VP[5,

+k2
[H]5" 2 0 )
ot [ ((n+ 4k~ DIHIGIPIIP(oZ)| +dP(o2)F + PV Pl 2P
2k 2 2 2
P2|A
M
By Lemma 4.1 we have
H Qk 2 P . ||H 2k 2
H2_ H 2
S mk(1+n)gm< 112 )l
I[H]15
In the same way, we have
!HH% ? PQ\A 1A
S HPHén mk(1+n)QkW
2

and using Lemma 4.2, we get

H Qk 2 k P N H 2k‘ 2
UM M UM M
< HPllén mik(1+ 0™ |02
and
HHHZ’“ 2 B H% 2
/ 1dP(p2)2 < || P||Zumk? 2 / 02| X 2D

< || P|g mik*(1 +77)2k\|<PZ||2
Finally, using Lemma 4.3, we get
||H”2k 2 ‘ 2k 2 .
[ PN a2z < P e [ XPOD oz do

<Pl mk\/an,k(l + 77)%!!902\\2
which, combined with (4.5) and equation (4.4), gives

2k—2 2
HIZ I oPIZ — P12 | [IHIB21e9°PI3 — [90P]3,
12113 b IVOP3.
A2 2(H2 — ||H|I12
+ (1 + ) (o2l + o 21 + 1ol + ol
2 2

B ol
[Pz,

+ C(n)ymy,(1+n)*D

\



11
In particular for k = 1, we have |V?P| constant equal to (1 + n)| P||2. and so
2 2
[IHIZIePI3 = I1Plls«| < (1= llell3 + C(n)mi(L +n)?D) || Pls,
H||3*||oP|13—||P||2n
Now, let B = sup{ WP EIPtEs
VOP € HFL(R™1) and (4.4), we get

| P e MR\ {0}}. Then using that

k
By < By + C(n)my(1+ 1) D < 1= |lgll3 + C(n)D D mi(1 +n)*
=1

5. PROOF OF THEOREM 1.1

Under the assumption of Theorem 1.1 we can use Lemmas 3.1 and 3.3 to improve
the estimate in Lemma 4.6 in the case n = 2 J/e.

Lemma 5.1. For any isometrically immersed hypersurface M — R™ 1 with 7y ||H||2 <
L+e (or M(1+¢)% = n|H|2 or (Py:) for p>2) and for any P € H*(M), we have

I |0 P3 = |1 PlIga] < C % [Pl
where C = C(n, k) in the first two cases and C = C(p, k,n) in the latter case.
As a consequence, the map P — P is injective on H¥(M) for £ small enough.

Lemma 5.2. Under the assumption of Lemma 5.1, if ¢ < W then dim(eH*(M)) =
my.

Lemma 5.1 allows us to prove the following estimate on AP.

Lemma 5.3. Under the assumptions of Lemma 5.1, if ¢ < (20)32, then for any P €

HE (M), we have ||A(pP) — SM(pPHQ < 1\%MgMH<pPHg where C = C(n,k) (C =
C(n, k,p) under the pinching (P,¢)).

Proof. Let P € H*(M). Using (2.1) we have
A(pP) =PAyp — 2(dP,dyp) + pAP = PA@ — 2(dP,dyp) + onHdP(v) + ¢V dP(v,v)

H
=PAp — 2(dP, dy) + o H|||H||2P + p(n + k — 1)@

7 = )P () + oV aP(v. 2)

[H]|2dP(Z)
+o(n+k—1)

hence, we get

IA(eP) — il |H[30Pll2 < [[(Ap) P2 + 2[| (dy, dP) [|2 + || (|H| = | H[|2) @ Pl H]|2
(5.1)
+ (n4+k=1)[H|2[|¢|dP|| Z]||2 + (n+k—=1)||e([H| — |[H[|2)dP(¥)]|, + lle|V° dP|| Z||2
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Let us estimate ||(Ag)P||2.

1
I(A)Pllz < — / A" (XX + 2]y (X 2)]|Z])? P2dv
M JM

mg 2
< T ([ XPE (X PIXT + 20l (X Z) do) 1P,
mi (1+2 /)% 8|1 H]I3 2| H]I3 >
<m0 (CRXTE  m2 Z)) ) 1P,
M H H2 16, \/g f
1+23/e)2 128 H |13 Hll3
< %( + \2/5) (/ L| H2‘XT|4 +32n2 ” - ||2|Z]2dv> HPH§”
UM 1513 Ay g Ve Ve
Since we have |XT| < |X| and since Lemma 3.3 is valid with ||¢Z]|3 replaced by

T fA 16 |Z|?, we get

2
o HIEF Ja,. VE Ve

2

From the lemma 5.1, € < (20)32 implies that

(5.2) I1PlI5. < 2(H I3 lo P13

which gives

(5.3) 1(AQ)P3 < C(n. k)uxl| H 13 VellpPl3
Now

16]|H||4
I (o, dP) I < 4l (X P)xT 1P| 3 < 251l [ ixtpiappa

Wevn 216z
16||H
< : H ||2 HPHSTL/ ’XT|2mknk2’X’2(kfl)dv
\/>,U 21%
(5.4) < Cln, k), WelHI3™F P[5, < Cln, k)[IH]I3 Ve 0P
By the same way, we get
(5.5) leldP|Z|[3 < C(n, k)i |HIIZ Vel o Pll3

Now, by Lemma 3.2, we have

my
I(H] = [H]2)e Pl < HPllén/ [[H | = || H||2[*| X[* o dv

C( ) >
< 1Pl e (| H| = [[H|l2)]
ET ’
(5.6) < C(n, k) HI3 VelloPl3

By the same way, we get

(5.7) le(H| = [H]2)dP@)|3 < C(n, k) Vel HI ]l PlI3
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Now let us estimate the last terms of (5.1)
C(”a k)Mk 2 -
lelVoaP|| 2|3 < ——"— ||P!|Sn/ P IX [P 2P dw
UM M

(5.8) < Cn, k)l Hlz VellePl3
Reporting (5.3), (5.4), (5.5), (5.6), (5.7) and (5.8) in (5.1) we get

IA(PP) — | H|30Pl2 < C(n, k) ¥epxl| H 3]0 Pll2
O

Let Ef be the space spanned by the eigenfunctions of M associated to an eigenvalue
in the interval [(1 — /22C(n, k)ug™, (1 + ¥22C(k,n))up™]. If dim Ef < my, then
there exists P € (¢HF(M)) \ {0} which is L*orthogonal to EY. Let P = Zfz

(3
be the decomposition of P in the Hilbert basis given by the eigenfunctions f; of M
associated respectively to A;. Putting N := {i/ f; ¢ E}}, by assumption on P we have

2
AC(n, k)2 P llePll3 < Y (N = ) (1£ill3 = [1A(eP) — M o Pl
1EN

< (u™)*Cn, k)* Vel Pl

which gives a contradiction. We then have dim Ej > my.

6. SOME EXAMPLES

6.1. Proof of Theorem 1.2. We adapt the constructions made in [4, 12, 3]. We first
consider submanifolds obtained by connected sum of a small submanifold e My with a
fixed submanifold M; along a small, adequately pinched cylinder 77 (this is actually
a 2 scales collapsing sequence of submanifolds). It gives Theorem 1.2 in the case where
F' is a singleton.

In the case where F' is finite, it will suffice to iterate the construction (i.e. to glue
several such cylinders) to add any finite set of eigenvalues to the spectrum of Mj. Since
for a general F', F'\ Sp(M) is the Hausdorff limit of a sequence of finite sets, we get
Theorem 1.2 in the general case by a diagonal procedure.

6.1.1. Flattening of submanifolds. For any submanifold M of R""! we set M¢ a sub-
manifold of R"*! obtained by smooth deformation of M at the neighbourhood of a
point zo € M such that B,,(4¢) is flat in M€ and M¢ \ By, (10¢) is a subset of M. We
also set M® = M¢\ B,,(3¢), whose boundary has a neighbourhood isometric to the
flat annulus By(4e) \ Bo(3¢) in R™.

We describe precisely how to construct such a flattening M€ in [3] so that it also
satisfies the following curvature estimates for any o > 1.

lim ]HEIde:lim/ |Ha|adv:/ [H|“dv
e—0 Mg e—0 Me M

lim |Be|“dv = lim/ ]Beladv—/ IB|“dv
e—0 Mg e—0 Me M

Note also that by construction, any function on M can be seen as a function on Me
and this identification of H!(M) with H!(M?) tends to an isometry as ¢ tends to 0.
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6.1.2. Control of the curvature of the gluing. Let M7, M3 be 2 manifolds of dimension m
isometrically immersed in R"*! and A, L be some fixed, positive real numbers, with \ ¢

Sp(M;) and L > max(%w, 1), where d is the distance between A and Sp(M) in

R. We consider the flattenings M§ of My around the point x9 and M7 of M; around z;.
Let D be a smooth hypersurface of revolution of R™*!, composed of three parts, Dy,
Dy, D3, where D; is a cylinder of revolution isometric to By(3) \ Bo(2) € R™*! at the
neighbourhood of one of its boundary component and isometric to [0,1] x S™~! at the
neighbourhood of its other boundary component, where Dy = [0, L] x S™~! and where
Ds is a disc of revolution with pole x3 and isometric to [0,1] x S™~! at its boundary
and to a flat disc at the neighbourhood of z3. Let C be a cylinder of revolution of
dimension m isometric to By(2) \ Bo(1) C R™ at the neighbourhood of its 2 boundary
components.

There exists vy > 0 such that for any v €]0, [ the gluing of M; \ B,,(2v), of vC
and of D\ By, (2v) along their isometric boundary components is a smoothly immersed
submanifold 7}, of dimension m. By standard arguments (see for instance [4] or what is
done in section 6.1.3 in a more complicate case), when v tends to 0, the Dirichlet spec-
trum of T}, converges to the disjoint union of the Dirichlet spectrum of D and of the spec-
trum of M. Moreover, for v small enough, A (77) depends continuously on v. We infer
that for any e €]0,0(Ma, A, L, D1, D3)] there exists a v, €]0,v9(Ma, \, L, D1, D3)[ such
that AP(T},.) = X and M) (T},) = Ao(L, Ma, A, Dy, D3) > 0. We set T, = ¢T;,_. Note
that we have [, [B|P < ™ PCy(Ma, A, L, D1, D3) for any p < m, lime—yo [, [B|™ =

Jar, BI™ + [, IBI™ + [, IB[™ + LC(m), AP(T) = X and AP (T2) > 2% for any & < &.

T
M, .C D

We set M. the m-submanifold of R™™! obtained by gluing M and T. along their
boundaries in a fixed direction v € N, M;. Note that M, is a smooth immersion of
Mi# My (resp. an embedding when M; and My are embedded).
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By the computations above, the sequence iy(Mi#Ms) = M1 converges to Mj in
k
Hausdorff distance and we have

lim |H5|O‘dv:/ |H|“dv lim/ |B5|adv:/ |B|*dv
e—0 M. M, e—0 M. My

for any a < m and

Jim \mmz/)mm+/ mm+cmﬂ+/ Hm
=0 J . M D1UDs3 Mo

lim |&w:/'mw+/ mw+cmw+/ B
e=0 /. M D1UD3 Mo

6.1.3. Computation of the spectrum of M.. We will prove that there exists a sequence
(¢p)pen such that e, — 0 and the spectrum of M, converges to the disjoint union of

Sp(M;) and of {\}, where A satisfies A — % < A < A Since the collapsing

of M. is multiscale, the cutting and rescaling technique of [4, 12] has to be adapted.
Indeed, after rescaling of T, we get another collapsing sequence of submanifolds with
no uniform control of the trace and Sobolev Inequalities.

We denote by (Ag)ren the union with multiplicities of the spectrum of M; and of
{A}, by (AL)ken the spectrum of M. and by (uj)ren the Dirichlet spectrum of the
disjoint union M. =T, U (Ml‘E\BI1 (106)). By the Dirichlet principle, we have A\f < puf
for any k € N. It is well known (see for instance [6]) that the Dirichlet spectrum of
M7\ By, (10¢) converges to the spectrum of M;. We infer that pf — Ay as e — 0 and
so limsup A}, < Ay for any £ € N.

We set aj = liminf. ;o A7. To get some lower bound on the oy, we need some
local trace inequalities. We set S; = {z € T./d(x,0T.) = —t} for any ¢ < 0 and
Sy = {r € Mi/d(z,0M]) = t} for any t > 0. We also set By, = Ug/|s—t|<r}Ss;
N, = M{ UB: — for any » < 0 and N, = Mf\Bgé for any » > 0. Let aps, be a

27 2
constant such that the volume density 0. of M. in normal coordinates to S_o. satisfies
aiﬁ B+ L)1 2 6:(t,u) = apn, (3+ L)™ ! for any ¢ € [~2¢,ap,] and any u € S_s..
Let ed be the distance in M, between Mj and eDy and C(D;) be a constant such that
for any ¢t € [-(L + d + 2)e, —2¢] and any u € S_o. we have 059(5—(1‘/27?11) € [C(IDI),C(DQ].

apMy

Let n : [-2¢,ap,] — [0,1] be a smooth function such that n(t) = 1 for any ¢t < —5*,
n(ayr,) = 0 and || < —2-. For any r € [~2¢,ayr, /2] and any f € H'(M,), we have

anpy

L= ([ g anas) ot

an, wES_ s 9& ’ anpy
</ s JE0 u)dS/S / (i[n(-)f(-,ﬁ)“)])%e(&“)

infuecg ,. 0:(s,u)

(347 /e)m ! 2
<C(M1)/r st||f||H1(Ms)

which gives

(6.1) . 2 <e(M)Be + ) 1 oy
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when m > 3. By the same way, for any r € [—(L + d + 2)e, —2¢], we have

(6.2) s F* < —e(My, Dy)(e + 1) f oy

We now use this local trace inequality to get some estimates on the eigenfunctions of
M. We set ¢ : M. — [0, 1] be a smooth function equal to 1 on Ny /9 U (M \ N_E/2),

equal to 0 outside M/ and such that |¢'| < g. For any fi, fo € H'(M.), integration of
Inequalities (6.1) and (6.2) gives us

(6.3) | /M fifs— /M ohioh| < /M 102 — 1Al fal < €O fillms o | ol oy

and
| Wl < [ laoP s+ 20 de) + Gl
M. M.
16, , 8 ,
< 2 Alz2supp(ag) T ZIF1llz2suppiapy ldfillz + lldfullz
(6.4) < (M) fillFn

Let (f;) bea L?-orthonormal, complete set of eigenfunctions of M,. For any k, we set
f,‘i the function on M; equal to ¢ f; on Nig. and extended by 0. By Inequality (6.4), we
have HfliHJZLIl(Ml) < ¢(M7)(1 + M) for e small enough. We infer by diagonal extraction
that there exists some sequences (g,)pen and (hg)reny € H? (M1)N such that Aip — ay,
and (fzp)p converges weakly in H'(M;) and strongly in L?(Mj) to hg, for any k. It is
easy to prove that hy is a weak solution of Ahy = aghy on HY(My \ {z1}) = H'(M;).
By elliptic regularity, either hi = 0 or «j is an eigenvalue of M;.

Let ko € N such that Ay, = A. Since Dy isometric to [0, L] x S~ any f,ip can be
seen as a function on [0,,L] x £,S™~ L. For any f = D i<k Bif:" € Vect{f;"/i < ko},
we define the rescaling F, on ¢ = [0,1] x S™~! by F,(t,x) = z—:p%_lL_%f(sth, epx). By
Inequality (6.2), we have

1 2
Fl= F2 < e(Mi, Dy)(1+ )1+ N FII3,
7= [0 < cn D0 Do i
[ ool 12 ¢ <0, D)+ N
oyxsm—1 ¥ Lep Je,(DinDy) L 7

1
and / 5 = —
{1}xSm—1 Lep Je,(DsnDy)

for p large enough (note that we have d > 2 by construction). Moreover, we have
L |dF,[* < ey Ds |df|* < Allf]|3. So we can assume that there exists F, € H!(c) such

that the sequence (F},) converges to Fi, weakly in H'(c) and strongly in L?*(c). We
set jp(t) = Jsmo1 Fp(t,x)de and joo(t) = [sm-1 Foolt, z)dx, we have j,, joo € H([0,1])
(with j, () = Jgm- 88%(25, x)dx), jp — joo strongly in L2([0,1]) and weakly in H([0, 1]).
By the estimates above and the compactness of the trace operator on ¢, we have

Goe(0)] < CERNZEATE and |jo(1)] < VIHAIf[2C(M1). Hence U(t) = joolt) —

7 < (14 Ne(My, D)+ DB,
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(Joo(0) 4+ (Joo(1) = joo(0))t) is in H([0,1]). For any ¢ € C°([0,1]), we set ¢ (t,z) =
epLa)( LL) seen as a functlon in H}(epD2). We have

1
/lw dt = /joow’dt
0
1
_hm/ Jp(t dt—hm/ pq/; _1 / (df, dipy,) dt dz
EpQ\/E epD2

= hmz

:07

2 \f . f%qpp dtdx = zi:aiﬁilﬁ 1i11;ns;2)/cFi,p¢ dt dx

where F; ,(t,x) = 5%_1L_% “? (e, Lt, epx). We infer [ is harmonic and in H} ([0, 1]), i.e
P p i \&p P 0

Il =0 and joo(t) = joo(0) 4+ (Joo (1) — Joo(0))t on [0, 1]. Since the Poincare inequality on
Sm=1 gives us

1 1
/m_l Fp(t, CC)2de' < \/OlSnl_l(/S\m_l Fp(t, x) dCL‘) + 7_1 ‘dSmlepP

1 ‘ £
< ng(t) + (Tn—pl)L/ —_— ‘dspSm*1f|2(6thﬁ l’) d.’IJ,
epS™ T

we get that
1
= perfo R
[0,6p VL] xepS™ [O,W]XS’”

v 2 1 / 2
< t)dt + ———— d. gm-1 f
Vol Sm Vol Sm—1 / ( - 1)L [0, Epﬁ]xapgm—l ’ epS ‘

C(My)(1+ N[ fI

\F. 2
- e / ool >dt+( L -

If the family (h;)i<k, is not free in L?(My), then either one h; is null or they are
all eigenfunctions of Mj. Since the eigenspaces are in direct sum, we infer that there
exists 1 < Agy—1 and (B;) € RF\ {0} such that >, 82 =1, 3. Bihi = 0 and «; = p for
any i such that 8; # 0. We set f =Y. B;f;” and n : M., — [0,1] a smooth function
equal to 1 on M, \ N_(o4divD)e, equal to 0 on N_(o44)., and such that [¢'| < gp%ﬁ
We then have

| / dnf)? — /M (nf)?] = | / dnf2f? + (df () — /M (nf)?|

C(Mp)(1+N) \E e
{ 1}* e+ [ S0 - s sy

Mep 1,
Inequalities (6.3) and (6.2) imply that [,, (nf)* — 1. Since nf € Hg(T%,) and since by
ep

65) <

construction of Tz, we have AP(T.,) = A, we then have fMap ld(nf)]? > AfMEp (nf)?
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Letting p tend to oo in Inequality (6.5) we get that A — Agy—1 < %, which
contradicts the choice made on L at the beginning of this subsection.

We infer that (h;);<g, is free in L?(Mj). This implies that «; is an eigenvalue of M
and h; is an eigenfunction of M; for any i < kg. Since a; = lim /\f” < A= Ni(My)
for any ¢ < ko, we infer that a; = \; for any ¢ < ko and that the (h;);<k, is a basis
of the eigenspaces of M; associated to the first ko eigenvalues. By the same way, if
hi, # 0, then ax, = Ag,—1 (since it is an eigenvalue of M; less than \) and so the
family (h;)i<k, is not free. The same argument as above gives a contradiction. So we
have that hy, = 0.

Assume that there exists another index l 7& ko such that hl = 0. Then, Inequality
(6.3) gives that fT of gof — 0, fTs ) — 1 and fT f7)? — 1 and Inequal-

ity (6.4) gives that Jr \d(p €§|2 and fT ]dgaflsp\Q remain bounded as p — 0. We set
€p ep

gp a unitary eigenfunction of T;, for the Dirichlet problem associated to the eigenvalue

A If we set ((pflig)mp = ﬁzogp + (5;20 and (goflg”)‘Tsp = B gp + 67, with ﬂzo,ﬁlp € R and

57,;0,5” orthogonal to g, in Hj(T.,). The previous relations and the lower bound on

AP(T.,) imply that

[ aCRDR = A2+ @I, ) > (5,2 + fgnaﬁzoﬁmp).
€p

By the same way, (37)2\+ 22 H<5p||L2 T.,) 18 bounded, and so ||6} ||%2(T5 and ||(510HL2 )
tend to 0 with ,. Now, we have (Bko) +||(5 0”L2 (T,) ™ landso |8}, | — 1. By the same
way, we have || — 1, which contradicts the fact that fTsp © f;(’)’ @f;" — 0. We infer that
for any k € N\ {ko} we have that oy, is an eigenvalue of M;. Moreover, if We decompose
((pf,ip)mp = Bhgp + 0} as above, Inequality (6.4) implies that (8})% + ||5pHL2 (T.,)

remains bounded and so we have lim |6} |3, (1) = 0 and Inequality (6.3) glves

0= hm/ = lim ﬁkﬁko = lim ﬁz

and so (gof,ip)mp — 0 in L2(Tsp) for any k # kg. Once again, Inequality (6.3) gives us
that for any k,l € N\ {ko}, we have

/ hih; = 0.
My

From the min-max principle, it gives that we have ap > A for any k # kg. Since we

have oy, < A for any k& € N, we infer that for any k& € N\ {ko} we have o = \i. Finally,
[ — COma

Inequality (6.5), applied to f = f,ig and p = oy, gives that oy, € N

6.1.4. End of the proof of Theorem 1.2 and case &« = m. Since we can take L as large
as needed while keeping | a. IBlY = | a, |B|® for any o < n, we get Theorem 1.2
for FF = Sp(M7) U {A} by diagonal extraction. Iterating the construction (with Ma
replaced by S™ for any supplementary gluing) we get the result for any disjoint union
F = Sp(M;) U {finite set} and then for any F', since any closed set F' is the limit in
pointed-Hausdorff topology of a sequence of finite sets.
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In the case @ = m, the limit st IB|™ depend on L and so we are only able to
get a weak version of Theorem 1.2 with F' = Sp(M;) U G, where G is a finite set
whose elements are known up to an error term and where the point 2) is replaced by
fik(Ml#Mz) IB|™ is bounded by a constant that depend on My, My, Dy, D3, G and on
the error term.

6.2. Example 1.4. We set I. = [¢,5] for ¢ > 0 and let ¢ : I. — (—1,+00) be a
function continuous on I. and smooth on (g, §]. For any 0 < k < n — 2, we consider
the map
P, : SRl x Sk x I, — RV =R"F@RM
x=(y,z,7r) — (14 ¢(r))(ysinr + zcosr)

whose image X, is a smooth embedded submanifold (with boundary) diffeomorphic
to S™ \ B(S¥,¢). We denote respectively by B,(¢) and Hy(¢) the second fundamental
form and the mean curvature of X, at the point q. They are given by the following
formulae.

Lemma 6.1. Let v = (y,z,7) € S" * 1 xS¥ x I, ¢ = ®,(z) and (u,v,h) € T, X..
Then we have

nHy(¢) = (¢ + L+ 9)%) "2 [=(L+ ()¢ () + (1 + 0(r))? + 2(r)]

2 2\ —1/2
(SO +1(_1|_—;(i)) ) [—(n —k—1)¢ (r)cotr + (n—1)(1+ (1)) + k' (r) tanr}
1By()] =
(1+p(r)" ¢ ¢ (¢")? = (1+ )"
(1+ (2022 ma (|1~ T ot L gt U+ S )
o(r

To prove Theorem 1.4, we set a < {; and define the function ¢. on I by

: dt
fe(r)—a/ ife<r<a+e,
- 1 A /t2(n—k—l) — 1
e (r) we(r) if r>a+e,
b if r > 2a+e¢,

where b, is a constant and wu. is chosen so that ¢. is smooth on (e, g] and strictly

concave on (g,2a + €]. Since we have f.(x) — 0, fl(z) — 0, f/(z) — 0 for any fixed
x € (e,a + €], the concavity implies that b. — 0 as ¢ — 0 (hence b. can be chosen
less than %), that ¢, — 0 uniformly on I, and that ¢, converges uniformly to 0 on
any compact subset of (e, ]. Moreover, u. can be chosen such that ¢! converges to 0
uniformly on any compact subset of (e, 5].

On (g,a + €], ¢ satisfies

n—k—1)(14¢?

¢-(e) = 0 and lim ¢ (t) = +oo0 = —lim¢?(t). On (—be,b.), we define @, by @.(t) =
t—e t—e

¢-1(|t]). Since @. satisfies the equation yy” = (n — k — 1)(1 + (y')?) with initial data
?:(0) = e and @L(0) = 0, it is smooth at 0, hence on (—be, be).
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Now we consider the two applications ®,_ and ®_,_ defined as above, and we set

MF =X, , M- = X_, and MF = MF UM . MFis a smooth submanifold of R"!

since the function F.(py,p2) = |p1|* — |p|* sin®(@=(|p| — 1)), defined on
U={p=(p1,p2) ER" TR /p1 #0,py #0, —b + 1 < |p| < b + 1}
gives a smooth, local equation of M?¥ at the neighborhood of M N M that satisfies
VF.(p1,p2) = 2p1 cos® e — 2py sin®e # 0

on M N M.
We denote respectively by H. and B, the mean curvature and the second funda-
mental form of MF,

Theorem 6.2. ||H.|,, and ||B||,,_, remain bounded whereas |[H. — 1|1 — 0 and
[IX]—1]| , = 0 when e — 0.

Remark 6.3. We have ||B.||; = oo when e — 0, for any ¢ >n — k.

Proof. From the lemma 6.1 and the definition of ., H. and |B.| converge uniformly
to 1 on any compact of M¥*\ M* N M=. On the neighborhood of MF N M=, we have
n(H.), = nh¥(r) and ]nhi\ hfa + h .+ hf;g, where

k| tan(r)| oL T
h:t — € g t- o
275(7’) 1+ ©e (90/52 i (1 + @5)2)1/2 1— ba an 5
1 202 + (1 £ . )? n+1
hE (r) = (n —14+4+—= ) <
) G T PP Ee)?) S T-0

and by differential Equation (6.6) we have
(62 + (1£ 0)2) 12

PE(r) = |(n =k = 1) L cot(r) + (¢ + (1 92)2) /21 £ 0u)o!

1+
12 14+ 2\—1/2 1
< (n_k_l)(soa +( QOE) ) /ECO‘U(T)—*‘
1+ T
n—k—11(¢2+ (1£¢p.)%)"1/2 _
2 O T R 4 e )1+ e
€
n 1
< -~ cot(r))
=, (ot
2 2\ —3/2
n (e + (14 )
W02 0d) o+ (e - (0 )
&
n /1 n 2+, 3
X - t )
17b5<r Cotr) )+ e o P2+ (1 £ )2
n 1 905 2+ b,
< () +
1—b€<r cot(r) ) + T,
1 rz _dt Inz
Since 2= / \/W / \/iandxfl VEoT oo g We get

that hfa is bounded on Mf hence H. is bounded on M.. By the Lebesgue theorem
we have |[H. — 1||; — 0.
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We now bound ||B.||; with ¢ = n — k. The volume element at the neighbourhood of
M+ M- s

/
(6.7) dvg. = (1 £ )" (1 + (ﬁ)%lﬂ sin"* 1 (1) cosk () dvp— 1 dvogdr
€

where dv,,_j,_; and dvy, are the canonical volume element of S"~#~1 and S* respectively.
By Lemma 6.1 and Equation (6.6), we have

1 @l oL
|Be|?dvg. = max< 1——=
S BT O R G E L+ e
/2 —k—1)(1+¢. !
|1+<p5 + (n )(1 £ @) (1 + )sos/r‘)}qdvge
©2 + (1 £ p.)?

Noting that \/7 < min(1,z), it is easy to see that, if we set he = min(1, |pL|)

w’s P
T+y < 1 n e cotr
2
\/QD 1i(Pe \/@’—‘r (14 pc)? \/(1i¢)2+11i¢5

o +hgcotr2<4<1+h€)
1— e (1_905) r

Similarly for r € [e,7/5 + €] and € small enough, we have

1+ & h
| 1+o <41+ hetanr) < 8(1+ her) < 8(1+ —)
02 + (1 +¢2)? r

And since ¢L = 0 for r > /5 + ¢, this inequality is also true for r € (¢, 7/2]. Moreover

P24+ (n—k—-1)(1+¢)(1+ w’f)%/r’

1+
P2+ (1+pc)? ‘ o2 + (1 £ ¢c)?
R A n(1£ )1 +¢2) A
Tl (W2 (Ee)?)P? 0 B+ (L) (92 + (L pe)?)l?
<2 mhe (1)t vZ) 2 o1he (1 + ¢e)’
TlEee r(l-ge) @2+ (1) T 1t T (1-g)?
nhe
2
(2+9"0%)
It follows that
B q hE q q —1 ()0,5
1B:|dvg. < C(n, k) (1 + 7) dvg, < C(n,k)(r 4+ he)ir™' (1 + E)dvn,k,ldvkdr
3

1
VP —1

< O(n, k)L (r + he)e (1 + )dvn_k_ldvkdr




22 E. AUBRY, J.-F. GROSJEAN

Now

22(n—k-1) ¢
/ |Be|?dvg. < C(n, k) (/ ! <1 + ! )dr
s s Ve 1
2a+¢ 1 q
I T) . ( /() 2n—h=D) _ 1) )
1
22(n—k=T)

comb([ (1 st [ e e L))

1 2(n—k—-1) _q Sn—k=1)

-1
Since e @« < 25—"’ + 1 for € small enough we have

-1
e 4

) n—k—1 2a/e+1
/ |B€‘qdvgs < C(n, k) (1 + / 1 Sigds + /1 28n_k_1€qu)
MFE T

92(n—k—1) sq q

€

< CO(n, k) (141
which remains bounded when € — 0. O

Since (. is constant outside a neighborhood of M N M= (given by a), MF is
a smooth submanifold diffeomorphic to the sum of two spheres S™ along a (great)
subsphere S* C S™.

If we denote ]\;[ak one connected component of the points of Mak corresponding to r < 3a,
we get some pieces of hypersurfaces

that can be glued together along pieces of spheres of constant curvature to get a smooth
submanifold M,, diffeomorphic to p spheres S glued each other along [ subspheres S;,
and with curvature satisfying the bounds of Theorem 1.4 (when all the subspheres have
dimension 0) or of the remark before Theorem 1.3.

S

Since the surgeries are performed along subsets of capacity zero, the manifold con-
structed have a spectrum close to the spectrum of p disjoints spheres of radius close
to 1 (i.e. close to the spectrum of the standard S™ with all multiplicities multiplied
by p). More precisely, we set 7 € [2¢, 55], and for any subsphere S;, we set N; ;. the
tubular neighborhood of radius 1 of the submanifold S; = M; ; N M_,; in the local
parametrization of M. given by the map ®,,_, associated to the subsphere S;. We have
M. = 5U---UQy . UNypU---UNp - where €0, . are the connected component
of M\ U;N; 5, .. The §; . are diffeomorphic to some S;, (which does not depend on ¢
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and 1) open set of S” which are complements of neighborhoods of subspheres of dimen-
sion less than n — 2 and radius 7, endowed with metrics which converge in C' topology
to standard metrics of curvature 1 on S;,. Indeed, . converge to 0 in topology C?

. i,+
on [rly, 7], where [7°7 \/(1 £ i) + (¢L;)? = 1 since it converges in C' topology on

any compact of [¢, §] and since we have

=+
Ten .
n = / (1= bie)dt = (rbyy —)(1 = bie)
i+
n

€
i,+
7‘5, 7‘5,77 dt .
" </ (1 +b@-,e)dt+/ = (rky —e)(L+bie)
€ € (I)Z(n—k—l) -1 ’
€

oo dt
1 A /tQ(n—kJ—l) _ 1

SO rfm — 1 when ¢ — 0. So the spectrum of U;Q; , . C M. for the Dirichlet problem
converges to the spectrum of I1;5;, C II;S™ for the Dirichlet problem as € tends to 0
(by the min-max principle). Since any subsphere of codimension at least 2 has zero
capacity in S", we have that the spectrum of 11;5; ,, C II;S™ for the Dirichlet problem
converges to the spectrum of II;S™ when 7 tends to 0 (see for instance [6] or adapt
what follows). Since the spectrum of II;S™ is the spectrum of S™ with all multiplicities
multiplied by p, by diagonal extraction we infer the existence of two sequences (&)
and (7,,) such that €, — 0, 7, — 0 and the spectrum of U;Q;,,, ... C M, for the
Dirichlet problem converges to the spectrum of S” with all multiplicities multiplied by
p. Finally, note that \j(M:) < X\j(Ui€2,,¢) for any [ by the Dirichlet principle.

On the other hand, by using functions of the distance to the S; we can easily construct
on M. a function . with value in [0, 1], support in U;Q; , -, equal to 1 on U;Q; 2, - and
whose gradient satisfies [dy.|, < % It readily follows that

+e

4 Vol N; o
1= w2l + el < (14 ) 3 e

To estimate ) ; Vol N; 9, ¢, note that N; o, . corresponds to the set of points with Pt
i+

€,21
Gt e
above, 7, oy 18 given by

1.5, in the parametrization of M. given by ®,_, at the neighborhood of S;, where, as

i
[ aEear e =
g
hence satisfies %(7‘2”322 — ) < 27 (since we have 1 — ¢; > 1). By formula 6.7, we have

Tn
VoI Ni2pe < C(”)/ (1- %,i)n_l\/(l — o)+ (L )2t
€

+
Tn
40 [ Wk e e+ (L e
&g

< C(n)(dn +e)" "y < Cn, k™"
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where we have used that ¢.; < 2 and 2¢ < 7. We then have

11— 42|y + ldell3 < Cln, Kk, Lp)n™ "
To end the proof of the fact that M., has a spectrum close to that of U;€;,,. ... we

need the following proposition, whose proof is a classical Moser iteration (we use the
Simon and Michael Sobolev Inequality).

Proposition 6.4. For any q > n there exists a constant C(q,n) so that if (M™,g) is
any Riemannian manifold isometrically immersed in R"™ and Ex = (fo, -, fn)is
the space spanned by the eigenfunctions associated to Ag < --+ < Ay, then for any
f € En we have

1 lloo < Cla,m) (a0 "N + 1)) 1112

where v = %—CT

Since we already know that Ay(Me,,) < Ao(Uiig, em) = AB(o/p)(S") for any o
when m — oo, we infer that for any N there exists m = m(N) large enough such that
on M., and for any f € Ey, we have (with ¢ = 2n and since |[H|l < C(n))

[flloo < Clp, N, ) £]2

By the previous estimates, if we set
La'm : f € EN = w€mf € Hé(Uiinnmvsm)

then we have

I3 = 1 Le, (OIF = IF1 = 113N = 92, Ml = I3 (L = C kL, N )i )

and
ey ()G = oy [, Vlten + e
<umwm<ubmz P
< (1+ h)df(I3 + (1 + %)C(kvl,z), N, )| f I3 "
for any h > 0. We set h = nm . For m = m(k,l,p, N,n) large enough, L. : Exn —
H{ (Ui 1,0 e ) 18 injective and for any f € En, we have

M La Ctrto N T EE o N e
e, (i < (0 CURbP N Ve G L e

By the min-max principle, we infer that for any o < N, we have
n—k n—k
Ao(Me,,) < Ao(Uiimem) < (L+C(k, L,p, N,n)nm? YA (Me,,) + C(k, 1, p, N,n)nm?
Since Ao (UiQinarem) = AB(o/p)(S"), this gives that A\s(Mc,,) = Ag(/p)(S") for any
o < N. By diagonal extraction we get the sequence of manifolds (M/;) of Theorem 1.4.
To construct the sequence of Theorem 1.5, we consider the sequence of embedded
submanifolds (M;) of Theorem 1.4 for p =2, k =n—2 and [ = 1. Each element of the
sequence admits a covering of degree d given by y — y¢ in the local charts associated
to the maps ®. We endow these covering with the pulled back metrics. Arguing as
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above, we get that the spectrum of the new sequence converge to the spectrum of two
disjoint copies of

(1]

(Sl x §"72 % [0, g}, dr? + d?sin? rgs1 + cos? rgSn_z).
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APPENDIX A. PROOF OF LEMMA 6.1

Let (u,v, h) € T,:S: and put w = d(®y),(u, v, h) € T, X, where S. = S F=1xSFx ..
An easy computation shows that

w = (1+¢(r))((sinr)u+ (cosr)v)

(A1) + ¢ (r)((sinr)y + (cosr)z)h + (1 + o(r))((cosr)y — (sinr)z)h

We set

and N, =

N, = —¢'(r)((cosT)y — (sinr)z) + (1 4+ ¢(r))((sinr)y + (cos)z)

N,
d is a unit normal vector field on X,. Then we have
(@2 + (1+p)2)'/? ’

By(¢)(w,w) = <V?UN, w> = (90/2 +(1+ @)2)_1/2 <V?UN, w>
n+1

(A.2) = (% + 1+ 9)?) (Y w9, w)

=1
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where (0;)1<i<nt1 is the canonical basis of R"*!. A straightforward computation shows
that
n+1

Z w(]\Nfi)ﬁi =— ¢ (r)((cosr)u — (sinr)v) + (1 + o(r))((sinr)u + (cosr)v)

— " (r)((cosr)y — (sinr)z)h + 2¢'(r)((sinr)y + (cosr)z)h
+ (1 + ¢(r))((cosr)y — (sinr)z)h
Reporting this in (A.2) and using (A.1) we get
= ! —¢(r 7)) sinr cos r(|ul* — |v[?
Byle)((w 0.1, (1,0 ) =~y ¢ ) (1+ () (luf? = Jo]?)

+(1+ ga(7“))2(sin2 7"|u|2 + cos? T]v|2) — (1 + @(r))cp"(r)hQ + 2@'2(r)h2 +(1+ go(r))2h2

Now let (u;)1<i<n_k—1 and (v;)1<i<k be orthonormal bases of respectively S?—+~1

and S* at z. We set g = % can and £ = (0,0,1), then we have

at y

g(ui,ug) = (1+@(r)?sin’réiy,  g(vi,v5) = (14 @(r)? cos® réij,  g(ui,vg) =0,
9(£,8) = *+ (1 + )2, 9(ui, &) = g(v;,€) = 0.

Now setting @; = d(®y)s(us), ¥ = d(®y).(u;) and € = d(®y,),(€), the relation above
allows us to compute the trace and norm

(o By )] [By(@)(5, )] [Byle) € D)
Bl = (mgx e ) 6 )
B 1 SDI SOI <¢/ 2 SD)SO//
_\/mmax<|l—l+(p cotr‘, }1 + Tt tanr|, {1—}— 4 (1t )2 ‘)

of the second fundamental form.
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