METRIC SHAPE OF HYPERSURFACES WITH SMALL EXTRINSIC RADIUS OR LARGE λ_{1}

ERWANN AUBRY, JEAN-FRANÇOIS GROSJEAN

Abstract

We determine the metric shape of Euclidean hypersurfaces with large λ_{1} or small extrinsic radius. The description of the shape is improved when we assume an a priori bound on the L^{p} norm of the mean curvature with $p+1$ not less than the dimension of the hypersurfaces.

1. Introduction

Throughout the paper, $X: M^{n} \rightarrow \mathbb{R}^{n+1}$ is a closed, connected, immersed Euclidean hypersurface (with $n \geqslant 2$). We set v_{M} its volume, B its second fundamental form, $\mathrm{H}=\frac{1}{n} \operatorname{tr} \mathrm{~B}$ its mean curvature, r_{M} its extrinsic radius (i.e. the least radius of the Euclidean balls containing M), $0=\lambda_{0}^{M}<\lambda_{1}^{M} \leqslant \lambda_{2}^{M} \leqslant \cdots$ the non-decreasing sequence of its eigenvalues labelled with multiplicities, $S p(M)=\left(\lambda_{i}^{M}\right)_{i \in \mathbb{N}}$ and $\bar{X}:=\frac{1}{v_{M}} \int_{M} X$ its center of mass. For any function $f: M \rightarrow \mathbb{R}$, we set $\|f\|_{\alpha}=\left(\frac{1}{v_{M}} \int_{M}|f|^{\alpha}\right)^{\frac{1}{\alpha}}$. We denote by m_{1} the 1-dimensional Hausdorff measure on \mathbb{R}^{n+1} and by $B_{x}(R)$ the open Euclidean ball with center x and radius R.

The Hasanis-Koutroufiotis inequality ([7]) asserts that

$$
\begin{equation*}
r_{M}\|\mathrm{H}\|_{2} \geqslant 1 \tag{1.1}
\end{equation*}
$$

with equality if and only if M is the Euclidean sphere S_{M} with center \bar{X} and radius $\frac{1}{\|\mathrm{H}\|_{2}}$. The Reilly inequality ([12]) asserts that

$$
\begin{equation*}
\lambda_{1}^{M} \leqslant n\|\mathrm{H}\|_{2}^{2}, \tag{1.2}
\end{equation*}
$$

once again with equality if and only if M is the sphere S_{M}.
In this paper, we characterize the limit-points for the Hausdorff distance of the extremizing sequences of Euclidean-hypersurfaces for the Reilly or the Hasanis-Koutroufiotis inequalities. Our study of these almost extremal hypersurfaces began in [2], where their limit-spectrum was described.

[^0]1.1. Weak Hausdorff convergence vs Hausdorff convergence. The results described in this subsection arise as a technical tool to deal with our main problem, but we consider it to be of general interest for stability problems involving submanifolds.

Let us remind some basic facts about Hausdorff-Attouch-Wetts topology on closed sets of \mathbb{R}^{n+1}. For any subset $A \subset \mathbb{R}^{n+1}$ and any positive real number $\varepsilon>0$, we set $A_{\varepsilon}=\left\{x \in \mathbb{R}^{n+1} / d(A, x) \leqslant \varepsilon\right\}$ the tubular neighbourhood of radius ε of $A . d_{H}(A, B)=$ $\inf \left\{\varepsilon>0 / A \subset B_{\varepsilon}\right.$ and $\left.B \subset A_{\varepsilon}\right\}$ defines a complete distance on the compact subsets of \mathbb{R}^{n+1} called the Hausdorff distance. If $d_{A}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ denotes the distance function to the subset A, we have $d_{H}(A, B)=\left\|d_{A}-d_{B}\right\|_{\infty}$ and so the Hausdorff topology on compact subset of \mathbb{R}^{n+1} coincides with the topology of the uniform convergence on \mathbb{R}^{n+1} of the associated distance functions. Seemingly, on the set of closed subset of \mathbb{R}^{n+1} we consider the Attouch-Wetts topology, that is the topology of the uniform convergence on compact subset of the distance functions. It is a complete, metrizable topology induced by the distance $d_{A W}(A, B)=\sum_{R \in \mathbb{N}^{*}} 2^{-R} \inf \left(1, \sup _{x \in B_{0}(R)}\left|d_{A}(x)-d_{B}(x)\right|\right)$. We have $\lim _{k} d_{A W}\left(A_{k}, B\right)=0$ if and only if $\lim _{k} d_{R}^{\prime}\left(A_{k}, B\right)=0$ for any $R \in \mathbb{N}$ large enough, where $d_{R}^{\prime}(A, B)=\inf \left\{\varepsilon>0 / A \cap B_{0}(R) \subset B_{\varepsilon}\right.$ and $\left.B \cap B_{0}(R) \subset A_{\varepsilon}\right\}$ (see the proof of Proposition 3.1.6 in [5]). If $\left(A_{n}\right)$ is a sequence of closed, connected subsets of \mathbb{R}^{n+1} that converges to a closed, bounded limit Z, then Z is connected, the $\left(A_{n}\right)$ are uniformly bounded for n large enough and we have $d_{H}\left(A_{n}, Z\right) \rightarrow 0$ (see Lemma 3.2.2 in [5]). Note also that when $d_{A W}\left(A_{n}, B\right) \rightarrow 0$ then we have the relation

$$
B=\bigcup_{\left(a_{l}\right) \in \prod_{l \in \mathbb{N}} A_{l}} \text { limit set of }\left(a_{l}\right)_{l \in \mathbb{N}}
$$

In this paper, a sequence $\left(M_{k}^{m}\right)_{k \in \mathbb{N}}$ of immersed submanifolds of dimension m in \mathbb{R}^{n+1} is said to weakly converge in Hausdorff topology to a non empty closed subset $Z \subset \mathbb{R}^{n+1}$ if there exists a sequence of closed subsets $A_{k} \subset M_{k}$ such that $d_{A W}\left(A_{k}, Z\right) \rightarrow 0$ and $\operatorname{Vol}\left(M_{k} \backslash A_{k}\right) / \operatorname{Vol} M_{k} \rightarrow 0$. Note that the weak limit of a sequence is not unique a priori. Any sequence $\left(M_{k}\right)$ that weakly converges to Z has a non-empty limit-set for the Attouch-Wetts distance that is made of closed, connected subset of \mathbb{R}^{n+1} that contain Z (it is an easy consequence of the Ascoli theorem and Lemma 3.1.1 of [5]). Of course, this limit-set is not always equal to $\{Z\}$. Our aim in this part is to describe this limit-set when an a priori L^{p} bound on the mean curvature is assumed.

Theorem 1.1. Let $A>0$ and $p>m-1$ and $\left(M_{k}\right)_{k \in \mathbb{N}}$ be any sequence of immersed, compact submanifolds of dimension m which weakly converges to $Z \subset \mathbb{R}^{n+1}$.

If $\operatorname{Vol}\left(M_{k}\right)\|\mathrm{H}\|_{p}^{m-1} \leqslant A$ for any k, then Z is compact, $d_{H}\left(M_{k}, Z\right) \rightarrow 0$ and so the limit-set of $\left(M_{k}\right)_{k \in \mathbb{N}}$ for the Hausdorff distance is reduced to $\{Z\}$.

If $\operatorname{Vol}\left(M_{k}\right)\|\mathrm{H}\|_{m-1}^{m-1} \leqslant A$ for any k, then any limit point of $\left(M_{k}\right)_{k \in \mathbb{N}}$ for the Hausdorff distance is a compact, connected subset of the form $Z \cup T \subset \mathbb{R}^{n+1}$ with $m_{1}(T) \leqslant C(m) A$ where $C(m)$ is a (computable) constant that depends only on the dimension m.

Note that it derives from the proof that in the case $p=m-1$, we actually have $m_{1}(T) \leqslant C(m) \sup _{\varepsilon>0} \liminf _{k} \int_{M_{k} \backslash Z_{\varepsilon}}|\mathrm{H}|^{m-1}$.

This theorem is a consequence of the following decomposition result (see section 4.1), which asserts that a submanifold M can be approximated in Hausdorff distance by the union of any subset $A \subset M^{m}$ of large relative volume with a finite number of geodesic subtrees, whose total length is bounded by the L^{m-1} norm of the mean curvature. The
proof is a refinement of an argument developed by P.Topping in [15] to get an upper bound of $\operatorname{Diam}(M)$ by $\int_{M}|\mathrm{H}|^{m-1}$.

Lemma 1.2. There exists a (computable) constant $C=C(m)$ such that, for any compact submanifold M^{m} of \mathbb{R}^{n+1} and any closed subset $A \subset M$, there exists a finite family $\left(T_{i}\right)_{\in \in I}$ of geodesic trees in M with $A \cap T_{i} \neq \emptyset$ for any $i \in I, d_{H}\left(A \cup\left(\cup_{i \in I} T_{i}\right), M\right) \leqslant$ $C(\operatorname{Vol}(M \backslash A))^{\frac{1}{m}}$ and $\sum_{i \in I} m_{1}\left(T_{i}\right) \leqslant C^{m(m-1)} \int_{M \backslash A}|\mathrm{H}|^{m-1}$.

The description of the Hausdorff limit-point of weakly convergent sequence given by Theorem 1.1 is rather optimal since we have the following result.

Proposition 1.3. Let $Z \subset Z^{\prime}$ be two closed sets of \mathbb{R}^{n+1} with Z^{\prime} connected and M be a compact, immersible hypersurface of \mathbb{R}^{n+1}.

For any $\alpha \in] 0, n-1\left[\right.$ and any $A>0$, there exists a sequence of immersion i_{k} : $M \rightarrow \mathbb{R}^{n+1}$ such that $\operatorname{Vol} i_{k}(M)\|B\|_{\alpha, i_{k}(M)}^{n-1} \leqslant A$ and $i_{k}(M)$ weakly converges to Z and strongly to Z^{\prime}.

For any $A>0$, there exists a sequence of immersion $i_{k}: M \rightarrow \mathbb{R}^{n+1}$ such that $\operatorname{Vol} i_{k}(M)\|B\|_{n-1, i_{k}(M)}^{n-1} \leqslant A+\operatorname{Vol} \mathbb{S}^{n-1} m_{1}\left(Z^{\prime} \backslash Z\right), \operatorname{Vol} i_{k}(M)\|H\|_{n-1, i_{k}(M)}^{n-1} \leqslant A+$ $\left(\frac{n-1}{n}\right)^{n-1} \operatorname{Vol} \mathbb{S}^{n-1} m_{1}\left(Z^{\prime} \backslash Z\right)$ and $i_{k}(M)$ weakly converges to Z and strongly to Z^{\prime}.

It shows that if a sequence $\left(M_{k}\right)$ weakly converges to Z with $\operatorname{Vol} M_{k}\|\mathrm{H}\|_{p}^{m-1}$ bounded for some $p<m-1$ then nothing can be said a priori about the strong limit points for the Attouch-Wetts topology except that they have to be closed, connected subsets of \mathbb{R}^{n+1} that contains Z. In the case $p=m-1$, it proves that the limit points can be essentially any closed, connected Euclidean subset obtained by attaching hair to Z with total length bounded by the L^{m-1} norm of the mean curvature. Note however that the constant $C(m)$ obtained in Theorem 1.1 was larger than $\left(\left(\frac{m-1}{m}\right)^{m-1} \operatorname{Vol} \mathbb{S}^{m-1}\right)^{-1}$. The previous proposition is a corollary of the following, more general result.

Theorem 1.4. Let $M_{1}^{m}, M_{2}^{m} \hookrightarrow \mathbb{R}^{n+1}$ be two immersed compact submanifolds, $M_{1} \# M_{2}$ be their connected sum and T be any closed subset of \mathbb{R}^{n+1} such that $M_{1} \cup T$ is connected. Then there exists a sequence of immersions $i_{k}: M_{1} \# M_{2} \hookrightarrow \mathbb{R}^{n+1}$ such that
(1) $i_{k}\left(M_{1} \# M_{2}\right)$ weakly converges to M_{1} and strongly converges to $M_{1} \cup T$,
(2) the curvatures of $i_{k}\left(M_{1} \# M_{2}\right)$ satisfy

$$
\begin{aligned}
& \int_{i_{k}\left(M_{1} \# M_{2}\right)}|\mathrm{H}|^{m-1} \rightarrow \int_{M_{1}}|\mathrm{H}|^{m-1}+\left(\frac{m-1}{m}\right)^{m-1} \operatorname{Vol} \mathbb{S}^{m-1} m_{1}\left(T^{\prime}\right), \\
& \int_{i_{k}\left(M_{1} \# M_{2}\right)}|\mathrm{B}|^{m-1} \rightarrow \int_{M_{1}}|\mathrm{~B}|^{m-1}+\operatorname{Vol} \mathbb{S}^{m-1} m_{1}\left(T^{\prime}\right), \\
& \int_{i_{k}\left(M_{1} \# M_{2}\right)}|\mathrm{H}|^{\alpha} \rightarrow \int_{M_{1}}|\mathrm{H}|^{\alpha} \quad \text { for any } \alpha \in[1, m-1), \\
& \int_{i_{k}\left(M_{1} \# M_{2}\right)}|\mathrm{B}|^{\alpha} \rightarrow \int_{M_{1}}|\mathrm{~B}|^{\alpha} \quad \text { for any } \alpha \in[1, m-1),
\end{aligned}
$$

where $T^{\prime}=\overline{T \backslash M_{1}}$,
(3) $\lambda_{p}\left(i_{k}\left(M_{1} \# M_{2}\right)\right) \rightarrow \lambda_{p}\left(M_{1}\right)$ for any $p \in \mathbb{N}$,
(4) $\operatorname{Vol}\left(i_{k}\left(M_{1} \# M_{2}\right)\right) \rightarrow \operatorname{Vol} M_{1}$.

Note that $T^{\prime} \subset T, M_{1} \cup T^{\prime}=M_{1} \cup T$ and that $m_{1}\left(T^{\prime}\right) \leqslant m_{1}(T)$. Conditions (3) and (4) in Theorem 1.4 are designed on purpose for our study of almost extremal Euclidean hypersurfaces for the Reilly or Hasanis-Koutroufiotis Inequalities. Of course, the main difficulty in the proof of Theorem 1.4 is to get condition (3).

All the results of this section can be easily extended to the case where \mathbb{R}^{n+1} is replaced by any fixed Riemannian manifold (N, g).
1.2. Hypersurfaces with large λ_{1} or small Extrinsic radius. Our aim in this section is to study the metric shape of the Euclidean hypersurfaces with almost extremal extrinsic radius or λ_{1}.
1.2.1. Almost extremal hypersurfaces weakly converge to S_{M}. Our first result describes some volume and curvature concentration properties of almost extremal hypersurfaces that imply weak convergence to S_{M}. Note that in this result we do not assume any bound on the mean curvature. It easily implies that convex, almost extremal hypersurfaces are Lipschitz close to a Euclidean sphere.

We set $B_{x}(r)$ the closed ball with center x and radius r in \mathbb{R}^{n+1} and A_{η} the annulus $\left\{X \in \mathbb{R}^{n+1} /\left|\|X-\bar{X}\|-\frac{1}{\|\mathrm{H}\|_{2}}\right| \leqslant \frac{\eta}{\|\mathrm{H}\|_{2}}\right\}$. Throughout the paper we shall adopt the notation that $\tau(\varepsilon \mid n, p, h, \cdots)$ is a positive function which depends on n, p, h, \cdots and which converges to zero as $\varepsilon \rightarrow 0$. Note that these functions τ will always be explicitly computable.
Theorem 1.5. Any immersed hypersurface $M \hookrightarrow \mathbb{R}^{n+1}$ with $r_{M}\|\mathrm{H}\|_{2} \leqslant 1+\varepsilon$ (or with $\frac{n\|H\|_{2}^{2}}{\lambda_{1}^{M}} \leqslant 1+\varepsilon$) satisfies

$$
\begin{gather*}
\||\mathrm{H}|-\| \mathrm{H}\left\|_{2}\right\|_{2} \leqslant 100 \sqrt[8]{\varepsilon}\|\mathrm{H}\|_{2}, \tag{1.3}\\
\operatorname{Vol}\left(M \backslash A_{\sqrt[8]{\varepsilon}}\right) \leqslant 100 \sqrt[8]{\varepsilon} v_{M} . \tag{1.4}
\end{gather*}
$$

Moreover, for any $r>0$ and any $x \in S_{M}=\bar{X}+\frac{1}{\|H\|_{2}} \cdot \mathbb{S}^{n}$, we have

$$
\begin{equation*}
\left|\frac{\operatorname{Vol}\left(B_{x}\left(\frac{r}{\|\mathrm{H}\|_{2}}\right) \cap M\right)}{v_{M}}-\frac{\operatorname{Vol}\left(B_{x}\left(\frac{r}{\|\mathrm{H}\|_{2}}\right) \cap S_{M}\right)}{\operatorname{Vol} S_{M}}\right| \leqslant \tau(\varepsilon \mid n, r) \frac{\operatorname{Vol}\left(B_{x}\left(\frac{r}{\|\mathrm{H}\|_{2}}\right) \cap S_{M}\right)}{\operatorname{Vol} S_{M}} . \tag{1.5}
\end{equation*}
$$

Note that (1.5) implies not only that M goes near any point of the sphere S_{M}, but also that the density of M near each point of S_{M} converges to $v_{M} / \operatorname{Vol} S_{M}$ at any scale. However, the convergence is not uniform with respect to the radius r. We infer that $A_{\tau(\varepsilon \mid n)} \cap M$ is Hausdorff close to S_{M}, which implies weak convergence to S_{M} of almost extremal hypersurfaces.
Corollary 1.6. For any immersed hypersurface $M \hookrightarrow \mathbb{R}^{n+1}$ with $r_{M}\|H\|_{2} \leqslant 1+\varepsilon$ (or with $\left.\frac{n\|H\|_{2}^{2}}{\lambda_{1}^{M}} \leqslant 1+\varepsilon\right)$ there exists a subset $A \subset M$ such that $\operatorname{Vol}(M \backslash A) \leqslant \tau(\varepsilon \mid n) v_{M}$ and $d_{H}\left(A, S_{M}\right) \leqslant \frac{\tau(\varepsilon \mid n)}{\|H\|_{2}}$.

In the case where M is the boundary of a convex body in \mathbb{R}^{n+1} with $r_{M}\|\mathrm{H}\|_{2} \leqslant 1+\varepsilon$ (or with $\frac{n\|H\|_{2}^{2}}{\lambda_{1}^{M}} \leqslant 1+\varepsilon$), the previous result implies easily the following.
Theorem 1.7. Any convex, compact hypersurface $M \hookrightarrow \mathbb{R}^{n+1}$ with $r_{M}\|H\|_{2} \leqslant 1+\varepsilon$ (or with $\frac{n\|\mathrm{H}\|_{2}^{2}}{\lambda_{1}^{M}} \leqslant 1+\varepsilon$) satisfies $d_{L}\left(M, S_{M}\right) \leqslant \frac{\tau(\varepsilon \mid n)}{\|H\|_{2}}$, where d_{L} is the Lipschitz distance.
1.2.2. Hausdorff limit-set of extremizing sequences. Constructions similar to that made in the proof of Theorem 1.4 shows that we can not expect any control on the topology of almost extremal hypersurfaces nor on the metric shape (even on the diameter) of the part $M \backslash A$ of Corollary 1.6 if we do not assume a strong enough upper bound on the curvature of almost extremal hypersurfaces.

Theorem 1.8. Let M be any hypersurface immersible in \mathbb{R}^{n+1} and T be a closed subset of \mathbb{R}^{n+1}, such that $\mathbb{S}^{n} \cup T$ is connected (resp. and $T \cup \mathbb{S}^{n} \subset B_{0}(1)$). There exists a sequence of immersions $j_{i}: M \hookrightarrow \mathbb{R}^{n+1}$ of M which satisfies

1) $\lambda_{1}^{j_{i}(M)} \rightarrow \lambda_{1}\left(\mathbb{S}^{n}\right)\left(\right.$ resp. $\left.r_{j_{i}(M)} \rightarrow 1\right)$,
2) $\left\|\mathrm{B}_{i}-\mathrm{Id}\right\|_{p} \rightarrow 1$ for any $p<n-1$,
3) $\operatorname{Vol} j_{i}(M) \rightarrow \operatorname{Vol} \mathbb{S}^{n}$,
4) $j_{i}(M)$ converges to $\mathbb{S}^{n} \cup T$ in Hausdorff distance,
5) $\operatorname{Vol} j_{i}(M)\left\|\mathrm{H}_{i}\right\|_{n-1}^{n-1} \rightarrow C(n) m_{1}(T)+\operatorname{Vol} \mathbb{S}^{n}$.

Note that in the constructions of almost extremal hypersurfaces made in Theorem 1.8, the only way to keep $\left\|\mathrm{H}_{i}\right\|_{n-1}^{n-1}$ bounded is to take a limit $\mathbb{S}^{n} \cup T$ with T a set of Hausdorff dimension 1 and length bounded (due to point 5)). On the other hand, Corollary 1.6 and Theorem 1.1 imply the following metric shape stability result.

Theorem 1.9. For any $n \geqslant 3$ and any immersed hypersurface $M \hookrightarrow \mathbb{R}^{n+1}$ with $v_{M}\|\mathrm{H}\|_{n-1}^{n} \leqslant A$ and $r_{M}\|\mathrm{H}\|_{2} \leq 1+\varepsilon$ (or with $v_{M}\|\mathrm{H}\|_{n-1}^{n} \leqslant A$ and $\frac{n\|\mathrm{H}\|_{2}^{2}}{\lambda_{1}} \leqslant 1+\varepsilon$) there exists a subset T of 1-dimensional Haussdorff measure less than $C(n) \int_{M}|\mathrm{H}|^{n-1} \leqslant$ $C(n) A\|\mathrm{H}\|_{2}^{-1}$ such that $T \cup S_{M}$ is connected and $d_{H}\left(M, S_{M} \cup T\right) \leqslant \tau(\varepsilon \mid n, A)\|\mathrm{H}\|_{2}^{-1}$.

More precisely, for any sequence $\left(M_{k}\right)_{k \in \mathbb{N}}$ of immersed hypersurfaces normalized by $\left\|\mathrm{H}_{k}\right\|_{2}=1$ and $\bar{X}_{k}=0$, which satisfies $v_{M_{k}}\left\|\mathrm{H}_{k}\right\|_{n-1}^{n} \leqslant A$ and $r_{M_{k}} \rightarrow 1$ (or $v_{M_{k}}\left\|\mathrm{H}_{k}\right\|_{n-1}^{n} \leqslant A$ and $\left.\frac{n}{\lambda_{1}\left(M_{k}\right)} \rightarrow 1\right)$ there exist a closed subset $T \subset \mathbb{R}^{n+1}$ and a subsequence $M_{k^{\prime}}$ such that $m_{1}(T) \leqslant C(n) A, T \cup \mathbb{S}^{n}$ is connected and $d_{H}\left(M_{k^{\prime}}, \mathbb{S}^{n} \cup T\right) \rightarrow 0$.

Here also the constant $C(n)$ of this theorem is not the same as in Theorem 1.8. So we do not have an exact computation of the Hausdorff limit point in the case $p=n-1$ but we conjecture that it is just a mater of non optimality of the constant $C(m)$ in the bound on $m_{1}(T)$ in Theorem 1.1.

Finally, as a direct consequence of Theorem 1.1, we get the following result.
Theorem 1.10. Let $2 \leqslant n-1<p \leqslant+\infty$. Any immersed hypersurface $M \hookrightarrow \mathbb{R}^{n+1}$ with $v_{M}\|\mathrm{H}\|_{p}^{n} \leqslant A$ and $r_{M}\|\mathrm{H}\|_{2} \leq 1+\varepsilon$ (or with $v_{M}\|\mathrm{H}\|_{p}^{n} \leqslant A$ and $\frac{n\|\mathrm{H}\|_{2}^{2}}{\lambda_{1}} \leqslant 1+\varepsilon$) satisfies $d_{H}\left(M, S_{M}\right) \leqslant \tau(\varepsilon \mid n, p, A)\|\mathrm{H}\|_{2}^{-1}$.

Theorem 1.10 was already proved in the case $p=+\infty$ and under the stronger assumption $(1+\varepsilon) \lambda_{1} \geqslant n\|\mathrm{H}\|_{4}^{2}$ in [6], and in the case $p=+\infty$ and under the stronger assumption $r_{M}\|\mathrm{H}\|_{4} \leq 1+\varepsilon$ in [13]. It is also proved in an unpublished previous version of this paper [3] in the case $p>n$. In all these papers, the Hausdorff convergence is obtained by first proving that $\|X\|$ is almost constant in L^{2} norm and then by applying a Moser iteration technique to infer that $\|X\|$ is almost constant is L^{∞}-norm. This scheme of proof cannot be applied in the case $n \geqslant p>n-1$ since the critical exponent for the iteration is $p=n$.

Note that by Theorem 1.9 , in the case $v_{M}\|H\|_{p}^{n} \leqslant A$ with $p>n-1$, almost extremal hypersurfaces for the Reilly inequality are almost extremal hypersurfaces for
the Hasanis-Koutroufiotis inequality. Actually, in that case, an hypersurface is Hausdorff close to a sphere if and only if it is almost extremal for the Hasanis-Koutroufiotis inequality. In [2], we prove that an hypersurface Hausdorff close to a sphere or almost extremal for the Hasanis-Koutroufiotis inequality is not necessarily almost extremal for the Reilly inequality, even under the assumption $v_{M}\|\mathrm{~B}\|_{p}^{n} \leqslant A$, for any $p \leqslant n$.

The structure of the paper is as follows: in Section 2, we recall some concentration properties for the volume and the mean curvature of almost extremal hypersurfaces (in particular Inequalities (1.4) and (1.3)) and some estimates on the restrictions to hypersurfaces of the homogeneous, harmonic polynomials of \mathbb{R}^{n+1}, proved in [2]. They are used in Section 3 to prove Inequality (1.5). Theorem 1.1 is proved in Section 4. We end the paper in section 5 by the proof of Theorem 1.4.

Throughout the paper we adopt the notation that $C(n, k, p, \cdots)$ is function greater than 1 which depends on p, q, n, \cdots. It eases the exposition to disregard the explicit nature of these functions. The convenience of this notation is that even though C might change from line to line in a calculation it still maintains these basic features.

Acknowledgments: We thank C.Anné and P.Jammes for very fruitful discussions on Theorem 1.4. Part of this work was done while the first author was invited at the MSI, ANU Canberra, funded by the PICS-CNRS Progress in Geometric Analysis and Applications. The first author thanks P.Delanoe, J.Clutterbuck and J.X. Wang for giving him this opportunity and J.Clutterbuck for bringing P.Topping's paper [15] to his attention.

2. Some estimates on almost extremal hypersurfaces

We recall some estimate on almost extremal hypersurfaces proved in [2]. From now on, we assume, without loss of generality, that $\bar{X}=0$. Let $X^{T}(x)$ denote the orthogonal projection of $X(x)$ on the tangent space $T_{x} M$.
Lemma 2.1 ([2]). If $n\|\mathrm{H}\|_{2}^{2} / \lambda_{1}^{M} \leqslant 1+\varepsilon$ or $r_{M}\|\mathrm{H}\|_{2} \leqslant 1+\varepsilon$ holds, then we have $\left\|X^{T}\right\|_{2} \leqslant \sqrt{3 \varepsilon}\|X\|_{2}$ and $\left\|X-\frac{\mathrm{H}}{\|\mathrm{H}\|_{2}^{2}} \nu\right\|_{2} \leqslant \sqrt{3 \varepsilon}\|X\|_{2}$.

$$
\text { We set } A_{\eta}=B_{0}\left(\frac{1+\eta}{\|\mathrm{H}\|_{2}}\right) \backslash B_{0}\left(\frac{1-\eta}{\|\mathrm{H}\|_{2}}\right) \text {. }
$$

Lemma 2.2 ([2]). If $n\|\mathrm{H}\|_{2}^{2} / \lambda_{1}^{M} \leqslant 1+\varepsilon$ or $r_{M}\|\mathrm{H}\|_{2} \leqslant 1+\varepsilon$ holds (with $\varepsilon \leqslant \frac{1}{100}$), then we have $\left\|\|X\|-\frac{1}{\|\mathrm{H}\|_{2}}\right\|_{2} \leqslant \frac{C}{\|\mathrm{H}\|_{2}} \sqrt[8]{\varepsilon},\||\mathrm{H}|-\| \mathrm{H}\left\|_{2}\right\|_{2} \leq C \sqrt[8]{\varepsilon}\|\mathrm{H}\|_{2}$ and $\operatorname{Vol}\left(M \backslash A_{\sqrt[8]{\varepsilon}}\right) \leq$ $C \sqrt[8]{\varepsilon} v_{M}$, where $C=6 \times 2^{\frac{2 p}{p-2}}$ in the case $\left(P_{p, \varepsilon}\right)$ and $C=100$ in the other cases.

We set $\mathcal{H}^{k}(M)$ the set of functions $\left\{P_{\mid M}\right\}$, where P is any harmonic, homogeneous polynomials of degree k of \mathbb{R}^{n+1}. We also set $\psi:[0, \infty) \rightarrow[0,1]$ a smooth function, which is 0 outside $\left[\frac{(1-2 \sqrt[16]{\varepsilon})^{2}}{\|\mathrm{H}\|_{2}^{2}}, \frac{(1+2 \sqrt[16]{\varepsilon})^{2}}{\|\mathrm{H}\|_{2}^{2}}\right]$ and 1 on $\left[\frac{(1-\sqrt[16]{\varepsilon})^{2}}{\|\mathrm{H}\|_{2}^{2}}, \frac{(1+\sqrt[16]{\varepsilon})^{2}}{\|\mathrm{H}\|_{2}^{2}}\right]$, and φ the function on M defined by $\varphi(x)=\psi\left(\left|X_{x}\right|^{2}\right)$.
Lemma 2.3 ([2]). For any hypersurface $M \hookrightarrow \mathbb{R}^{n+1}$ isometrically immersed with $r_{M}\|\mathrm{H}\|_{2} \leqslant 1+\varepsilon\left(\right.$ or $\left.\frac{n\|\mathrm{H}\|_{2}^{2}}{\lambda_{1}} \leqslant 1+\varepsilon\right)$ and for any $P \in \mathcal{H}^{k}(M)$, we have

$$
\left|\|\mathrm{H}\|_{2}^{2 k}\|\varphi P\|_{2}^{2}-\|P\|_{\mathbb{S}^{n}}^{2}\right| \leqslant C \sqrt[32]{\varepsilon}\|P\|_{\mathbb{S}^{n}}^{2}
$$

where $C=C(n, k)$.

If moreover $\varepsilon \leqslant \frac{1}{(2 C)^{32}}$, then we have $\left\|\Delta(\varphi P)-\mu_{k}^{S_{M}} \varphi P\right\|_{2} \leqslant C \sqrt[16]{\varepsilon} \mu_{k}^{S_{M}}\|\varphi P\|_{2}$.

3. Proof of Inequality 1.5

By a homogeneity, we can assume $\|\mathrm{H}\|_{2}=1$. Let $\theta \in(0,1), x \in \mathbb{S}^{n}$ and set $V^{n}(s)=$ $\operatorname{Vol}\left(B(x, s) \cap \mathbb{S}^{n}\right)$. Let $\beta(\theta, r)>0$ small enough so that $(1+\theta / 2) V^{n}((1+2 \beta) r) \leqslant$ $(1+\theta) V^{n}(r)$ and $(1-\theta / 2) V^{n}((1-2 \beta) r) \geqslant(1-\theta) V^{n}(r)$. Let $f_{1}: \mathbb{S}^{n} \rightarrow[0,1]$ (resp. $\left.f_{2}: \mathbb{S}^{n} \rightarrow[0,1]\right)$ be a smooth function such that $f_{1}=1$ on $B_{x}((1+\beta) r) \cap \mathbb{S}^{n}$ (resp. $f_{2}=1$ on $\left.B_{x}((1-2 \beta) r) \cap \mathbb{S}^{n}\right)$ and $f_{1}=0$ outside $B_{x}((1+2 \beta) r) \cap \mathbb{S}^{n}$ (resp. $f_{2}=0$ outside $\left.B_{x}((1-\beta) r) \cap \mathbb{S}^{n}\right)$. There exist an integer $N(\theta, r)$ and a family $\left(P_{k}^{i}\right)_{k \leqslant N}$ such that $P_{k}^{i} \in \mathcal{H}^{k}\left(\mathbb{R}^{n+1}\right)$ and $A=\sup _{\mathbb{S}^{n}}\left|f_{i}-\sum_{k \leqslant N} P_{k}^{i}\right| \leqslant\left\|f_{i}\right\|_{\mathbb{S}^{n}} \theta / 18$. We extend f_{i} to $\mathbb{R}^{n+1} \backslash\{0\}$ by $f_{i}(X)=f_{i}\left(\frac{X}{|X|}\right)$. Then we have

$$
\left.\left.\left|\left\|\varphi f_{i}\right\|_{2}^{2}-\frac{1}{\operatorname{Vol} \mathbb{S}^{n}} \int_{\mathbb{S}^{n}}\right| f_{i}\right|^{2} \right\rvert\, \leqslant I_{1}+I_{2}+I_{3}
$$

where

$$
\begin{aligned}
I_{1} & :=\left|\frac{1}{v_{M}} \int_{M}\left(\left|\varphi f_{i}\right|^{2}-\varphi^{2}\left(\sum_{k \leqslant N}|X|^{-k} P_{k}^{i}\right)^{2}\right) d v\right| \\
I_{2} & :=\left|\frac{1}{v_{M}} \int_{M} \varphi^{2}\left(\sum_{k \leqslant N}|X|^{-k} P_{k}^{i}\right)^{2} d v-\sum_{k \leqslant N}\left\|P_{k}^{i}\right\|_{S^{n}}^{2}\right|
\end{aligned}
$$

and

$$
I_{3}:=\left|\frac{1}{\operatorname{Vol}_{\mathbb{S}^{n}}} \int_{\mathbb{S}^{n}}\left(\left(\sum_{k \leqslant N} P_{k}^{i}\right)^{2}-f_{i}^{2}\right)\right| .
$$

On \mathbb{S}^{n} we have $\left|f_{i}^{2}-\left(\sum_{k \leqslant N} P_{k}^{i}\right)^{2}\right| \leqslant A\left(2 \sup _{\mathbb{S}^{n}}\left|f_{i}\right|+A\right) \leqslant\left\|f_{i}\right\|_{\mathbb{S}^{n}}^{2} \theta / 6$ and on M we have

$$
\varphi^{2}\left|f_{i}^{2}(X)-\left(\sum_{k \leqslant N}|X|^{-k} P_{k}^{i}(X)\right)^{2}\right| \leqslant\left|f_{i}^{2}\left(\frac{X}{|X|}\right)-\left(\sum_{k \leqslant N} P_{k}^{i}\left(\frac{X}{|X|}\right)\right)^{2}\right| \leqslant\left\|f_{i}\right\|_{\mathbb{S}^{n}}^{2} \theta / 6
$$

Hence $I_{1}+I_{3} \leqslant\left\|f_{i}\right\|_{\mathbb{S}^{n}}^{2} \theta / 3$. Now

$$
\begin{aligned}
I_{2} \leqslant & \left|\frac{1}{v_{M}} \int_{M} \varphi^{2} \sum_{k \leqslant N} \frac{\left(P_{k}^{i}\right)^{2}}{|X|^{2 k}} d v-\sum_{k \leqslant N}\left\|P_{k}^{i}\right\|_{\mathbb{S}^{n}}^{2}\right|+\frac{1}{v_{M}}\left|\int_{M} \varphi^{2} \sum_{1 \leqslant k \neq k^{\prime} \leqslant N} \frac{P_{k}^{i} P_{k^{\prime}}^{i}}{|X|^{k+k^{\prime}}} d v\right| \\
\leqslant & \frac{1}{v_{M}} \int_{M} \varphi^{2} \sum_{k \leqslant N}\left|\frac{1}{|X|^{2 k}}-\|\mathrm{H}\|_{2}^{2 k}\right|\left(P_{k}^{i}\right)^{2} d v \\
& +\frac{1}{v_{M}} \int_{M} \sum_{1 \leqslant k \neq k^{\prime} \leqslant N} \varphi^{2}\left|\frac{1}{|X|^{k+k^{\prime}}}-\|\mathrm{H}\|_{2}^{k+k^{\prime}}\right|\left|P_{k}^{i} P_{k^{\prime}}^{i}\right| d v \\
& +\sum_{k \leqslant N}\left|\|\mathrm{H}\|_{2}^{2 k}\left\|\varphi P_{k}^{i}\right\|_{2}^{2}-\left\|P_{k}^{i}\right\|_{\mathbb{S}^{n}}^{2}\right|+\sum_{1 \leqslant k \neq k^{\prime} \leqslant N} \frac{\|\mathrm{H}\|_{2}^{k+k^{\prime}}}{v_{M}}\left|\int_{M} \varphi^{2} P_{k}^{i} P_{k^{\prime}}^{i} d v\right|
\end{aligned}
$$

We have $\varphi^{2}\left|\frac{1}{|X|^{k+k^{\prime}}}-\|\mathrm{H}\|_{2}^{k+k^{\prime}}\right| \leqslant \varphi^{2}\left(k+k^{\prime}\right) 2^{k+k^{\prime}+2} \sqrt[16]{\varepsilon}\|\mathrm{H}\|_{2}^{k+k^{\prime}}$ by assumption on φ. From this and Lemma 2.3, we have

$$
\begin{aligned}
I_{2} \leqslant & N^{2} 4 \sqrt[N+1]{\varepsilon} \sum_{k \leqslant N}\|\mathrm{H}\|_{2}^{2 k}\left\|\varphi P_{k}^{i}\right\|_{2}^{2}+\sqrt[32]{\varepsilon} \sum_{k \leqslant N} C(n, k)\left\|P_{k}^{i}\right\|_{\mathbb{S}^{n}}^{2} \\
& +\sum_{1 \leqslant k \neq k^{\prime} \leqslant N} \frac{\|\mathrm{H}\|_{2}^{k+k^{\prime}}}{v_{M}}\left|\int_{M} \varphi^{2} P_{k}^{i} P_{k^{\prime}}^{i} d v\right| \\
& \leqslant C(n, N) \sqrt[32]{\varepsilon}+\sum_{1 \leqslant k \neq k^{\prime} \leqslant N} \frac{\|\mathrm{H}\|_{2}^{k+k^{\prime}}}{v_{M}}\left|\int_{M} \varphi^{2} P_{k}^{i} P_{k^{\prime}}^{i} d v\right|
\end{aligned}
$$

and, by Lemma 2.3, we have

$$
\begin{aligned}
& \left|\frac{\|\mathrm{H}\|_{2}^{2}\left(\mu_{k}-\mu_{k^{\prime}}\right)}{v_{M}} \int_{M} \varphi^{2} P_{k}^{i} P_{k^{\prime}}^{i} d v\right| \\
& \leqslant \int_{M} \frac{\left|\varphi P_{k}^{i}\left(\Delta\left(\varphi P_{k^{\prime}}^{i}\right)-\|\mathrm{H}\|_{2}^{2} \mu_{k^{\prime}} \varphi P_{k^{\prime}}^{i}\right)\right|}{v_{M}} d v+\int_{M} \frac{\left|\varphi P_{k^{\prime}}^{i}\left(\Delta\left(\varphi P_{k}^{i}\right)-\|\mathrm{H}\|_{2}^{2} \mu_{k} \varphi P_{k}^{i}\right)\right|}{v_{M}} d v \\
& \leqslant\left\|\varphi P_{k}^{i}\right\|_{2}\left\|\Delta\left(\varphi P_{k^{\prime}}^{i}\right)-\right\| \mathrm{H}\left\|_{2}^{2} \mu_{k^{\prime}} \varphi P_{k^{\prime}}^{i}\right\|_{2}+\left\|\varphi P_{k^{\prime}}^{i}\right\|_{2}\left\|\Delta\left(\varphi P_{k}^{i}\right)-\right\| \mathrm{H}\left\|_{2}^{2} \mu_{k} \varphi P_{k}^{i}\right\|_{2} \\
& \leqslant C(n, N) \sqrt[16]{\varepsilon}\|\mathrm{H}\|_{2}^{2}\left\|\varphi P_{k^{\prime}}^{i}\right\|_{2}\left\|\varphi P_{k}^{i}\right\|_{2}
\end{aligned}
$$

under the condition $\varepsilon \leqslant\left(\frac{1}{2 C(n, N)}\right)^{32}$. Since $\mu_{k}-\mu_{k^{\prime}} \geqslant n$ when $k \neq k^{\prime}$, we get

$$
\sum_{1 \leqslant k \neq k^{\prime} \leqslant N}\left|\frac{1}{v_{M}} \int_{M} \varphi^{2} P_{k}^{i} P_{k^{\prime}}^{i} d v\right| \leqslant \sum_{1 \leqslant k \neq k^{\prime} \leqslant N} C(n, N) \sqrt[16]{\varepsilon}\left\|\varphi P_{k^{\prime}}^{i}\right\|_{2}\left\|\varphi P_{k}^{i}\right\|_{2} \leqslant \frac{C(n, N) \sqrt[16]{\varepsilon}}{\|\mathrm{H}\|_{2}^{k+k^{\prime}}}
$$

hence $I_{2} \leqslant C(n, N) \sqrt[32]{\varepsilon}$ and

$$
\left|\left\|\varphi f_{i}\right\|_{2}^{2}-\frac{1}{\operatorname{Vol} \mathbb{S}^{n}} \int_{\mathbb{S}^{n}} f_{i}^{2}\right| \leqslant C(n, N) \sqrt[32]{\varepsilon}+\frac{\theta}{3}\left\|f_{i}\right\|_{\mathbb{S}^{n}}^{2}
$$

We infer that if $\sqrt[32]{\varepsilon} \leqslant \frac{V^{n}((1-2 \beta) r) \theta}{6 C(n, N) \operatorname{Vol} \mathbb{S}^{n}} \leqslant \frac{\left\|f_{i}\right\|_{\mathbb{S}^{n} \theta}^{2}}{6 C(n, N)}$, then we have

$$
\left.\left.\left|\left\|\varphi f_{i}\right\|_{2}^{2}-\frac{1}{\operatorname{Vol} \mathbb{S}^{n}} \int_{\mathbb{S}^{n}}\right| f_{i}\right|^{2} \right\rvert\, \leqslant \theta\left\|f_{i}\right\|_{\mathbb{S}^{n}}^{2} / 2
$$

Note that N depends on r and θ but not on x since $O(n+1)$ acts transitively on \mathbb{S}^{n}. By assumption on f_{1} and f_{2}, we have

$$
\begin{aligned}
\frac{\left.\operatorname{Vol}\left(B_{x}((1+\beta) r-\sqrt[16]{\varepsilon})\right) \cap M \cap A_{\sqrt[16]{\varepsilon}}\right)}{v_{M}} & \leqslant\left\|\varphi f_{1}\right\|_{2}^{2} \leqslant\left(1+\frac{\theta}{2}\right)\left\|f_{1}\right\|_{\mathbb{S}^{n}}^{2} \\
& \leqslant\left(1+\frac{\theta}{2}\right) \frac{V^{n}((1+2 \beta) r)}{\operatorname{Vol} \mathbb{S}^{n}} \leqslant(1+\theta) \frac{V^{n}(r)}{\operatorname{Vol} \mathbb{S}^{n}} \\
\frac{\operatorname{Vol}\left(B_{x}((1-\beta) r+2 \sqrt[16]{\varepsilon}) \cap M \cap A_{2} \sqrt[16]{\varepsilon}\right)}{v_{M}} & \geqslant\left\|\varphi f_{2}\right\|_{2}^{2} \geqslant\left(1-\frac{\theta}{2}\right)\left\|f_{2}\right\|_{\mathbb{S}^{n}}^{2} \\
& \geqslant\left(1-\frac{\theta}{2}\right) \frac{V^{n}((1-2 \beta) r)}{\operatorname{Vol} \mathbb{S}^{n}} \geqslant(1-\theta) \frac{V^{n}(r)}{\operatorname{Vol}^{n}}
\end{aligned}
$$

In the second estimates, we can replace ε by $\varepsilon / 2^{16}$ as soon as we assume that $\varepsilon \leqslant$ $\left(\min \left(\frac{1}{4^{16}}, \frac{1}{(2 C(n, N))^{32}},(\beta r)^{16},\left(\frac{\left\|f_{i}\right\|_{\mathbb{S} n}^{2} \theta}{6(C(n, N)}\right)^{32}\right)=K(\theta, r, n)\right.$. Then we have $(1-\beta) r+\sqrt[16]{\varepsilon} \leqslant$
$r \leqslant(1+\beta) r-\sqrt[16]{\varepsilon}$ and get

$$
\left|\frac{\operatorname{Vol}\left(B_{x}(r) \cap M \cap A \sqrt[16]{\varepsilon}\right)}{v_{M}}-\frac{V^{n}(r)}{\operatorname{Vol} \mathbb{S}^{n}}\right| \leqslant \theta \frac{V^{n}(r)}{\operatorname{Vol} \mathbb{S}^{n}}
$$

Combined with Lemma 2.2, we get the result with $\tau(\varepsilon \mid r, n)=\min \left\{\theta / 2^{16} \varepsilon \leqslant K(\theta, r, n)\right\}$.

4. Proof of Theorem 1.1

4.1. Proof of Lemma 1.2.

Proof. In [15], using the Michael-Simon Sobolev inequality as a differential inequation on the volume of intrinsic spheres, P.Topping prove the following lemma.

Lemma 4.1 ([15]). Suppose that M^{m} is a submanifold smoothly immersed in \mathbb{R}^{n+1}, which is complete with respect to the induced metric. Then there exists a constant $\delta(m)>0$ such that for any $x \in M$ and $R>0$, at least one of the following is true:
(i) $M(x, R):=\sup _{r \in(0, R]} \int_{B_{x}(r)}|\mathrm{H}|^{m-1} / r>\delta^{m-1}$;
(ii) $\kappa(x, R):=\inf _{r \in(0, R]} \frac{\operatorname{Vol} B_{x}(r)}{r^{m}}>\delta$.

Where $B_{x}(r)$ is the geodesic ball in M for the intrinsic distance.
In this section, d stands for the intrinsic distance on M. If $d_{H}(A, M) \leqslant 10\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}$, then we just set $T=\emptyset$. Otherwise, there exists $x_{0} \in M$ such that $d\left(A, x_{0}\right)=$ $d_{H}(A, M) \geqslant 10\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}$. Let $\gamma_{0}:\left[0, l_{0}\right] \rightarrow M \backslash A$ be a normal minimizing geodesic from x_{0} to A. For any $t \in I_{0}=\left[0, l_{0}-\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}\right]$, we have $B_{\gamma_{0}(t)}\left(\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}\right) \subset$ $M \backslash A$ and by the previous lemma, there exists $r_{0, t} \leqslant\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}$ such that $r_{0, t} \leqslant$ $\frac{1}{\delta^{m-1}} \int_{B_{\gamma_{0}(t)}\left(r_{0, t}\right)}|\mathrm{H}|^{m-1}$. By compactness of $\gamma_{0}\left(I_{0}\right)$ and by Wiener's selection principle, there exists a finite family $\left(t_{j}\right)_{j \in J_{0}}$ of elements of I_{0} such that the balls of the family $\mathcal{F}_{0}=\left(B_{\gamma_{0}\left(t_{j}\right)}\left(r_{0, t_{j}}\right)\right)_{j \in J_{0}}$ are disjoint and $\gamma\left(I_{0}\right) \subset \cup_{j \in J_{0}} B_{\gamma_{0}\left(t_{j}\right)}\left(3 r_{0, t_{j}}\right)$. Hence we have

$$
\frac{\delta^{m-1}\left(l_{0}-\left(\frac{\mathrm{Vol} M \backslash A}{\delta}\right)^{\frac{1}{m}}\right)}{6} \leqslant \delta^{m-1} \sum_{j \in J_{0}} r_{0, t_{j}} \leqslant \sum_{j \in J_{0}} \int_{B_{\gamma_{0}\left(t_{j}\right)}\left(r_{0, t_{j}}\right)}|\mathrm{H}|^{m-1}
$$

And by assumption on l_{0}, we get $10\left(\frac{\mathrm{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}} \leqslant l_{0} \leqslant \frac{10}{\delta^{m-1}} \sum_{j \in J_{0}} \int_{B_{\gamma_{0}\left(t_{j}\right)}\left(r_{0, t_{j}}\right)}|\mathrm{H}|^{m-1}$.
If $d_{H}\left(A \cup \gamma_{0}\left(\left[0, l_{0}\right]\right), M\right) \leqslant 10\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}$, we set $T=\gamma_{0}\left(\left[0, l_{0}\right]\right)$. Otherwise, we set x_{1} a point of $M \backslash A$ at maximal distance l_{1} from $A \cup \gamma_{0}\left(\left[0, l_{0}\right]\right)$ and γ_{1} the corresponding minimal geodesic. We set $I_{1}=\left[2\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}, l_{1}-2\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}\right]$. Once again, by the Wiener Lemma applied to $\gamma_{1}\left(I_{1}\right)$ we get a family of disjoint balls $\mathcal{F}_{1}=\left(B_{\gamma_{1}\left(t_{j}\right)}\left(r_{1, t_{j}}\right)\right)_{j \in J_{1}}$ such that

$$
\frac{\delta^{m-1}\left(l_{1}-4\left(\frac{\operatorname{Vol} M \backslash A}{\delta}\right)^{\frac{1}{\delta}}\right)}{6} \leqslant \delta^{m-1} \sum_{j \in J_{1}} r_{1, t_{j}} \leqslant \sum_{j \in J_{1}} \int_{B_{\gamma_{1}\left(t_{j}\right)}\left(r_{1, t_{j}}\right)}|\mathrm{H}|^{m-1}
$$

which gives $10\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}} \leqslant l_{1} \leqslant \frac{10}{\delta^{m-1}} \sum_{j \in J_{1}} \int_{B_{\gamma_{1}\left(t_{j}\right)}\left(r_{1, t_{j}}\right)}|\mathrm{H}|^{m-1}$. Note also that the balls of the family $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ are disjoint.

$$
\text { If } d_{H}\left(A \cup \gamma_{0}\left(\left[0, l_{0}\right]\right) \cup \gamma_{1}\left(\left[0, l_{1}\right]\right), M\right) \leqslant 10\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}, \text { we set } T=\gamma_{0}\left(\left[0, l_{0}\right]\right) \cup \gamma_{1}\left(\left[0, l_{1}\right]\right)
$$

Note that T is a geodesic tree (if $\gamma_{1}\left(l_{1}\right) \in \gamma_{0}\left(\left[0, l_{1}\right]\right)$) or the disjoint union of 2 geodesic trees.

If $d_{H}\left(A \cup \gamma_{0}\left(\left[0, l_{0}\right]\right) \cup \gamma_{1}\left(\left[0, l_{1}\right]\right), M\right) \geqslant 10\left(\frac{\mathrm{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}$, then by iteration of what was made for x_{1}, γ_{1} and \mathcal{F}_{1}, we construct a family $\left(x_{j}\right)_{j}$ of points, a family $\left(\gamma_{j}\right)_{j}$ of geodesics and a family $\left(\mathcal{F}_{j}\right)_{j}$ of sets of disjoint balls. Since the $\left(x_{j}\right)_{j}$ are $10\left(\frac{\operatorname{Vol} M \backslash A}{\delta(m)}\right)^{\frac{1}{m}}$-separated in M and since M is compact, the families are finite and only a finite step of iterations can be made. The set $T=\cup_{j} \gamma_{j}\left(\left[0, l_{j}\right]\right)$ is the disjoint union of a finite set of finite geodesic trees and we have

$$
\begin{equation*}
m_{1}(T) \leqslant \frac{10}{\delta^{m-1}} \sum_{j} \sum_{k \in J_{j}} \int_{B_{\gamma_{j}\left(t_{j}\right)}\left(r_{j, t_{k}}\right)}|\mathrm{H}|^{m-1} \leqslant \frac{10}{\delta^{m-1}} \int_{M \backslash A}|\mathrm{H}|^{m-1} \tag{4.1}
\end{equation*}
$$

4.2. Proof of Theorem 1.1. We begin the proof by the case where $\int_{M_{k}}|\mathrm{H}|^{m-1} \leqslant$ A. By Topping's upper bound on the diameter [15] the sequence $\left(M_{k}\right)$ is contained in a fixed ball. By Blaschke selection theorem, we can assume that the sequence M_{k} converges in Hausdorff topology to a compact, connected limit set M_{∞}, which contains Z. Note also that the classical Michael-Simon Sobolev inequality applied to $f=1$ gives us $\left(\operatorname{Vol} M_{k}\right)^{1-\frac{1}{n}} \leqslant C(n) \int_{M_{k}}|\mathrm{H}|$ and so by Hölder, we get $\operatorname{Vol} M_{k} \leqslant$ $C(n)\left(\int_{M_{k}}|\mathrm{H}|^{n-1}\right)^{n} \leqslant C(n, A)$.

It just remain to prove that $m_{1}\left(M_{\infty} \backslash Z\right) \leqslant C(m) A$. Let $\ell \in \mathbb{N}^{*}$ fixed. We set $Z_{r}=\left\{x \in \mathbb{R}^{n+1} / d(x, Z) \leqslant r\right\}$. By weak convergence of $\left(M_{k}\right)_{k}$ to Z and the above upper bound on the volume, we have $\lim _{k} \operatorname{Vol}\left(M_{k} \backslash Z_{\frac{1}{3 \ell}}\right)=0$ and by Lemma 1.2, there exists a finite union of geodesic trees T_{k}^{ℓ} such that $\lim _{k} d_{H}\left(\left(M_{k} \cap Z_{\frac{1}{3 \ell}}\right) \cup T_{k}^{\ell}, M_{\infty}\right)=0$ and $m_{1}\left(T_{k}^{\ell}\right) \leqslant C(m) \int_{M_{k} \backslash Z_{\frac{1}{3 \ell}}}|\mathrm{H}|^{m-1}$ for any k. Moreover, by construction of the part T in the proof of Lemma 1.2, each connected part of T_{k}^{ℓ} is a geodesic tree intersecting $Z_{\frac{1}{3 \ell}} \cap M_{k}$, and by Inequality (4.1), the number of such component intersecting $\mathbb{R}^{n+1} \backslash Z_{\frac{2}{3 \ell}}$ is bounded above by $3 \ell C(m) \int_{M_{k} \backslash Z_{\frac{1}{3 \ell}}}|\mathrm{H}|^{m-1}$. We can assume that this number is constant up to a subsequence. Their union forms a sequence of compact sets $\left(\tilde{T}_{k}^{\ell}\right)$ which, up to a subsequence, converges to a set Y that contains $M_{\infty} \backslash Z_{\frac{1}{\ell}}$. By lower semi-continuity of the m_{1}-measure for sequence of trees (see Theorem 3.18 in [8]), we get that $m_{1}\left(M_{\infty} \backslash Z_{\frac{1}{\ell}}\right) \leqslant m_{1}(Y) \leqslant \liminf _{k} m_{1}\left(\tilde{T}_{k}^{\ell}\right) \leqslant C(m) \liminf _{k} \int_{M_{k} \backslash Z_{\frac{1}{3 \ell}}}|\mathrm{H}|^{m-1}$. Since $M_{\infty} \backslash Z$ is the monotone union of the $M_{\infty} \backslash Z_{\frac{1}{\ell}}$, we get that $M_{\infty}=Z \cup T$ with T a 1-dimensional subset of \mathbb{R}^{n+1} of measure less than $C(m) \sup _{l} \lim \inf _{k} \int_{M_{k} \backslash Z_{\frac{1}{3 l}}}|\mathrm{H}|^{m-1} \leqslant$ $C(m) A$.

In the case $\int_{M_{k}}|\mathrm{H}|^{p} \leqslant A$ with $p>m-1$, we have

So the weak convergence to Z implies that $m_{1}\left(M_{\infty} \backslash Z_{\frac{1}{3 \ell}}\right)=0$ for any ℓ. Since $M_{\infty} \backslash$ $Z_{\frac{1}{3 \ell}} \neq \emptyset$ implies $m_{1}\left(M_{\infty} \backslash Z\right) \geqslant \frac{1}{3 \ell}$ by what precedes, we get $M_{\infty} \subset Z_{\frac{1}{3 l}}$ for any l, hence $M_{\infty}=Z$.
4.3. Proof of Theorems 1.9 and 1.10. We can assume that $\bar{X}\left(M_{k}\right)=0$ and $\|\mathrm{H}\|_{2}=$ $1 \leqslant\|\mathrm{H}\|_{p}$ by scaling. Hence we have $v_{M_{k}}\|\mathrm{H}\|_{p}^{n-1} \leqslant v_{M_{k}}\|\mathrm{H}\|_{p}^{n} \leqslant A$ and $S_{M_{k}}=\mathbb{S}^{n}$ for any k. We now conclude by Corollary 1.6 and Theorem 1.1.

5. Proof of Theorem 1.4

We first deal the case where T is a segment $\left[x_{0}, x_{0}+l \nu\right]$ with $x_{0} \in M_{1}$ and ν a normal vector to M_{1} at x_{0}. The general case will be obtained by iterating this simple case.

5.1. case where T is a segment.

5.1.1. basic construction. We take off a small ball of M_{2} and glue smoothly instead a curved cylinder that is isometric to the product $[0,1] \times \frac{1}{10} \mathbb{S}^{m-1}$ at the neighbourhood of its left boundary component.

We note H_{1} the resulting submanifold and $H_{\varepsilon}=\varepsilon H_{1}$. Let $c:[0, l] \rightarrow \mathbb{R}^{+}$be a \mathcal{C}^{1} positive function, constant equal to $\frac{1}{10}$ at the neighbourhoods of 0 and $l, T_{c, \varepsilon}$ be a cylinder of revolution isometric to $\left\{(t, u) \in[0, l] \times \mathbb{R}^{m} /|u|=\varepsilon c(t)\right\}$ and J_{1} be a cylinder of revolution isometric to $[0,1 / 4] \times \frac{1}{10} \mathbb{S}^{m-1}$ at the neighbourhood of one of its boundary component and isometric to the flat annulus $\left.B_{0}\left(\frac{3}{10}\right) \backslash B_{0}\left(\frac{2}{10}\right) \subset \mathbb{R}^{m}\right)$ at the neighbourhood of its other boundary component. We also set $J_{\varepsilon}=\varepsilon J_{1}$ and $N_{c, \varepsilon}$ the submanifold obtained by gluing $H_{\varepsilon}, T_{c, \varepsilon}$ and J_{ε}.

Since the second fundamental form of $T_{c, \varepsilon}$ is given by $|B|^{2}=\frac{\left(\varepsilon c^{\prime \prime}\right)^{2}}{\left(1+\left(\varepsilon c^{\prime}\right)^{2}\right)^{3}}+\frac{m-1}{\varepsilon^{2} c^{2}\left(1+\left(\varepsilon c^{\prime}\right)^{2}\right)}$, we get

$$
\int_{N_{c, \varepsilon}}|\mathrm{~B}|^{\alpha} d v=a\left(H_{1}, J_{1}\right) \varepsilon^{m-\alpha}+\operatorname{Vol} \mathbb{S}^{m-1} \varepsilon^{m-1-\alpha}(m-1)^{\frac{\alpha}{2}} \int_{0}^{l} c^{m-1-\alpha}+O_{c, \alpha}\left(\varepsilon^{m+1-\alpha}\right)
$$

with $a\left(H_{1}, J_{1}\right)$ a constant that depends only on H_{1} and J_{1} (not on c, l and ε).
We set M_{1}^{ε} the submanifold of \mathbb{R}^{n+1} obtained by flattening M_{1} at the neighbourhood of a point $x_{0} \in M_{1}$ and taking out a ball centred at x_{0} and of radius $\frac{3 \varepsilon}{10}$. More precisely, M_{1} is locally equal to $\left\{x_{0}+w+f(w), w \in B_{0}\left(\varepsilon_{0}\right) \subset T_{x_{0}} M_{1}\right\}$ where f : $B_{0}\left(\varepsilon_{0}\right) \subset T_{x_{0}} M_{1} \rightarrow N_{x_{0}} M_{1}$ is a smooth function and $N_{x_{0}} M_{1}$ is the normal bundle M_{1} at x_{0}. Let $\varphi: \mathbb{R}_{+} \rightarrow[0,1]$ be a smooth function such that $\varphi=0$ on $\left[0, \frac{\varepsilon_{0}}{3}\right]$ and $\varphi=1$ on $\left[\frac{2 \varepsilon_{0}}{3},+\infty\right)$. We set M_{1}^{ε} the submanifold obtained by replacing the subset $\left\{x_{0}+w+f(w), w \in B_{0}\left(\varepsilon_{0}\right) \subset T_{x_{0}} M_{1}\right\}$ by $\left\{x_{0}+w+f_{\varepsilon}(w), w \in B_{0}\left(\varepsilon_{0}\right) \backslash B_{0}(3 \varepsilon / 10) \subset\right.$ $\left.T_{x_{0}} M_{1}\right\}$, with $f_{\varepsilon}(w)=f\left(\varphi\left(\frac{\varepsilon_{0}\|w\|}{\varepsilon}\right) w\right)$ for any $\varepsilon \leqslant 3 \varepsilon_{0} / 2$. Note that M_{1}^{ε} is a smooth deformation of M_{1} in a neighbourhood of x_{0} and its boundary has a neighbourhood isometric to a flat annulus $B_{0}(\varepsilon / 3) \backslash B_{0}(3 \varepsilon / 10)$ in \mathbb{R}^{m}. Note that for ε small enough, $M_{1}^{\varepsilon} \backslash\left\{x \in M_{1}^{\varepsilon} / d\left(x, \partial M_{1}^{\varepsilon}\right) \leqslant 8 \varepsilon\right\}$ is a subset of M_{1}. This fact will be used below. As a
graph of a function, the curvatures of M_{1}^{ε} at the neighbourhood of x_{0} are given by the formulae

$$
\begin{aligned}
\left|\mathrm{B}_{\varepsilon}\right|^{2} & =\sum_{i, j, k, l=1}^{m} \sum_{p, q=m+1}^{n+1} D d f_{p}\left(e_{i}, e_{k}\right) D d f_{q}\left(e_{j}, e_{l}\right) H^{i, j} H^{k, l} G^{p, q} \\
\mathrm{H}_{\varepsilon} & =\frac{1}{m} \sum_{k, l=m+1}^{n+1} \sum_{i, j=1}^{m} D d f_{k}\left(e_{i}, e_{j}\right) H^{i, j} G^{k, l}\left(\nabla f_{l}-e_{l}\right)
\end{aligned}
$$

where $\left(e_{1}, \cdots, e_{m}\right)$ is an ONB of $T_{x_{0}} M_{1},\left(e_{m+1}, \cdots, e_{n+1}\right)$ an ONB of $N_{x_{0}} M_{1}, f_{\varepsilon}(w)=$ $\sum_{i=m+1}^{n+1} f_{i}(w) e_{i}, G_{k l}=\delta_{k l}+\left\langle\nabla f_{k}, \nabla f_{l}\right\rangle$ and $H_{k l}=\delta_{k l}+\left\langle d f_{\varepsilon}\left(e_{k}\right), d f_{\varepsilon}\left(e_{l}\right)\right\rangle$. Now f_{ε} converges in \mathcal{C}^{∞} norm to f on any compact subset of $B_{0}\left(\varepsilon_{0}\right) \backslash\{0\}$, while $\left|d f_{\varepsilon}\right|$ and $\left|D d f_{\varepsilon}\right|$ remain uniformly bounded on $B_{0}\left(\varepsilon_{0}\right)$ when ε tends to 0 . By the Lebesgue convergence theorem, we get

$$
\int_{M_{1}^{\varepsilon}}\left|\mathrm{H}_{\varepsilon}\right|^{\alpha} d v \rightarrow \int_{M_{1}}|\mathrm{H}|^{\alpha} d v \quad \int_{M_{1}^{\varepsilon}}\left|\mathrm{B}_{\varepsilon}\right|^{\alpha} d v \rightarrow \int_{M_{1}}|\mathrm{~B}|^{\alpha} d v
$$

We set M_{ε} the m-submanifold of \mathbb{R}^{n+1} obtained by gluing M_{1}^{ε} and $N_{c, \varepsilon}$ along their boundaries in a fixed direction $\nu \in N_{x_{0}} M_{1}$. Note that M_{ε} is a smooth immersion of $M_{1} \# M_{2}$.

By the computations above, the sequence of immersion $i_{k}\left(M_{1} \# M_{2}\right)=M_{\frac{1}{k}}$ satisfies the properties 1), 2) an 4) announced in Theorem 1.4 when k tends to ∞ (in the case where T is a segment).
5.1.2. Computation of the limit spectrum of the basic construction. Let $\left(\lambda_{k}\right)_{k \in \mathbb{N}}$ be the spectrum with multiplicities obtained by union the spectrum of M_{1} and of the spectrum $S p\left(P_{c}\right)$ of the operator $P(f)=-f^{\prime \prime}-(m-1) \frac{c^{\prime}}{c} f^{\prime}$ on $[0, l]$ with Dirichlet condition at 0 and Neumann condition at l. We will adapt the method developed by C.Anné in [4] to prove that the spectrum of the immersions constructed in the previous toy case converges to $\left(\lambda_{k}\right)_{k \in \mathbb{N}}$. We denote by $\left(\mu_{k}\right)_{k \in \mathbb{N}}$ the eigenvalues of M_{1} counted with multiplicities and by $\left(P_{k}\right)_{k \in \mathbb{N}}$ a L^{2}-ONB of eigenfunctions of M_{1}. We set $\left(\nu_{k}, h_{k}\right)_{k \in \mathbb{N}}$ and $\left(\lambda_{k}^{\varepsilon}, f_{k}^{\varepsilon}\right)_{k \in \mathbb{N}}$ the corresponding data on $\left([0, l], c^{n-1}(t) d t\right)$ and M_{ε}. We set $\tilde{h}_{k}^{\varepsilon}$ the function on M_{ε} obtained by considering h_{k} as a function on the cylinder $T_{\tilde{\sim}, \varepsilon}$, extending it continuously by 0 on J_{ε} and M_{1}^{ε}, and by $h_{k}(l)$ on H_{ε}. We also set $\tilde{P}_{k}^{\varepsilon}$ the function on M_{ε} which is equal to $\psi_{\varepsilon}\left(d\left(\partial M_{1}^{\varepsilon}, \cdot\right)\right) P_{k}$ on M_{1}^{ε} (with $\psi_{\varepsilon}(t)=0$ when $t \leqslant 8 \varepsilon, \psi_{\varepsilon}(t)=\frac{\ln t-\ln (8 \varepsilon)}{-\ln (8 \sqrt{\varepsilon})}$ when $t \in[8 \varepsilon, \sqrt{\varepsilon}]$ and $\psi_{\varepsilon}(t)=1$ otherwise) and is extended by 0 outside M_{1}^{ε}. Using the family $\left(\tilde{h}_{k}^{\varepsilon}, \tilde{P}_{k}^{\varepsilon}\right)$ as test functions, the min-max principle easily gives us

$$
\begin{equation*}
\lambda_{k}^{\varepsilon} \leqslant \lambda_{k}\left(1+\tau\left(\varepsilon \mid k, n, c, M_{1}\right)\right) \tag{5.1}
\end{equation*}
$$

For any $k \in \mathbb{N}$, we set $\alpha_{k}=\liminf _{\varepsilon \rightarrow 0} \lambda_{k}^{\varepsilon}, \varphi_{k, \varepsilon}^{(1)}(x)=\varepsilon^{\frac{m}{2}}\left(f_{k}^{\varepsilon}\right)_{\mid H_{\varepsilon} \cup J_{\varepsilon}}(\varepsilon x)$, seen as a function on $H_{1} \cup J_{1}, \varphi_{k, \varepsilon}^{(2)}(t, x)=\varepsilon^{\frac{m-1}{2}}\left(f_{k}^{\varepsilon}\right)_{\mid T_{c, \varepsilon}}(t, \varepsilon c(t) x)$ seen as a function on $[0, l] \times \mathbb{S}^{m-1}$ and $\varphi_{k, \varepsilon}^{(3)}$ the function on M_{1} equal to f_{k}^{ε} on $\left\{x \in M_{1}^{\varepsilon} / d\left(x, \partial M_{1}^{\varepsilon}\right) \geqslant 8 \varepsilon\right\}$ and extended harmonically to M_{1}.

Easy computations give us

$$
\begin{equation*}
\int_{H_{1} \cup J_{1}}\left|\varphi_{k, \varepsilon}^{(1)}\right|^{2}=\int_{H_{\varepsilon} \cup J_{\varepsilon}}\left|f_{k}^{\varepsilon}\right|^{2}, \quad \int_{H_{1} \cup J_{1}}\left|d \varphi_{k, \varepsilon}^{(1)}\right|^{2}=\varepsilon^{2} \int_{H_{\varepsilon} \cup J_{\varepsilon}}\left|d f_{k}^{\varepsilon}\right|^{2} \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
\int_{T_{c, \varepsilon}}\left|f_{k}^{\varepsilon}\right|^{2}=\int_{0}^{l}\left(\int_{\mathbb{S}^{m-1}}\left|\varphi_{k, \varepsilon}^{(2)}(t, u)\right|^{2} d u\right) \sqrt{1+\varepsilon^{2}\left(c^{\prime}(t)\right)^{2}} c^{m-1}(t) d t, \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
\int_{T_{c, \varepsilon}}\left|d f_{k}^{\varepsilon}\right|^{2}=\int_{0}^{l}\left[\frac{c^{m-1}}{\sqrt{1+\varepsilon^{2}\left(c^{\prime}\right)^{2}}} \int_{\mathbb{S}^{m-1}}\left|\frac{\partial \varphi_{k, \varepsilon}^{(2)}}{\partial t}\right|^{2}+\frac{\sqrt{1+\varepsilon^{2}\left(c^{\prime}\right)^{2} c^{m-1}}}{\varepsilon^{2} c^{2}} \int_{\mathbb{S}^{m-1}}\left|d_{\mathbb{S}^{m-1}} \varphi_{k, \varepsilon}^{(2)}\right|^{2}\right] . \tag{5.4}
\end{equation*}
$$

The argument of C. Anne in [4] (or of Rauch and Taylor in [11]) can be adapted to get that there exists a constant $C\left(M_{1}\right)$ such that $\left\|\varphi_{k, \varepsilon}^{(3)}\right\|_{H^{1}\left(M_{1}\right)} \leqslant C\left\|f_{k}^{\varepsilon}\right\|_{H^{1}\left(M_{\varepsilon}\right)}$. Since we have $\left\|f_{k}^{\varepsilon}\right\|_{H^{1}\left(M_{\varepsilon}\right)}=1+\lambda_{k}^{\varepsilon}$, (5.1) gives us $\left\|\varphi_{k, \varepsilon}^{(3)}\right\|_{H^{1}\left(M_{1}\right)} \leqslant C\left(k, M_{1}, l\right)$ for $\varepsilon \leqslant \varepsilon_{0}\left(k, M_{1}, l\right)$. We infer that for any $k \in \mathbb{N}$ there is a subsequence $\varphi_{k, \varepsilon_{i}}^{(3)}$ which weakly converges to $\tilde{f}_{k}^{(3)} \in H^{1}\left(M_{1}\right)$ and strongly in $L^{2}\left(M_{1}\right)$ and such that $\lim _{i} \lambda_{k}^{\varepsilon_{i}}=\alpha_{k}$. By definitions of M_{1}^{ε} and $\varphi_{k, \varepsilon}^{(3)}$, and since $\mathcal{C}_{0}^{\infty}\left(M_{1} \backslash\left\{x_{0}\right\}\right)$ is dense in $\mathcal{C}^{\infty}\left(M_{1}\right)$, it is easy to see that $\tilde{f}_{k}^{(3)}$ is a distributional (hence a strong) solution to $\Delta \tilde{f}_{k}^{(3)}=\alpha_{k} \tilde{f}_{k}^{(3)}$ on M_{1} (see [14], p.206). In particular, either $\tilde{f}_{k}^{(3)}$ is 0 or α_{k} is an eigenvalue of M_{1}.

By the same compactness argument, there exists a subsequence $\varphi_{k, \varepsilon_{i}}^{(1)}$ which weakly converges to $\tilde{f}_{k}^{(1)}$ in $H^{1}\left(H_{1} \cup J_{1}\right)$ and strongly in $L^{2}\left(H_{1} \cup J_{1}\right)$. By Equalities (5.2), we get that $\left\|d \tilde{f}_{k}^{(1)}\right\|_{L^{2}\left(H_{1}\right)}=0$ and so $\tilde{f}_{k}^{(1)}$ is constant on H_{1} and on J_{1} and $\varphi_{k, \varepsilon_{i}}^{(1)}$ strongly converges to $\tilde{f}_{k}^{(1)}$ in $H^{1}\left(H_{1} \cup J_{1}\right)$. Let $\eta:[0,10] \rightarrow[0,1]$ be a smooth function such that $\eta(x)=1$ for any $x \leqslant 1 / 2, \eta(x)=0$ for any $x \geqslant 1$ and $\left|\eta^{\prime}\right| \leqslant 4$. We set s_{ε} the distance function to $\partial S_{\varepsilon}=\{0\} \times \frac{\varepsilon}{10} \mathbb{S}^{m-1}$ in $S_{\varepsilon}=M_{1}^{\varepsilon} \cup J_{\varepsilon}$ and θ_{ε} the volume density of S_{ε} in normal coordinate to ∂S_{ε}. We set L the distance between the two boundary components of J_{1}. By construction of S_{ε}, we have $\frac{3}{10} \geqslant \theta_{\varepsilon}\left(s_{\varepsilon}, u\right)=\theta_{1}\left(s_{\varepsilon} / \varepsilon\right) \geqslant 1$ for any $s_{\varepsilon} \in[0, L \varepsilon]$ and any u normal to ∂S_{ε}, and $c\left(M_{1}\right)\left(\frac{s_{\varepsilon}}{\varepsilon}\right)^{m-1} \geqslant \theta_{\varepsilon}\left(s_{\varepsilon}, u\right) \geqslant \frac{1}{c\left(M_{1}\right)}\left(\frac{s_{\varepsilon}}{\varepsilon}\right)^{m-1}$ for $s_{\varepsilon} \in[\varepsilon L, 8 \varepsilon]$. Hence, if we denote by $S_{\partial S_{\varepsilon}}(r)$ the set of points in S_{ε} at distance r
from ∂S_{ε}, we get for any $r \leqslant 8+L$ that

$$
\begin{align*}
& \int_{S_{\partial S_{\varepsilon}}(\varepsilon r)}\left(f_{k}^{\varepsilon}\right)^{2}= \\
& =\frac{\varepsilon^{\varepsilon} \mathbb{S}^{m-1}}{}\left(\int_{\varepsilon r}^{1} \frac{\partial}{\partial 0^{m-1}}\left[\eta(\cdot) f_{k}^{\varepsilon}(\cdot, u)\right] d s_{\varepsilon}\right)^{2} \theta_{\varepsilon}(r \varepsilon, u) d u \\
& \leqslant \frac{c\left(M_{1}\right) \varepsilon^{m-1}}{10^{m-1}} \int_{\mathbb{S}^{m-1}}\left(\int_{\varepsilon r}^{1} \frac{\partial}{\partial s_{\varepsilon}}\left[\eta(\cdot) f_{k}^{\varepsilon}\left(\cdot, \frac{\varepsilon}{10} u\right)\right] d s_{\varepsilon}\right)^{2} \theta_{\varepsilon}\left(r \varepsilon, \frac{\varepsilon}{\partial s_{\varepsilon}} u\right) d u \\
& \tag{5.5}\\
& \left.\left.\qquad \int_{S_{\partial S_{\varepsilon}}(\varepsilon r)}\left(f_{k}^{\varepsilon}\right)^{2} \leqslant c\left(M_{k}^{\varepsilon}\left(\cdot, \frac{\varepsilon}{10} u\right)\right]\right)^{2} \theta_{\varepsilon}\left(s_{\varepsilon}, \frac{\varepsilon}{10} u\right) d f_{\varepsilon}^{\varepsilon} \|_{H^{1}\left(S_{\varepsilon}\right)}^{2}\right)\left(\int_{0}^{1} \frac{1}{\theta_{\varepsilon}\left(s_{\varepsilon}, \frac{\varepsilon}{10} u\right)} d s_{\varepsilon}\right) d u
\end{align*}
$$

which gives us $\varepsilon_{i} \int_{\partial S_{\varepsilon_{i}}}\left(f_{k}^{\varepsilon_{i}}\right)^{2}=\int_{\partial S_{1}}\left(\varphi_{k, \varepsilon_{i}}^{(1)}\right)^{2} \rightarrow \int_{\partial S_{1}}\left(\tilde{f}_{k}^{(1)}\right)^{2}=0$ (by the trace inequality and the compactness of the trace operator) and so $\tilde{f}_{k}^{(1)}$ is null on J_{1}.

By (5.4), and since c is positive and \mathcal{C}^{1} on $[0, l]$, there exists a subsequence $\varphi_{k, \varepsilon_{i}}^{(2)}$ which converges weakly to $\tilde{f}_{k}^{(2)}$ in $H^{1}\left([0, l] \times \mathbb{S}^{m-1}\right)$ and strongly in $L^{2}\left([0, l] \times \mathbb{S}^{m-1}\right)$. By the trace inequality applied on $[0, l] \times \mathbb{S}^{m-1}$, we also have that $\left\|\varphi_{k, \varepsilon_{i}}^{(2)}\right\|_{L^{2}\left(\{l\} \times \mathbb{S}^{m-1}\right)}$ is bounded. Now, since

$$
10^{1-m} \varepsilon_{i} \int_{\{l\} \times \mathbb{S}^{m-1}}\left|\varphi_{k, \varepsilon_{i}}^{(2)}\right|^{2}=\varepsilon_{i} \int_{\{l\} \times \frac{\varepsilon_{i}}{10} \mathbb{S}^{m-1}}\left|f_{k}^{\varepsilon_{i}}\right|^{2}=\varepsilon_{i} \int_{\partial H_{\varepsilon_{i}}}\left|f_{k}^{\varepsilon_{i}}\right|^{2}=\int_{\partial H_{1}}\left|\varphi_{k, \varepsilon_{i}}^{(1)}\right|^{2}
$$

we get that $\tilde{f}_{k}^{(1)}=0$ on H_{1}.
We set $h_{i}(t)=\int_{\mathbb{S}^{m-1}} \varphi_{k, \varepsilon_{i}}^{(2)}(t, x) d x$ and $h(t)=\int_{\mathbb{S}^{m-1}} \tilde{f}_{k}^{(2)}(t, x) d x$, we have $h, h_{i} \in$ $H^{1}([0, l])$ (with $\left.h_{i}^{\prime}(t)=\int_{\mathbb{S}^{m-1}} \frac{\partial \varphi_{k, \varepsilon_{i}}^{(2)}}{\partial t}(t, x) d x\right), h_{i} \rightarrow h$ strongly in $L^{2}([0, l])$ and weakly in $H^{1}([0, l])$. For any $\psi \in \mathcal{C}^{\infty}([0, l])$ with $\psi(0)=0$ and $\psi^{\prime}(l)=0$, seen as a function on $T_{c, \varepsilon}$ and extended by 0 to S_{ε} and by $\psi(l)$ to H_{ε}, we have

$$
\begin{aligned}
& \int_{0}^{l} h^{\prime}\left(\psi c^{m-1}\right)^{\prime} d t-(m-1) \int_{0}^{l} h^{\prime} \frac{c^{\prime}}{c} \psi c^{m-1} d t=\int_{0}^{l} h^{\prime} \psi^{\prime} c^{m-1} d t \\
& =\lim _{i} \int_{0}^{l} h_{i}^{\prime}(t) \psi^{\prime}(t) \frac{c^{m-1}}{\sqrt{1+\varepsilon_{i}^{2}\left(c^{\prime}\right)^{2}}} d t=\lim _{i} \int_{M_{\varepsilon_{i}}} \varepsilon_{i}^{\frac{1-m}{2}}\left\langle d f_{k}^{\varepsilon_{i}}, d \psi\right\rangle=\lim _{i} \int_{M_{\varepsilon_{i}}} \varepsilon_{i}^{\frac{1-m}{2}} \lambda_{k}^{\varepsilon_{i}} f_{k}^{\varepsilon_{i}} \psi \\
& =\alpha_{k} \lim _{i}\left(\int_{[0, l] \times \mathbb{S}^{m-1}} \varphi_{k, \varepsilon_{i}}^{(2)} \psi c^{m-1} \sqrt{1+\varepsilon_{i}^{2}\left(c^{\prime}\right)^{2}}+\psi(l) \varepsilon_{i}^{\frac{1-m}{2}} \int_{H_{\varepsilon_{i}}} f_{k}^{\varepsilon_{i}}\right) \\
& =\alpha_{k} \int_{0}^{l} h \psi c^{m-1} d t
\end{aligned}
$$

where we have used that $\varepsilon_{i}^{\frac{1-m}{2}}\left|\int_{H_{\varepsilon_{i}}} f_{k}^{\varepsilon_{i}}\right| \leqslant \sqrt{\varepsilon_{i}} \sqrt{\operatorname{Vol}\left(H_{1}\right) \int_{H_{\varepsilon_{i}}}\left(f_{k}^{\varepsilon_{i}}\right)^{2}}$. Since c is positive, we get that h is a weak solution to $y^{\prime \prime}+(m-1) \frac{c^{\prime}}{c} y^{\prime}+\alpha_{k} y=0$ on $[0, l]$ and that $h^{\prime}(l)=0$. Since we have $10^{m-1} \int_{\partial S_{\varepsilon_{i}}}\left(f_{k}^{\varepsilon_{i}}\right)^{2}=\int_{\{0\} \times \mathbb{S}^{m-1}}\left(\varphi_{k, \varepsilon_{i}}^{(2)}\right)^{2} \rightarrow \int_{\{0\} \times \mathbb{S}^{m-1}}\left(\tilde{f}_{k}^{(2)}\right)^{2}$ (by compactness of the trace operator) and $\int_{\partial S_{\varepsilon_{i}}}\left(f_{k}^{\varepsilon_{i}}\right)^{2} \rightarrow 0$ by (5.5), we get $|h(0)|^{2} \leqslant$ $\operatorname{Vol} \mathbb{S}^{m-1} \int_{\{0\} \times \mathbb{S}^{m-1}}\left(\tilde{f}_{k}^{(2)}\right)^{2}=0$, and so $h(0)=0$. Since $d_{\mathbb{S}^{m-1}} \varphi_{k, \varepsilon_{i}}^{(2)}$ converges weakly to $d_{\mathbb{S}^{m-1}} \tilde{f}_{k}^{(2)}$ in $L^{2}\left([0, l] \times \mathbb{S}^{m-1}\right)$, Inequality (5.4) gives $\left\|d_{\mathbb{S}^{m-1}} \tilde{f}_{k}^{(2)}\right\|_{L^{2}\left([0, l] \times \mathbb{S}^{m-1}\right)}=0$, i.e.
$\tilde{f}_{k}^{(2)}$ is constant on almost every sphere $\{t\} \times \mathbb{S}^{m-1}$ of $[0, l] \times \mathbb{S}^{m-1}$. We infer that $\tilde{f}_{k}^{(2)}$ is equal to $\frac{1}{\text { Vol } \mathbb{S}^{m-1}} h$ seen as a function on $[0, l] \times \mathbb{S}^{m-1}$ and so, either $\tilde{f}_{k}^{(2)}=0$ or α_{k} is an eigenvalue of P_{c} for the Dirichlet condition at 0 and the Neumann condition at l.

To conclude, we have

$$
\begin{aligned}
& \int_{M_{1}} \tilde{f}_{k}^{(3)} \tilde{f}_{l}^{(3)}+\int_{[0, l] \times \mathbb{S}_{m-1}} \tilde{f}_{k}^{(2)} \tilde{f}_{l}^{(2)} c^{m-1} \\
& =\lim _{i} \int_{M_{1}} \varphi_{k, \varepsilon_{i}}^{(3)} \varphi_{l, \varepsilon_{i}}^{(3)}+\int_{J_{1} \cup H_{1}} \varphi_{k, \varepsilon_{i}}^{(1)} \varphi_{l, \varepsilon_{i}}^{(1)}+\int_{[0, l] \times \mathbb{S}^{m-1}} \varphi_{k, \varepsilon_{i}}^{(2)} \varphi_{l, \varepsilon_{i}}^{(2)} c^{m-1} \sqrt{1+\varepsilon_{i}^{2}\left(c^{\prime}\right)^{2}} \\
& =\lim _{i} \int_{M_{\varepsilon_{i}}} f_{k}^{\varepsilon_{i}} f_{l}^{\varepsilon_{i}}-\lim _{i} \int_{M_{1}^{\varepsilon_{i}} \cap B\left(\partial M_{1}^{\varepsilon_{i}}, 8 \varepsilon_{i}\right)} f_{k}^{\varepsilon_{i}} f_{l}^{\varepsilon_{i}}+\lim _{i} \int_{M_{1} \backslash\left(M_{1}^{\varepsilon_{i}} \backslash B\left(\partial M_{1}^{\varepsilon_{i}}, 8 \varepsilon_{i}\right)\right)} \varphi_{k, \varepsilon_{i}}^{(3)} \varphi_{l, \varepsilon_{i}}^{(3)} \\
& =\delta_{k l}
\end{aligned}
$$

where, in the last equality, we have used that $\varphi_{k, \varepsilon_{i}}^{(3)}$ and $\varphi_{l, \varepsilon_{i}}^{(3)}$ converge strongly to $\tilde{f}_{k}^{(3)}$ and $\tilde{f}_{l}^{(3)}$ in $L^{2}\left(M_{1}\right)$, that $\operatorname{Vol}\left(M_{1} \backslash\left(M_{1}^{\varepsilon_{i}} \backslash B\left(\partial M_{1}^{\varepsilon_{i}}, 8 \varepsilon_{i}\right)\right)\right.$ tends to 0 with ε_{i}, and the inequality

$$
\int_{M_{1}^{\varepsilon_{i}} \cap B\left(\partial M_{1}^{\varepsilon_{i}}, 8 \varepsilon_{i}\right)}\left(f_{k}^{\varepsilon_{i}}\right)^{2} \leqslant c\left(M_{1}\right)\left\|f_{k}^{\varepsilon_{i}}\right\|_{H^{1}\left(M_{\varepsilon_{i}}\right)} \varepsilon_{i}^{2}\left|\ln \varepsilon_{i}\right|
$$

which is obtained by integration of Inequality (5.5) with respect on $r \in[L, L+8]$. Note that we need the inclusion. Hence, by the min-max principle, we have $\alpha_{k} \geqslant \lambda_{k}$ for any $k \in \mathbb{N}$. We conclude that $\lim _{\varepsilon \rightarrow 0} \lambda_{k}\left(M_{\varepsilon}\right)=\lambda_{k}$ for any $k \in \mathbb{N}$. Note that in the case $c \equiv \frac{1}{10}$, the spectrum of P_{c} with Dirichlet condition at 0 and Neumann condition at l is $\left\{\frac{\pi^{2}}{l^{2}}\left(k+\frac{1}{2}\right)^{2}, k \in \mathbb{N}\right\}$ with all the multiplicities equal to 1 .
5.1.3. End of the proof of Theorem 1.4 in the case where T is a segment. The sequence of basic immersions $\left(M_{\varepsilon}\right)$ gives Theorem 1.4 for $T=\left[x_{0}, x_{0}+l \nu\right]$, except for the point 3) since all the eigenvalues of $[0, l]$ appear in the spectrum of the limit. To get also point 3) of Theorem 1.4, we will iterate the basic construction. We fix $k \in \mathbb{N}$ and l_{k} small enough such that $\lambda_{1}\left(\left[0, l_{k}\right]\right)>2 k$ and with $l / l_{k} \in \mathbb{N}$. Applying the basic construction to $M_{1}^{\prime}=M_{1}, M_{2}^{\prime}=\mathbb{S}^{n}$ and $T^{\prime}=\left[x_{0}, x_{0}+l_{k} \nu\right]$, we get an immersion of $N_{1}=M_{1} \# \mathbb{S}^{m}$ such that $d_{H}\left(M_{1} \cup\left[x_{0}, x_{0}+l_{k} \nu\right], N_{1}\right) \leqslant 2^{-\frac{l}{l_{k}}},\left|\lambda_{p}\left(N_{1}\right)-\lambda_{p}\left(M_{1}\right)\right| \leqslant 2^{-\frac{l}{l_{k}}}$ for any p such that $\lambda_{p}\left(M_{1}\right) \leqslant k,\left|\operatorname{Vol} N_{1} \backslash M_{1}^{\varepsilon_{0}}\right| \leqslant 2^{-\frac{l}{l_{k}}} \operatorname{Vol} M_{1},\left.\left|\int_{N_{1} \backslash M_{1}^{\varepsilon_{0}}}\right| \mathrm{B}\right|^{m-1}-\operatorname{Vol} \mathbb{S}^{m-1} l_{k} \mid \leqslant$ $2^{-\frac{l}{l_{k}}} \int_{M_{1}}|\mathrm{~B}|^{m-1},\left.\left|\int_{N_{1} \backslash M_{1}^{\varepsilon_{0}}}\right| \mathrm{H}\right|^{m-1}-\left.\operatorname{Vol} \mathbb{S}^{m-1}\left(\frac{m-1}{m}\right)^{m-1} l_{k}\left|\leqslant 2^{-\frac{l}{l_{k}}} \int_{M_{1}}\right| \mathrm{H}\right|^{m-1}$, where $\varepsilon_{0}=\varepsilon_{0}(k)$ and $\lim _{k} \varepsilon_{0}=0$ and $\int_{N_{1} \backslash M_{1}^{\varepsilon_{0}}}|\mathrm{~B}|^{(m-1) \frac{k-1}{k}} \leqslant 2^{-\frac{l}{l_{k}}} \int_{M_{1}}|\mathrm{H}|^{(m-1) \frac{k-1}{k}}$. We now iterate the basic construction (with $M_{1}^{\prime}=N_{i}, M_{2}^{\prime}=\mathbb{S}^{n}$ and $T^{\prime}=\left[x_{i}, x_{i}+l_{k} \nu\right]$, where $\left.\left\{x_{i}\right\}=N_{i} \cap\left(x_{0}+\mathbb{R}^{+} \nu\right)\right)$ to get a sequence of $\frac{l}{l_{k}}$ immersions $N_{2}=N_{1} \# \mathbb{S}^{m}, \cdots, N_{\frac{l}{l_{k}}-1}=$
$N_{\frac{l}{l_{k}}-2} \# \mathbb{S}^{m}, N_{\frac{l}{l_{k}}}=N_{\frac{l}{l_{k}}-1} \# M_{2}$ such that

$$
\begin{aligned}
& d_{H}\left(N_{i}, M_{1} \cup\left[x_{0}, x_{0}+i l_{k} \nu\right]\right) \leqslant i 2^{-\frac{l}{l_{k}}}, \quad\left|\operatorname{Vol} N_{i+1} \backslash N_{i}^{\varepsilon_{i}}\right| \leqslant 2^{-\frac{l}{l_{k}}} \operatorname{Vol} M_{1} \\
& \left.\left|\int_{N_{i+1} \backslash N_{i}^{\varepsilon_{i}}}\right| \mathrm{B}\right|^{m-1}-\left.\operatorname{Vol} \mathbb{S}^{m-1} l_{k}\left|\leqslant 2^{-\frac{l}{l_{k}}} \int_{M_{1}}\right| \mathrm{B}\right|^{m-1} \\
& \left.\left|\int_{N_{i+1} \backslash N_{i}^{\varepsilon_{i}}}\right| \mathrm{H}\right|^{m-1}-\left.\operatorname{Vol} \mathbb{S}^{m-1}\left(\frac{m-1}{m}\right)^{m-1} l_{k}\left|\leqslant 2^{-\frac{l}{l_{k}}} \int_{M_{1}}\right| \mathrm{H}\right|^{m-1}, \\
& \int_{N_{i+1} \backslash N_{i}^{\varepsilon_{i}}}|\mathrm{~B}|^{(m-1) \frac{k-1}{k}} \leqslant 2^{-\frac{l}{l_{k}}} \int_{M_{1}}|\mathrm{H}|^{(m-1) \frac{k-1}{k}}
\end{aligned}
$$

$$
\left|\lambda_{p}\left(N_{i}\right)-\lambda_{p}\left(N_{i+1}\right)\right| \leqslant 2^{-\frac{l}{l_{k}}} \text { for any } i \leqslant \frac{l}{l_{k}}-1 \text { and any } p \text { such that } \lambda_{p}\left(M_{1}\right) \leqslant k
$$

By gathering these estimates, we derive that the sequence of immersion $i_{k}\left(M_{1} \# M_{2}\right):=$ $N_{\frac{l}{l_{k}}}$ satisfies

$$
\begin{aligned}
& d_{H}\left(i_{k}\left(M_{1} \# M_{2}\right), M_{1} \cup\left[x_{0}, x_{0}+l \nu\right]\right) \leqslant \frac{l}{l_{k}} 2^{-\frac{l}{l_{k}}}, \\
& \left|\operatorname{Vol}\left(i_{k}\left(M_{1} \# M_{2}\right)\right)-\operatorname{Vol} M_{1}^{\varepsilon_{0}}\right| \leqslant \frac{l}{l_{k}} 2^{-\frac{l}{l_{k}}} \operatorname{Vol} M_{1}, \\
& \left.\left|\int_{i_{k}\left(M_{1} \# M_{2}\right)}\right| \mathrm{B}\right|^{m-1}-\int_{M_{1}^{\varepsilon_{0}}}|\mathrm{~B}|^{m-1}-\left.\operatorname{Vol} \mathbb{S}^{m-1} l\left|\leqslant \frac{l}{l_{k}} 2^{-\frac{l}{l_{k}}} \int_{M_{1}}\right| \mathrm{B}\right|^{m-1}, \\
& \left.\left|\int_{i_{k}\left(M_{1} \# M_{2}\right)}\right| \mathrm{H}\right|^{m-1}-\int_{M_{1}^{\varepsilon_{0}}}|\mathrm{H}|^{m-1}-\left.\operatorname{Vol} \mathbb{S}^{m-1}\left(\frac{m-1}{m}\right)^{m-1} l\left|\leqslant \frac{l}{l_{k}} 2^{-\frac{l}{l_{k}}} \int_{M_{1}}\right| \mathrm{H}\right|^{m-1}, \\
& \int_{N_{i+1} \backslash N_{i}^{\varepsilon}}|\mathrm{B}|^{(m-1)^{\frac{k-1}{k}}} \leqslant 2^{-\frac{l}{l_{k}}} \int_{M_{1}}|\mathrm{H}|^{(m-1) \frac{k-1}{k}}, \\
& \left|\lambda_{p}\left(N_{i}\right)-\lambda_{p}\left(N_{i+1}\right)\right| \leqslant 2^{-\frac{l}{l_{k}}} \text { for any } i \leqslant \frac{l}{l_{k}}-1 \text { and any } p \text { such that } \lambda_{p}\left(M_{1}\right) \leqslant k .
\end{aligned}
$$

By Hölder inequality, we get for any $\alpha \leqslant \frac{(m-1)(k-1)}{k}$

$$
\left.\left|\int_{i_{k}\left(M_{1} \# M_{2}\right)}\right| \mathrm{B}\right|^{\alpha}-\left.\int_{M_{1}^{\varepsilon_{0}}}|\mathrm{~B}|^{\alpha}\left|\leqslant \sum_{i} \int_{N_{i+1} \backslash N_{i}^{\varepsilon}}\right| \mathrm{B}\right|^{\alpha} \leqslant \frac{l}{l_{k}} 2^{-\frac{l}{l_{k}}} \operatorname{Vol}\left(M_{1}\right)\|\mathrm{H}\|_{M_{1}, m-1}^{\alpha}
$$

Since we have $\lim _{k} \varepsilon_{0}=0$, we get that $\lim _{k} \int_{i_{k}\left(M_{1} \# M_{2}\right)}|\mathrm{B}|^{\alpha}=\int_{M_{1}}|\mathrm{~B}|^{\alpha}$ for any $\alpha<$ $m-1$. This gives Theorem 1.4 in the case $T=\left[x_{0}, x_{0}+l \nu\right]$.
5.2. Case where T is a finite Euclidean tree. The iteration of the basic construction used to finish the proof of Theorem 1.4 in the case of a segment can easily be generalized to get Theorem 1.4 for any finite union of finite Euclidean trees $T=\cup_{i} T_{i}$ each intersecting M_{1} only once, and such that $\sum_{i} m_{1}\left(T_{i}\right) \leqslant l$ (note that since $n+1 \geqslant 3$, we can assume up to small perturbations still converging to $M_{1} \cup T$, that the trees are disjoint and by adding some vertices, that the edges intersecting M_{1} are orthogonal to M_{1}).
5.3. Case $m_{1}(T)$ finite. When T is a closed subset with $m_{1}(T)<\infty$ and $M_{1} \cup T$ connected, then each connected component of $T^{\prime}=\overline{T \backslash M_{1}}$ intersects M_{1}. As in the proof of Theorem 1.1, the family $\left(F_{i}\right)_{i \in I_{k}}$ of the connected components of T^{\prime} that intersect $\mathbb{R}^{n+1} \backslash\left(M_{1}\right)_{\frac{1}{k}}$ is finite. Moreover, we have $T^{\prime} \supset \cup_{i \in I_{k}} F_{i} \supset T \backslash M_{\frac{1}{k}}$, hence $T^{\prime}=\cup_{k} \cup_{i \in I_{k}} F_{i}$. Since $m_{1}\left(F_{i}\right)$ is finite, for any $i \in I_{k}$, there exists a finite Euclidean tree $T_{i, k}$ such that $d_{H}\left(T_{i, k}, F_{i}\right) \leqslant \frac{1}{k}$ and $\left|m_{1}\left(F_{i}\right)-m_{1}\left(T_{i, k}\right)\right| \leqslant \frac{1}{k \# I_{k}}$ (see [8]). Since F_{i} intersects M_{1}, we can assume that each $T_{i, k}$ intersects M_{1} orthogonally (by adding a segment and vertices if necessary, and small perturbations) only once (by suppressing unnecessary open segments of $\left.T_{i, k}\right)$. Then the sequence $\left(M_{1} \cup\left(\cup_{i \in I_{k}} T_{i, k}\right)\right)_{k \in \mathbb{N}}$ converges to $M_{1} \cup T^{\prime}=M_{1} \cup T$ in Hausdorff distance. Since Theorem 1.4 is valid for $M_{1} \cup$ $\left(\cup_{i \in I_{k}} T_{i, k}\right)$, there exists for any $k \in \mathbb{N}^{*}$ an immersion $i_{k}\left(M_{1} \# M_{2}\right)$ such that

$$
\begin{aligned}
& d_{H}\left(i_{k}\left(M_{1} \# M_{2}\right), M_{1} \cup\left(\cup_{i \in I_{k}} T_{i, k}\right)\right) \leqslant \frac{1}{k} \\
& \left.\left.\left|\int_{i_{k}\left(M_{1} \# M_{2}\right)}\right| \mathrm{H}\right|^{m-1}-\int_{M_{1}}|\mathrm{H}|^{m-1}-\left(\frac{m-1}{m}\right)^{m-1} \operatorname{Vol} \mathbb{S}^{m-1} \sum_{i} m_{1}\left(T_{i, k}\right) \right\rvert\, \leqslant \frac{1}{k}, \\
& \left.\left|\int_{i_{k}\left(M_{1} \# M_{2}\right)}\right| \mathrm{B}\right|^{m-1}-\int_{M_{1}}|\mathrm{~B}|^{m-1}-\operatorname{Vol} \mathbb{S}^{m-1} \sum_{i} m_{1}\left(T_{i, k}\right) \left\lvert\, \leqslant \frac{1}{k}\right., \\
& \left.\left|\int_{i_{k}\left(M_{1} \# M_{2}\right)}\right| \mathrm{H}\right|^{\alpha}-\int_{M_{1}}|\mathrm{H}|^{\alpha} \left\lvert\, \leqslant \frac{1}{k} \quad\right. \text { for any } \alpha \in[1, m-1), \\
& \left.\left|\int_{i_{k}\left(M_{1} \# M_{2}\right)}\right| \mathrm{B}\right|^{\alpha}-\int_{M_{1}}|\mathrm{~B}|^{\alpha} \left\lvert\, \leqslant \frac{1}{k} \quad\right. \text { for any } \alpha \in[1, m-1), \\
& \left|\lambda_{p}\left(i_{k}\left(M_{1} \# M_{2}\right)\right)-\lambda_{p}\left(M_{1}\right)\right| \leqslant \frac{1}{k} \text { for any } p \leqslant k, \\
& \left|\operatorname{Vol}\left(i_{k}\left(M_{1} \# M_{2}\right)\right)-\operatorname{Vol} M_{1}\right| \leqslant \frac{1}{k} .
\end{aligned}
$$

Hence the sequence $i_{k}\left(M_{1} \# M_{2}\right)$ converges to $M_{1} \cup T$ and since $\lim _{k} \sum_{i \in I_{k}} m_{1}\left(T_{i, k}\right)=$ $\lim _{k} m_{1}\left(\cup_{i \in I_{k}} F_{i}\right)=m_{1}\left(\cup_{k} \cup_{i \in I_{k}} F_{i}\right)=m_{1}\left(T^{\prime}\right)$ (by the monotone convergence theorem).
5.4. Case $m_{1}(T)=\infty$. The L^{m-1} control of the curvature in condition 2) are automatically fulfilled. To deal with the remaining conditions, we approximate $M_{1} \cup T$ in Attouch-Wetts distance by some unions of M_{1} with finite number of finite Euclidean trees. Firstly, $M_{1} \cup T$ is the $d_{A W}$-limit of the sequence of compact, connected sets $M_{1} \cup T_{k}^{\prime}:=\left(\left(M_{1} \cup T\right) \cap B_{0}(k)\right) \cup k \mathbb{S}^{n}$. Let N_{k} be a maximal set of points of T_{k}^{\prime} such that any two different points of N_{k} are at distance larger than $\frac{1}{k}$ (note that N_{k} is finite since $M_{1} \cup T_{k}^{\prime}$ is bounded), N_{k}^{\prime} the family of points of N_{k} that are at distance from M_{1} less than $\frac{6}{k}$ and for any $x \in N_{k}^{\prime}$, let $y_{x} \in M_{1}$ be a point such that $\left\|x-y_{x}\right\|=d\left(x, M_{1}\right)$. Let G_{k} be a graph whose vertices are the points of $N_{k} \cup\left\{y_{x}, x \in N_{k}^{\prime}\right\}$ and whose edges are the Euclidean segments between any couple of points of N_{k} at distance less than $6 / k$ and the euclidean segments $\left\{\left[x, y_{x}\right], x \in N_{k}^{\prime}\right\}$. Then $M_{1} \cup G_{k}$ is closed and connected. We finally consider $M_{1} \cup T_{k}$ obtained from $M_{1} \cup G_{k}$ by suppressing some open-edges from T_{k} as long as $M_{1} \cup T_{k}$ remains connected. Note that the set of vertices of T_{k} is the same vertices as for G_{k}, hence contains N_{k}, and that T_{k} has no cycle, hence is a finite union of Euclidean trees. So $M_{1} \cup T_{k}$ is closed, connected, with T_{k} a finite union of finite trees each intersecting M_{1} and the sequence converge to $M_{1} \cup T$ in $d_{A W}$-distance.

Applying Theorem 1.4 to $M_{1} \cup T_{k}$ and arguing as in the previous case, we get Theorem 1.4 for $M \cup T$.

6. Proof of Proposition 1.3

In the case where Z^{\prime} is reduced to a point $\{z\}$, we just take $M_{k}=z+\frac{1}{k} M$.
We now suppose that Z^{\prime} is not reduced to a point. Z is the limit in AttouchWetts topology of the sequence $(Z \cap B(R))_{R \in \mathbb{N}}$, which itself is the limit of the sequence $M_{R}=\cup_{x \in N_{R}} \partial B_{x}\left(\frac{1}{R^{3 n}}\right)$, where N_{R} is a maximal set of points of $Z \cap B(R)$ such that any two different points of N_{R} are at distance larger than $\frac{1}{R}$. Then M_{R} is a hypersurface of \mathbb{R}^{n+1}. Note that by connectedness of Z^{\prime}, any sphere of M_{R} intersect Z^{\prime} except if N_{R} is reduced to a point z and if $Z^{\prime} \subset B_{z}(R)$. Since Z^{\prime} contains at least two points, we infer that $M_{R} \cup Z^{\prime}$ is connected for any R large enough. Applying the same procedure as in the proof on Theorem 1.4, we get a disjoint, finite family of Euclidean finite trees $\left(T_{i, R}\right)_{i \in I_{R}}$ such that the sequence $\left(M_{R} \cup\left(\cup_{i \in I_{R}} T_{i, R}\right)\right)_{R}$ of simply connected set (since we have suppressed all the cycles by sutting unnecessary edges) converges to Z^{\prime} in $d_{A W}$ distance (and each tree intersects the connected component of M_{R} at most once). We can then iterate the basic construction to approximate the set $M_{R} \cup\left(\cup_{i \in I_{R}} T_{i, R}\right)$ by a submanifold $M_{R}^{\prime}=M_{R} \cup\left(\cup_{i \in I_{R}} N_{i, R}\right)$ with all vertices of the trees replace by some small sphere and each edges replaced by a pinched cylinder. Then M_{R}^{\prime} is diffeomorphic to \mathbb{S}^{n}, and so can be appoximated in distance $d_{A W}$ by an immersion of M by connected sum of M_{R}^{\prime} with a scaled copy of M. So we get a sequence of immersions of M that converge strongly to Z^{\prime} and weakly to Z.

By construction we have $\# N_{R}=O\left(R^{2 n}\right)$ and so $\operatorname{Vol} M_{R}\|B\|_{\alpha, M_{R}}^{n-1}=O\left(\frac{1}{R^{n}}\right)$, we get the bounds on curvature as in the proof of Theorem 1.4.

References

[1] E. Aubry, Pincement sur le spectre et le volume en courbure de Ricci positive, Ann. Sci. École Norm. Sup. (4) 38 (2005), n3, p. 387-405.
[2] E. Aubry, J.-F. Grosjean, Spectrum of hypersurfaces with small extrinsic radius or large λ_{1} in Euclidean spaces, preprint (2012) arXiv:?.
[3] E. Aubry, J.-F. Grosjean, J. Roth, Hypersurfaces with small extrinsic radius or large λ_{1} in Euclidean spaces, preprint (2010) arXiv:1009.2010v1.
[4] C. Anné, Spectre du Laplacien et écrasement dánses, Ann. Sci. École Norm. Sup. (4) 20 (1987), p. 271-280.
[5] G. Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, 268. Kluwer Academic Publishers Group, Dordrecht, 1993
[6] B. Colbois, J.-F. Grosjean, A pinching theorem for the first eigenvalue of the Laplacian on hypersurfaces of the Euclidean space, Comment. Math. Helv. 82, (2007), p. 175-195.
[7] T. Hasanis, D. Koutroufiotis, Immersions of bounded mean curvature, Arc. Math. 33, (1979), p. 170-171.
[8] K.J. Falconer, The geometry of fractal sets Cambridge 1985.
[9] J.-F. Grosjean, J. Roth, Eigenvalue pinching and application to the stability and the almost umbilicity of hypersurfaces, Math. Z., 271, (2012), 469-488.
[10] J.H. Michael, L.M. Simon Sobolev and mean-value inequalities on generalized submanifolds of R^{n}, Comm. Pure Appl. Math. 26 (1973), p. 361-379
[11] J. Rauch, M. Taylor Potential and scattering theory on wildly perturbed domains, J. Func. Anal. 18 (1975), p. 27-59.
[12] R.C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52, (1977), p. 525-533.
[13] J. Roth, Extrinsic radius pinching for hypersurfaces of space forms, Diff. Geom. Appl. 25, No 5, (2007), P. 485-499.
[14] J. TAKAHASHI, Collapsing of connected sums and the eigenvalues of the Laplacian, J. Geom. Phys. 40 (2002), p. 201-208.
[15] P. Topping, Relating diameter and mean curvature for submanifolds of Euclidean space, Comment. Math. Helv. 83, (2008), no. 3, p. 539-546.
(E. Aubry) LJAD, Université de Nice Sophia-Antipolis, CNRS; 28 avenue Valrose, 06108 Nice, France

E-mail address: eaubry@unice.fr
(J.-F. Grosjean) Institut Élie Cartan de Lorraine (Mathématiques), Université de LorRaine, B.P. 239, F-54506 Vandeuvre-Les-Nancy cedex, France

E-mail address: jean-francois.grosjean@univ-lorraine.fr

[^0]: Date: 6th July 2014.
 2000 Mathematics Subject Classification. 53C42, 53A07, 49Q10, 53C21, 53C40.
 Key words and phrases. Mean curvature, Reilly inequality, Laplacian, Spectrum, pinching results, hypersurfaces.

