METRIC SHAPE OF HYPERSURFACES WITH SMALL EXTRINSIC
RADIUS OR LARGE X\

ERWANN AUBRY, JEAN-FRANCOIS GROSJEAN

ABSTRACT. We determine the metric shape of Euclidean hypersurfaces with large Aq
or small extrinsic radius. The description of the shape is improved when we assume
an a priori bound on the L? norm of the mean curvature with p+ 1 not less than the
dimension of the hypersurfaces.

1. INTRODUCTION

Throughout the paper, X: M™ — R"*! is a closed, connected, immersed Euclidean
hypersurface (with n > 2). We set vys its volume, B its second fundamental form,
H = %trB its mean curvature, rjs its extrinsic radius (i.e. the least radius of the
Euclidean balls containing M), 0 = Af < AM < AM < ... the non-decreasing sequence
of its eigenvalues labelled with multiplicities, Sp(M) = (A\M);eny and X = & S X
its center of mass. For any function f : M — R, we set ||f]lo = (% Jur ]f\a)é We
denote by m; the 1-dimensional Hausdorff measure on R"*! and by B,(R) the open

Euclidean ball with center z and radius R.
The Hasanis-Koutroufiotis inequality ([7]) asserts that

(1.1) rul[Hll2 > 1,

with equality if and only if M is the Euclidean sphere Sy; with center X and radius

||1;||2- The Reilly inequality ([12]) asserts that

(1.2) A < n|H3,

once again with equality if and only if M is the sphere Sy;.

In this paper, we characterize the limit-points for the Hausdorff distance of the ex-
tremizing sequences of Euclidean-hypersurfaces for the Reilly or the Hasanis-Koutroufiotis
inequalities. Our study of these almost extremal hypersurfaces began in [2], where their
limit-spectrum was described.
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1.1. Weak Hausdorff convergence vs Hausdorff convergence. The results de-
scribed in this subsection arise as a technical tool to deal with our main problem, but
we consider it to be of general interest for stability problems involving submanifolds.

Let us remind some basic facts about Hausdorff-Attouch-Wetts topology on closed
sets of R"*!. For any subset A C R"*! and any positive real number ¢ > 0, we set
Ae = {z € R""1/d(A, x) < €} the tubular neighbourhood of radius ¢ of A. dy (A, B) =
inf{e > 0/ A C B; and B C A.} defines a complete distance on the compact subsets
of R™*1 called the Hausdorff distance. If d4 : R — R denotes the distance function
to the subset A, we have dy(A, B) = ||da — dB||oo and so the Hausdorff topology on
compact subset of R"*! coincides with the topology of the uniform convergence on R*+1
of the associated distance functions. Seemingly, on the set of closed subset of R"T! we
consider the Attouch-Wetts topology , that is the topology of the uniform convergence
on compact subset of the distance functions. It is a complete, metrizable topology
induced by the distance daw (A, B) = Y pey- Q*Rinf(l,supmeBo(R) |da(z) — dp(z)]).
We have limy daw (A, B) = 0 if and only if limy dz(Ag, B) = 0 for any R € N large
enough, where d(A, B) = inf{e > 0/ AN By(R) C B: and BN By(R) C A.} (see the
proof of Proposition 3.1.6 in [5]). If (4,) is a sequence of closed, connected subsets of
R™*! that converges to a closed, bounded limit Z, then Z is connected, the (A,) are
uniformly bounded for n large enough and we have dg(A,,Z) — 0 (see Lemma 3.2.2
in [5]). Note also that when daw (A, B) — 0 then we have the relation

B — U limit set of (a;)en
(@))€l Tjen Al

In this paper, a sequence (M]")xen of immersed submanifolds of dimension m in R+
is said to weakly converge in Hausdorff topology to a non empty closed subset Z ¢ R**+1
if there exists a sequence of closed subsets Ay C M}, such that daw (A, Z) — 0 and
Vol (My, \ Ag)/Vol M — 0. Note that the weak limit of a sequence is not unique
a priori. Any sequence (M) that weakly converges to Z has a non-empty limit-set
for the Attouch-Wetts distance that is made of closed, connected subset of R"*! that
contain Z (it is an easy consequence of the Ascoli theorem and Lemma 3.1.1 of [5]).
Of course, this limit-set is not always equal to {Z}. Our aim in this part is to describe
this limit-set when an a priori LP bound on the mean curvature is assumed.

Theorem 1.1. Let A > 0 and p > m — 1 and (My)ren be any sequence of immersed,
compact submanifolds of dimension m which weakly converges to Z C R™"*1.

If Vol (My)||H|71 < A for any k, then Z is compact, dg(My, Z) — 0 and so the
limit-set of (My)ken for the Hausdorff distance is reduced to {Z}.

If Vol (My) || H||"~1 < A for any k, then any limit point of (My,)xen for the Hausdor(f
distance is a compact, connected subset of the form ZUT C R™ ! with m1(T) < C(m)A
where C(m) is a (computable) constant that depends only on the dimension m.

Note that it derives from the proof that in the case p = m — 1, we actually have
m1(T) < C(m)sup,~ liminfy ka\Z€ [H|™1L,

This theorem is a consequence of the following decomposition result (see section 4.1),
which asserts that a submanifold M can be approximated in Hausdorff distance by the
union of any subset A C M™ of large relative volume with a finite number of geodesic
subtrees, whose total length is bounded by the L™~! norm of the mean curvature. The
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proof is a refinement of an argument developed by P.Topping in [15] to get an upper
bound of Diam(M) by [,, [H|™ .

Lemma 1.2. There ezists a (computable) constant C = C(m) such that, for any com-
pact submanifold M™ of R" and any closed subset A C M, there exists a finite family
(T;)cer of geodesic trees in M with ANT; # 0 for anyi € I, dy(AU (UierTy), M) <

1
C(Vol (M \ A))™ and 3;c;ma(T;) < C™m=Y [, [H™ L

The description of the Hausdorff limit-point of weakly convergent sequence given by
Theorem 1.1 is rather optimal since we have the following result.

Proposition 1.3. Let Z C Z' be two closed sets of R" ' with Z' connected and M be
a compact, immersible hypersurface of R* T,

For any a €]0,n — 1] and any A > 0, there exists a sequence of immersion iy :
M — R such that Volik(M)HBHZ;.kl(M) < A and i,(M) weakly converges to Z and
strongly to Z'.

For any A > 0, there exists a sequence of immersion i, : M — R"! such that

Voliy(M)||BI=y, any < A+ VoIS™ b (2 \ Z), Voliy(M)|H|2 73, ) < A+

(=1 =IVol S"tmy (2" \ Z) and i, (M) weakly converges to Z and strongly to Z'.

It shows that if a sequence (M},) weakly converges to Z with Vol M, kHHHg‘_l bounded
for some p < m — 1 then nothing can be said a priori about the strong limit points for
the Attouch-Wetts topology except that they have to be closed, connected subsets of
R™*! that contains Z. In the case p = m — 1, it proves that the limit points can be
essentially any closed, connected Euclidean subset obtained by attaching hair to Z with
total length bounded by the L™~ norm of the mean curvature. Note however that the
constant C(m) obtained in Theorem 1.1 was larger than ((Z=1)m~1Vol Sm_l)_l. The
previous proposition is a corollary of the following, more general result.

Theorem 1.4. Let M7, M3* — R™! be two immersed compact submanifolds, My# Mo
be their connected sum and T be any closed subset of R such that MyUT is connected.
Then there exists a sequence of immersions iy : Mi#My — R™ ! such that

(1) ix(M1#Ms) weakly converges to My and strongly converges to My UT,
(2) the curvatures of ix,(M1#Ms) satisfy

-1
/ |H’m—1_>/ |H|m_1—{—(L)m_IVOISm_Iml(T/),
i (M1#Ma) My m

/ B|™ 1 —>/ IB|™ 1 + Vol S™ Lty (T7),
iy (M1 M) M,

/ |H|* — / |H|* for any a € [1,m — 1),
i (M4 M>) M,

/ IB|* — |B|* for any ac € [1,m — 1),
ik(Ml#Mg) My

where T" =T\ My,
(3) Mp(ix(M1#Ms)) — A\p(My) for any p € N,
(4) Vol (Zk(Ml#Mg)) — VOlMl.
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Note that 7/ C T, My UT" = My UT and that my(T") < m1(T'). Conditions (3) and
(4) in Theorem 1.4 are designed on purpose for our study of almost extremal Euclidean
hypersurfaces for the Reilly or Hasanis-Koutroufiotis Inequalities. Of course, the main
difficulty in the proof of Theorem 1.4 is to get condition (3).

All the results of this section can be easily extended to the case where R™! is
replaced by any fixed Riemannian manifold (N, g).

1.2. Hypersurfaces with large \; or small Extrinsic radius. Our aim in this
section is to study the metric shape of the Euclidean hypersurfaces with almost extremal
extrinsic radius or Aj.

1.2.1. Almost extremal hypersurfaces weakly converge to Syr. Our first result describes
some volume and curvature concentration properties of almost extremal hypersurfaces
that imply weak convergence to Sys. Note that in this result we do not assume any
bound on the mean curvature. It easily implies that convex, almost extremal hyper-
surfaces are Lipschitz close to a Euclidean sphere.

We set B (r) the closed ball with center z and radius r in R"*! and A, the annulus
{X € R”+1/|||X X|| - H HHH }. Throughout the paper we shall adopt the
notation that 7(g|n,p, h, ) is a positive function which depends on n,p,h,--- and
which converges to zero as € — 0. Note that these functions 7 will always be exphcitly
computable.

Theorem 1.5. Any immersed hypersurface M — R with ryf||[H|l2 < 1+¢ (or with

H
n!\zlu”Q < 1+ ¢) satisfies

(1.3) [[1H] = [1l2]], < 100/ H] 2,
(1.4) Vol (M \ Asz) < 100+/cvyy.
Moreover, for any r > 0 and any © € Syy = X + HHle -S™, we have
(1.5)
Vol (B (”H|| )N Sar)

’Vol( (”H” )N M) _Vol( (HHH )N Swr)
UM Vol Sy, Vol Sy

Note that (1.5) implies not only that M goes near any point of the sphere Sy, but
also that the density of M near each point of Sy; converges to vy /Vol Syy at any scale.
However, the convergence is not uniform with respect to the radius r. We infer that
Az (ejn) N M is Hausdorff close to Sys, which implies weak convergence to Sy of almost
extremal hypersurfaces.

| <)

Corollary 1.6. For any immersed hypersurface M — R*" 1 with ryr||H|2 < 1+ ¢ (or
with nHHHQ < 14-¢) there exists a subset A C M such that Vol (M \ A) < 7(e|n)vpr and

du (4, 5M> < T

In the case where M is the boundary of a convex body in R"*! with 7y ||H|s < 1+¢

(or with % < 1+ ¢), the previous result implies easily the following.
1

Theorem 1.7. Any convex, compact hypersurface M — R with rps|[H|j2 < 1+ ¢

(or with nHHHQ < 1+¢) satisfies dr,(M, Syr) < TH(I?HT;) , where dy, is the Lipschitz distance.
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1.2.2. Hausdorff limit-set of extremizing sequences. Constructions similar to that made
in the proof of Theorem 1.4 shows that we can not expect any control on the topology
of almost extremal hypersurfaces nor on the metric shape (even on the diameter) of
the part M \ A of Corollary 1.6 if we do not assume a strong enough upper bound on
the curvature of almost extremal hypersurfaces.

Theorem 1.8. Let M be any hypersurface immersible in R" and T be a closed subset
of R"L, such that S* U T is connected (resp. and T US™ C By(1)). There exists a
sequence of immersions j; - M < R of M which satisfies

1) )\Jf(M) — A1(S™) (resp. 7, — 1),

2)IB; —1d||, = 1 for any p <n—1,

3) Vol j;(M) — Vol S",

4) §i(M) converges to S UT in Hausdorff distance,

5) Vol j;(M)||H;||"~1 — C(n)m1(T) + Vol S™.

Note that in the constructions of almost extremal hypersurfaces made in Theorem
1.8, the only way to keep |[H;||"~1 bounded is to take a limit S* U T with T a set
of Hausdorff dimension 1 and length bounded (due to point 5)). On the other hand,
Corollary 1.6 and Theorem 1.1 imply the following metric shape stability result.

Theorem 1.9. For any n > 3 and any immersed hypersurface M — R"L with
om|HIZ_, < A and ragl[H|l2 < 1+ (or with vy JH2_, < A and "I < 14 ¢)
there exists a subset T' of 1-dimensional Haussdorff measure less than C(n) [,, [H|"* <
C(n)A|H|5* such that T U Sy is connected and dgr (M, Sy UT) < 7(g|n, A)||H||5 .
More precisely, for any sequence (My)ren of immersed hypersurfaces normalized
by |[Hill2 = 1 and Xy = 0, which satisfies vpg, ||[Hglli_y < A and ry, — 1 (or
v [ Helln—y < A and m — 1) there exist a closed subset T C R" and a sub-
sequence My such that m1(T) < C(n)A, TUS" is connected and di (M, S"UT) — 0.

Here also the constant C'(n) of this theorem is not the same as in Theorem 1.8. So
we do not have an exact computation of the Hausdorff limit point in the case p=n—1
but we conjecture that it is just a mater of non optimality of the constant C'(m) in the
bound on m;(T") in Theorem 1.1.

Finally, as a direct consequence of Theorem 1.1, we get the following result.

Theorem 1.10. Let 2 < n— 1 < p < +oo. Any immersed hypersurface M — R"T1
2

with vpr|H|Z < A and rag|[Hllz < 1+ ¢ (or with vy |H|? < A and "2 <14 ¢)

satisfies dir (M, Syr) < 7(eln, p, A)|H||3 .

Theorem 1.10 was already proved in the case p = +oo and under the stronger
assumption (1 +¢)A; > n|/H||3 in [6], and in the case p = +o0o and under the stronger
assumption 7y7||H||4 < 14¢ in [13]. It is also proved in an unpublished previous version
of this paper [3] in the case p > n. In all these papers, the Hausdorff convergence is
obtained by first proving that || X | is almost constant in L? norm and then by applying
a Moser iteration technique to infer that || X is almost constant is L°°-norm. This
scheme of proof cannot be applied in the case n > p > n — 1 since the critical exponent
for the iteration is p = n.

Note that by Theorem 1.9, in the case vy |H|[; < A with p > n — 1, almost ex-
tremal hypersurfaces for the Reilly inequality are almost extremal hypersurfaces for
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the Hasanis-Koutroufiotis inequality. Actually, in that case, an hypersurface is Haus-
dorff close to a sphere if and only if it is almost extremal for the Hasanis-Koutroufiotis
inequality. In [2], we prove that an hypersurface Hausdorff close to a sphere or almost
extremal for the Hasanis-Koutroufiotis inequality is not necessarily almost extremal for
the Reilly inequality, even under the assumption vy/[|Blj; < A, for any p < n.

The structure of the paper is as follows: in Section 2, we recall some concentration
properties for the volume and the mean curvature of almost extremal hypersurfaces
(in particular Inequalities (1.4) and (1.3)) and some estimates on the restrictions to
hypersurfaces of the homogeneous, harmonic polynomials of R"*!, proved in [2]. They
are used in Section 3 to prove Inequality (1.5). Theorem 1.1 is proved in Section 4. We
end the paper in section 5 by the proof of Theorem 1.4.

Throughout the paper we adopt the notation that C(n, k,p,---) is function greater
than 1 which depends on p, ¢, n, ---. It eases the exposition to disregard the explicit
nature of these functions. The convenience of this notation is that even though C' might
change from line to line in a calculation it still maintains these basic features.

Acknowledgments: We thank C.Anné and P.Jammes for very fruitful discussions on
Theorem 1.4. Part of this work was done while the first author was invited at the
MSI, ANU Canberra, funded by the PICS-CNRS Progress in Geometric Analysis and
Applications. The first author thanks P.Delanoe, J.Clutterbuck and J.X. Wang for
giving him this opportunity and J.Clutterbuck for bringing P.Topping’s paper [15] to
his attention.

2. SOME ESTIMATES ON ALMOST EXTREMAL HYPERSURFACES

We recall some estimate on almost extremal hypersurfaces proved in [2]. From now
on, we assume, without loss of generality, that X = 0. Let X7 (z) denote the orthogonal
projection of X (x) on the tangent space T, M.

Lemma 2.1 ([2]). If n||H|2/AM < 1+ or ry||H|l2 < 1+ & holds, then we have
IXTl2 < V32| Xll2 and [|X — iz vll2 < V32| X 2.
)\ Bo(ygy)

Lemma 2.2 ([2]). [ n||H|| 3/MT < 1+4¢€ orry|H|2 < 1+¢ holds (with e < 15), then
we have 11~ | < o 92 1] = Aol < COEI and Vol (M A) <

C/evpr, where C' =6 x 2?*2 in the case (Ppc) and C = 100 in the other cases.

We set A,) = Bo(

We set H¥(M) the set of functions {Pa}, where P is any harmonic, homogeneous

polynomials of degree k of R**1. We also set 1:[0, 00) — [0, 1] a smooth function, which
(1-2'e)? (1+2 We)? (1-We)2 (1+ ¥e)?

mz oz ) and Ton s S
M defined by p(x) = (| X.|?).

is 0 outside [ |, and ¢ the function on

Lemma 2.3 ([2]). For any hypersurface M — R"! isometrically immersed with
ral|Hll2 <1+¢€ (or n”HHQ < 1+¢) and for any P € H* (M), we have

}IIHH%'“H@PIIQ —|IPlls.| < C ¥/E|IPll5n ,

where C = C(n, k).



If moreover e < then we have ||A(pP) — SM @P||, < 1%@?” lloPll2.

(20)32 )

3. PROOF OF INEQUALITY 1.5

By a homogeneity, we can assume ||H||2 = 1. Let 6 € (0,1), z € S™ and set V"(s) =
Vol (B(z,s) N'S™). Let B(f,r) > 0 small enough so that (1 + 6/2)V"™((1 + 26)r) <
(1+6)V™(r) and (1 —6/2)V™((1 —28)r) = (1 —6)V™(r). Let f1 : S" — [0,1] (resp.
f2 : 8™ = [0,1]) be a smooth function such that f; = 1 on By ((1+ B)r) N'S™ (resp.
f2 =1 on By((1—28)r) NS™) and fi; = 0 outside B,((1+ 28)r) NS™ (resp fa=0
outside B, ((1 — B)r) N'S™). There exist an integer N(6,7) and a family (P})z<n such
that P{ € H*(R"™!) and A = supga|fi — > pen Pi| < |Ifills»0/18. We extend f; to
R™ 1\ {0} by fi(X) = fz(%) Then we have

1
)HSOfiH%—W/S |fi|2’ <hL+L+1I3

where
1
Bo= oo [ (ol = (3 1X174R) )]
M k<N
1 o .
I = ‘U/ A3 IXE P o — 3 1P
MJM N k<N
and

~|vaiss (2 70" #)]

On S™ we have |f2 — (3 ,<n P})?| < A(2supga |fi| + A) < |fill3.6/6 and on M we
have

- (X X R0 < |25 — (X Ailg)) | < Ileo/s

k<N k<N

Hence I1 + I3 < || fil|2.6/3. Now

I < 1 2 (Pli)Qd Pz’ 2
2\(@ ¢ Z S v—Zu 12| +

PiP;,
e Y ke

1<k#k'<N
%M/ Z],X‘% ]3| (P)%a
k<N
1 k' || pi pi
s [ R R
1<k#k'<N

HII2* i12 _ || pi|l? ”HH];HC/ 2 pi pi
BB IRIE ~ 1Pl + > || PPy

k<N 1<k#£k'<N
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x| — ||H||§+kl| < 2 (k + K)2k+H+2 1\6/5||H||’2€+kl by assumption on .
From this and Lemma 2.3, we have

I <N2AVFUYE STHIZF e + %6 Y Cln,k) || Bl

k<N k<N

— k k" v

1<k£k' <N

We have ¢ ’

kJrk
Con,N)¥e+ > ’/ QPlPk,dv

1<k#k'<N
and, by Lemma 2.3, we have

HI2 — .y
UM M

/ [P (A(pPl) —
M UM
< lePillzl|AlePy) — 1HI e P
< C(n, N) Vel =30 P 120 P2

under the condition € < (20(; N)) Since ug — g = n when k # k', we get

dv

N

LI DIy T G R L T
UM
, + lePilz| AP — IHIBme P,

4 . _C(n,N) /e
S / 2PkPk,dv < Y CnN) 1%!\@Pé/!!2II¢PéIIQ<W
2

L<kAR<N * 1<k#K <N
hence Iy < C(n, N) 3/e and

1 2
et~ e [ 5

n 12
We infer that if 3%e < é/c n(le\@l %n < (yg(lﬁ’;\?), then we have

6
C(n,N) ¥e + gllfillén-

1
ill3 — il?| <0l fill3n/2
lesild - o [ 1P| < O1E

Note that N depends on r and 6 but not on z since O(n + 1) acts transitively on S".
By assumption on f; and fa, we have

Vol (B ((1+ B)r — ¥E)) N M N Age)

0
<llefills < (1+ §)Hf1||§n

UM
0 VP((1+28)r) V' (r)
SO+ —vas SUHyen
Vol (B ((1 = B)r +2 W/e) N M N Ay rg/z) > lofal2 = (1 - Q)Hfﬂ\é
VM g - 2 ’
0 V(1 —28)r) Vr(r)
> (1= —voe > - Os

In the second estimates, we can replace ¢ by £/2'0 as soon as we assume that

<
(min(ﬁ, W, (Br)to, ( l(le(HS"N)) ) = K(6,r,n). Then we have (1 —)r+ /e <



r < (14 B)r — ¥/c and get

Vol (By(r) "M N Augrz) V() . gvn(r)
VM VolS”| = " Vol S»

Combined with Lemma 2.2, we get the result with 7(e|r, n) = min{6/ 2% < K(0,r,n)}.

4. PROOF OF THEOREM 1.1

4.1. Proof of Lemma 1.2.

Proof. In [15], using the Michael-Simon Sobolev inequality as a differential inequation
on the volume of intrinsic spheres, P.Topping prove the following lemma.

Lemma 4.1 ([15]). Suppose that M™ is a submanifold smoothly immersed in R" 1,
which is complete with respect to the induced metric. Then there exists a constant
o(m) > 0 such that for any x € M and R > 0, at least one of the following is true:

(i) M(l’, R) ‘= SUDr¢(0,R) fBI ’H‘m_l/r > 5m—17.
vole( )

(ii) #(x, R) :=inf,¢( R > 4.
Where B(r) is the geodesic ball in M for the intrinsic distance.

In this section, d stands for the intrinsic distance on M. If dy (A, M) < 1O(V°51(M)\A ) s

then we just set T = (). Otherwise, there exists xg € M such that d(A,xg) =
d(A,M) > 1O(V°l M\A) Let o : [0,lo] = M \ A be a normal minimizing geodesic

5(m)
from z¢ to A. For any t € Iy = [0,lp — (V%l(%)\A)m], we have Bvo(t)((vcg(%)\A)m) C

M \ A and by the previous lemma, there exists r9; < (V%I(AW{)\A)% such that 79, <

1 - SO . -
5T || B0 (ron) |[H|™~!. By compactness of 7o(lp) and by Wiener’s selection principle,

there exists a finite family (¢;);je, of elements of Iy such that the balls of the family
Fo = (BW( 3 (7o, ta))jeJo are disjoint and ~(Ip) C UjeJOB,YO(tj)(3TO7tj). Hence we have

5m71(l0 _ (VolM\A)%)
G ) < 5m71 Z Tot; < Z/ ‘H|m71
j€Jo jedo ” Brotey)(rost;)
3 Vol M\A\L B
And by assumption on ZO’ we get 10( (3( )\ )m <l 6m om—T Z]EJO fB’\/Q(t TOt |m 1~

If dy (AU~0([0,10]), M) < IO(VOI(M)\A)m we set T' = ([0, lo])- Otherw1se, we set 71

a point of M\ A at maximal distance {; from AUvo([0,o]) and 7; the corresponding min-

2 (V%I(M)\A)m I — (%) ]. Once again, by the Wiener

Lemma applied to v1([;) we get a family of disjoint balls F; = ( () (T1,t;))jesy such
that

imal geodesic. We set [ =

. 5)7) 5m12?‘1t\2/ (H[m !

jeS1 jeI “/1(t ) Tlt

which gives IO(VOI(M)\A) I < (5m 3T Dje /5

balls of the family F; U F3 are disjoint.

H\mfl. Note also that the

71 (t5) 7’1 t]
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If dpr (AU30([0, o)) U ([0, 1), M) < 10(¥5204) 5, we set T = 0([0, lo]) Uy ([0, 1a])-
Note that T is a geodesic tree (if v1(l1) € 70([0,1])) or the disjoint union of 2 geodesic
trees.

If dir (A U~0([0, L)) U ([0, 14]), M) > 10(“}1(%)\’4)#, then by iteration of what was
made for 1, v; and F1, we construct a family (z;); of points, a family (v;); of geodesics

and a family (Fj); of sets of disjoint balls. Since the (z;); are 10(%)%—separated

in M and since M is compact, the families are finite and only a finite step of iterations
can be made. The set T' = U;v;([0,;]) is the disjoint union of a finite set of finite
geodesic trees and we have

10 10
4.1 T) < H|™ ! < H[™ 1
an - mm <Y Y R

i ked;? Brjep (i)

g

4.2. Proof of Theorem 1.1. We begin the proof by the case where ka |H|™ ! <

A. By Topping’s upper bound on the diameter [15] the sequence (M}) is contained
in a fixed ball. By Blaschke selection theorem, we can assume that the sequence
M), converges in Hausdorff topology to a compact, connected limit set M., which
contains Z. Note also that the classical Michael-Simon Sobolev inequality applied

to f = 1 gives us (Vole)l_% < C(n) ka |H| and so by Holder, we get Vol M}, <
C(n)(fyy, [HH™ < C(n, A).

It just remain to prove that m;(My \ Z) < C(m)A. Let £ € N* fixed. We set
Z, = {x € R"™/d(z,Z) < r}. By weak convergence of (My), to Z and the above
upper bound on the volume, we have limy Vol (M} \ Z L ) = 0 and by Lemma 1.2, there

3
exists a finite union of geodesic trees Tlf such that limg dH((Mk N Zi) U Tlf, Moo) =0
and my(T}f) < C(m) ka\Z ) |[H|™~! for any k. Moreover, by construction of the part
30
T in the proof of Lemma 1.2, each connected part of T,f is a geodesic tree intersecting
Z z N Mj, and by Inequality (4.1), the number of such component intersecting R"1\ Z 2

3 3
is bounded above by 3¢C(m) fM’“\Zﬁ |[H|™~1. We can assume that this number is
constant up to a subsequence. Their union forms a sequence of compact sets (T]f)
which, up to a subsequence, converges to a set Y that contains My, \ Z 1. By lower
semi-continuity of the mj-measure for sequence of trees (see Theorem 3.18 in [8]), we get
that mq (Moo \ Z%) <mi(Y) < liminfy, mq (TF) < C(m) lim infy, ka\Z% [H|™1. Since
My \ Z is the monotone union of the My, \ Z%, we get that Mo, = ZUT with T a
1-dimensional subset of R™! of measure less than C'(m) sup; lim infy, [, Mz, [H|™ 1 <

C(m)A.
In the case ka H? < A with p > m — 1, we have

1 Vol Mk \ Z& p—m+1 1

m— m—

/M \Z’H‘ < (VT -Mk) P VOleHHHp
k\Z 1
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So the weak convergence to Z implies that mj (M \ Z%) = 0 for any /. Since My \
3
Z%; # () implies m1 (M \ Z) > i by what precedes, we get M, C Z% for any [, hence
3 3
My =Z.

4.3. Proof of Theorems 1.9 and 1.10. We can assume that X (My) = 0 and ||H||2 =
1 < |H|, by scaling. Hence we have vy, [H||7 ™! < vpg, [[H|? < A and Sy, = S™ for
any k. We now conclude by Corollary 1.6 and Theorem 1.1.

5. PROOF OF THEOREM 1.4

We first deal the case where T is a segment [xq, xo+[v] with 2o € M7 and v a normal
vector to M7 at xg. The general case will be obtained by iterating this simple case.

5.1. case where T is a segment.

5.1.1. basic construction. We take off a small ball of My and glue smoothly instead a
curved cylinder that is isometric to the product [0, 1] x %OS’"_I at the neighbourhood
of its left boundary component.

o, =
M,

We note H; the resulting submanifold and H. = €H;. Let ¢ : [0,]] — RT be a
C! positive function, constant equal to % at the neighbourhoods of 0 and [, T,.. be

a cylinder of revolution isometric to {(t,u) € [0,{] x R™/|u] = ec(t)} and J; be a
cylinder of revolution isometric to [0,1/4] x =S™~! at the neighbourhood of one of its

boundary component and isometric to the flat annulus By( %) \ Bo( 1%) C R™) at the
neighbourhood of its other boundary component. We also set J. = €J; and N, the
submanifold obtained by gluing H., T, . and J..

(ee)? m—1
T+(ec)2)3 + 22 (1+(ed)2)’

Since the second fundamental form of T, is given by | B|? = (
we get

l
/ IB|*dv = a(Hy, J1)e™ ® + Vol S 1™ 1=%(m — 1)2 / MY L Op (M),
Ne,e 0

with a(Hy, J1) a constant that depends only on H; and J; (not on ¢, [ and ¢).

We set M§ the submanifold of R**! obtained by flattening M; at the neighbourhood

of a point zg € M; and taking out a ball centred at xzy and of radius ?TE)' More
precisely, M; is locally equal to {zg + w + f(w), w € By(eog) C Ty, Mi} where f :
By(go) C TyyMi — Ny M is a smooth function and N, M; is the normal bundle

My at zg. Let ¢ : Ry — [0,1] be a smooth function such that ¢ = 0 on [0, %] and

¢ =1on [2%, +00). We set M7 the submanifold obtained by replacing the subset
{zo+w + f(w), w € Bo(eo) C Tpy M1} by {z0+ w + fe(w), w € Bo(eo) \ Bo(3e/10) C
Ty M1}, with fo(w) = f(ga(w)w) for any ¢ < 3e9/2. Note that M{ is a smooth

3
deformation of M; in a neighbourhood of zy and its boundary has a neighbourhood
isometric to a flat annulus By(e/3) \ By(3¢/10) in R™. Note that for & small enough,

M5\ {x € M;§/d(x,0M{) < 8¢} is a subset of M;. This fact will be used below. As a
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graph of a function, the curvatures of M at the neighbourhood of xy are given by the
formulae

m n+1
B-2= > Y Ddfy(ei,ex)Ddfy(ej,er) H HGP1
1,7,k,l=1 p,g=m+1
1 n+1 m o
~ > > Ddfulei, e;) HIGH (Vi - e)
EJ=m+1i,j=1
where (e, ,€n) is an ONB of T, My, (em+1,- -+ ,ent1) an ONB of Ny M, f-(w) =

St fiw)ei, Gu = 6. + (Vfr, Vi) and Hyy = 6 + (dfe(ex), dfe(er)). Now f-
converges in C*® norm to f on any compact subset of By(gg) \ {0}, while |df| and
|Ddf.| remain uniformly bounded on By(gp) when e tends to 0. By the Lebesgue
convergence theorem, we get

/ |He|*dv — [ [H|[%dv / |B€|adv%/ IB|*dv
Mg M Mg M

We set M. the m-submanifold of R"™! obtained by gluing M{ and N, along their
boundaries in a fixed direction v € N,,M;. Note that M, is a smooth immersion of
My #Ms.

H, =

By the computations above, the sequence of immersion ix (M #Ms) = M 1 satisfies the

properties 1), 2) an 4) announced in Theorem 1.4 when k tends to oo (in the case where
T is a segment).

5.1.2. Computation of the limit spectrum of the basic construction. Let (Ag)ken be
the spectrum with multiplicities obtained by union the spectrum of M; and of the
spectrum Sp(P.) of the operator P(f) = —f" — (m — 1)%/]“’ on [0,{] with Dirichlet
condition at 0 and Neumann condition at [. We will adapt the method developed
by C.Anné in [4] to prove that the spectrum of the immersions constructed in the
previous toy case converges to (Ag)ren. We denote by (ur)ken the eigenvalues of M
counted with multiplicities and by (Py)zen a L?>-ONB of eigenfunctions of M;. We set
(Vks hi)ken and (A, f§)ken the corresponding data on ([0,1],¢" 1 (t) dt) and M.. We
set izi the function on M, obtained by considering hj; as a function on the cylinder
Tt ., extending it continuously by 0 on J. and Mj, and by hi(l) on H.. We also set
Pt the function on M. which is equal to . (d(0Mg,-)) P, on M§ (with (¢) = 0 when

t < 8, Pe(t) = % when t € [8¢, /€] and ¥.(t) = 1 otherwise) and is extended

by 0 outside M. Using the family (ﬁi, ]5,5) as test functions, the min-max principle
easily gives us

(5.1) N S Me(1+ 7(elk,n, e, My))
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For any k € N, we set a; = liminf._,o AL, gol(clg(:c) = %(fk)leuje (ex), seen as a
function on H1UJq, <p( )(t, x) = et (fli)\Tc _(t,ec(t)x) seen as a function on [0, [] xSm-1
and 4,0,(“2 the function on M; equal to f; on {x € M{/d(x,0M7) > 8¢} and extended

harmonically to M;.
Easy computations give us

(5.2)
/ o2 = / 2, / ol = & / df 2
HLUJp ’ H.UJ. HyUJp ’ H.UJ.
(5.3)

l
/ 2 = / (/ (02t w) [2du) /T + 2(@ (0)2e™ (),
. 0 §m—1 ?
(5.4)

/ |df€|2:/[ / 8(10]@5 \/1+52 om— 1/ |dm 1()0(2)|
c,e g \/ 1+€2 sm—1 6202 s

The argument of C. Anne in [4] (or of Rauch and Taylor in [11]) can be adapted to get
that there exists a constant C'(M;) such that ‘|QOIE:32||H1(M1) < Ol fillg (ary- Since we

have || fill g ar) = 1+A%, (5.1) gives us ||g0,(€32||H1 () < C(k, My, 1) for e < 60(k: M, ).
We infer that for any k& € N there is a subsequence go( )
fk € H'(M;) and strongly in L?(M;) and such that hmi Al = aj. By definitions of

M5 and <p( ). and since C3°(My \ {zo}) is dense in C*°(M;), it is easy to see that f,gg)

which weakly converges to

is a distributional (hence a strong) solution to Aflgg) = akfég) on M; (see [14], p.206).

In particular, either f,gg’) is 0 or a4, is an eigenvalue of Mj.

(1)

By the same compactness argument, there exists a subsequence ¢, ; which weakly

converges to f,gl) in H'(H; U J1) and strongly in L?(H; U J;). By Equalities (5.2), we

get that de,gl)HLz(Hl) =0 and so fél) is constant on Hy and on J; and gp,(clgi strongly

converges to f,gl) in HY(H; U Jp). Let n : [0,10] — [0,1] be a smooth function such
that n(z) = 1 for any < 1/2, n(x) = 0 for any = > 1 and || < 4. We set s, the
distance function to 9S. = {0} x I%Smfl in S = M{ U J. and 6. the volume density
of S in normal coordinate to 0S.. We set L the distance between the two boundary
components of Ji. By construction of S, we have 2 > 0.(s-, u) = 61(sc/c) > 1 for any
se € [0, Le] and any u normal to S, and ¢(My)(2)™ ! > 0.(sc,u) > (Ml)( ym=1
for s. € [eL,8¢]. Hence, if we denote by Syg.(r) the set of points in S. at distance r
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from 0S;, we get for any r < 8 + L that

/Se>s€(sv~)(f]i)2 - /foSml( E: 625[ () fi (s )]d55>298(7“5,u)du

= [ ([ Ewose g >]dse) es<rs,1‘i0u>du

er 655

(5.5) / (5 < c<M1>||f,iu%p(SE>e|lns|
Sas. (er)

which gives us &; [54 (fi')* = fasl(%(clg,-)Q — fasl(fél))Q = 0 (by the trace inequality

and the compactness of the trace operator) and so f,gl) is null on Jj.

By (5.4), and since c is positive and C' on [0,1], there exists a subsequence 4,0,({231
which converges weakly to fng) in H'([0,1] x S™~1) and strongly in L2([0,1] x S™~1).
By the trace inequality applied on [0,1] x S™~! we also have that ||801(g272i||L2({l}xSm—1)
is bounded. Now, since

_ 2 i i
o e /{Z}XSm_1 |SO](€721'|2 T /{l}x Zigm=—1 |fl§ ‘2 - /8H ‘fli ’2 B /8 ‘Sok 81‘2
10 €5

we get that fkl =0on H;.

We set h( me 1 <p,(€g (t,x)dz and h(t) = [gu-1 f (2) (t,x)dz, we have h,h; €
(2)
HY([0,1]) (with Rj(t) = Jom w“ (t,x)dx), h; — h strongly in L?([0,1]) and weakly
in H'([0,1]). For any € C>(]0, l]) with 1(0) = 0 and /(1) = 0, seen as a function on
Tt and extended by 0 to S. and by () to H., we have

/lh’w “Hdt —(m )/h’ pe™ ldt:/lh’w’cm_ldt

m 1 1—m
_11m/ U () e dt = Tim | &, 2 (dfS, d0)) —hm/ e, T AT fEiy
l—i—E (c)? bIM,

1-m
:aklim< /[0 e 1%(5;%%1 1+ 22()? + (e, 2 /H fk>
(2 X m— £

!
= oy, / hapc™ L dt
0

1-m
where we have used that ¢, 2 |fH fiil < \/?\/Vol H1 fH fr')?. Since ¢ is positive,

we get that h is a weak solutlon to y” + (m - 1)< "y + apy = 0 on [0,]] and that
m— 2
R'(I) = 0. Since we have 10 lfas = f{o}xgm 1(901(“; 2o f{o}xgmq( ;i))
(by compactness of the trace operator) and fBS +1)2 = 0 by (5.5), we get |h(0)]* <
Vol S™~1 f{O}xSm*1<fk )2 =0, and so h(0) = 0. Since dgm— 14,0,(€ )_ converges weakly to

dSm_1f,E2) in L2([0,1] x S™~1), Inequality (5.4) gives HdSm—lfk, 220, xsm-1) = 0, i.e.



15

f,g) is constant on almost every sphere {t} x S™~! of [0,1] x S™~!. We infer that fIEQ)

is equal to Wh seen as a function on [0,1] x S™! and so, either f,g) =0 or ay is
an eigenvalue of P, for the Dirichlet condition at 0 and the Neumann condition at [.
To conclude, we have

FOFO 4 / FO @ m
M [0,1] xSm—1

. 3 3 1 1 2 2 _
—tim [ oo [ Bl [ e i e
v J My J1UH, [0,/]xS™m—1

=tim [ gt [ lm TR o 4
iU, v JMINB(OM; 8¢e;) E Ml\(Mfl\B(aMfz,Ssi)) T

= 5]{:[7

where, in the last equality, we have used that cp,(f’il_ and ‘Pl(Sa)z converge strongly to f~,£3)

and ) in L2(My), that Vol (M, \ (M \ B(OMS,8¢;)) tends to 0 with ;, and the
inequality

/5. U <M s an,, R e
MllﬁB((?Ml’,&gi)

which is obtained by integration of Inequality (5.5) with respect on r € [L, L+ 8|. Note
that we need the inclusion. Hence, by the min-max principle, we have a > A for any
k € N. We conclude that lim._,0 Ap(M:) = A for any k € N. Note that in the case
c= %, the spectrum of P, with Dirichlet condition at 0 and Neumann condition at [

is {7;—22(16 + 3)%, k € N} with all the multiplicities equal to 1.

5.1.3. End of the proof of Theorem 1.4 in the case where T is a segment. The sequence
of basic immersions (M) gives Theorem 1.4 for T' = [xq, xo+ V], except for the point 3)
since all the eigenvalues of [0,1] appear in the spectrum of the limit. To get also point
3) of Theorem 1.4, we will iterate the basic construction. We fix £ € N and [} small
enough such that A\;([0,l;]) > 2k and with [/l € N. Applying the basic construction
to M| = My, M}, =S™ and T" = [z, x0 + lxV], we get an immersion of N; = M;#S™

€z _r
such that dg (M U [xo, 0 + L], N1) < 2 T, [Ap(N1) — A\p(M7)] < 2 % for any p
_ L
such that \,(M7) <k, [Vol Ny \ M7°| <2 % Vol My, |fN1\M150 IB|™~! — Vol S™ 1], | <

_1 _ 1
27k [y, B | a0 [HI™1 = VolS™1(2bym=y, | < 970 [ [H™L, where

. _1)k=1 -t _q)k=1
g0 = go(k) and limy gp = 0 and le\Mfo IB|(m— D% < 27 T, [H|(m=D*% . We now
iterate the basic construction (with M{ = N;, M} = S™ and T' = [x;, x; + ], where
{z;} = NiN(xo+RTv)) to get a sequence of i immersions Ny = Ny#S™,---, N1 | =
Uk
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N _o#S™, N1 = N _,#M> such that
Uk

€z
lk Ik
_r _r
dp (Niy My U [z, 20 + ilgrv]) <2 W,  |[Vol Niyq \ Nf’| <2 % Vol My,

_L
| / IB|™ ! — Vol S™ 1y < 27 / B,
Nip1\N; M,

_]_ o
[ Vel Py <o [,
Nip1\N;? m M,

JL e I e
Nip1\N;? My

_L l
IAp(Ni) — Ap(Nig1)] <2 % for any i < T 1 and any p such that A\,(M;) < k.
k

By gathering these estimates, we derive that the sequence of immersion iy (M #Ms) :=
N i satisfies

ke

[ L
dpr (i (M #Ma), My U [z, 2o + V]) < 72 "
k

| T
|Vol (i (My#Ms)) — Vol M7°| < ;-2 Vol My,
k

[ _ i
\/ |Bym—1/ Bl — Vol §™ 1| < £2 zk/ B,
in (M1 #Mo) MEO I M
m—1

| _ 1
| / I / HP! - volsm (P Lymoy < Lo / H
in (M1 #Mo) MEO m Ik M

e B
Nip1\N§ My

_L l
[Ap(Ni) — Ap(Nix1)| <2 % for any i < o 1 and any p such that \,(M;) < k.
k

N . . (m—1)(k—1)
By Holder inequality, we get for any o < “—5—

| _ 1
| / Bl / B[ <Y / Bl < Lo Vol (M) [H|I3, o1
i (M1 #:M>) MO — JNi1\N§ U '

My #My) IB[* = fMl IB|* for any a <
m — 1. This gives Theorem 1.4 in the case T = [z, xo + V]

Since we have limy ey = 0, we get that limy fik(

5.2. Case where T is a finite Euclidean tree. The iteration of the basic construc-
tion used to finish the proof of Theorem 1.4 in the case of a segment can easily be
generalized to get Theorem 1.4 for any finite union of finite Euclidean trees T = U;T;
each intersecting M; only once, and such that Zz m1(T;) < I (note that since n+1 > 3,
we can assume up to small perturbations still converging to M; U T, that the trees are
disjoint and by adding some vertices, that the edges intersecting M; are orthogonal to
My).
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5.3. Case my(T) finite. When T is a closed subset with m;(T) < oo and My U T
connected, then each connected component of 7/ = T'\ M; intersects M;. As in the
proof of Theorem 1.1, the family (F;);es, of the connected components of T” that
intersect R 1\ (Ml)% is finite. Moreover, we have T" D Ujer, F; D T\ M%, hence
T = Ui Ujer, Fi. Since my(F;) is finite, for any ¢ € I, there exists a finite Euclidean
tree T; ;, such that dy (T, F;) < ¢ and |mq(F;) — my(Tix)| < k#I (see [8]). Since F;
intersects Mi, we can assume that each T;j intersects M; orthogonally (by adding a
segment and vertices if necessary, and small perturbations) only once (by suppressing
unnecessary open segments of 7; ). Then the sequence (M1 U (Uz‘elkT’i,k))keN converges
to My UT" = M; UT in Hausdorff distance. Since Theorem 1.4 is valid for M; U
(Uier, Ti k), there exists for any k € N* an immersion i (M;#M>) such that

d (in(My#My), My U (Uier, Top)) < o

k
m—1 1
HL - / mmt (P Dty g S gy (1) <
’/ik(Ml#Mg) M, m Z ‘ k’
1
yBym—l—/ B! — Vol S™ 1N "my (Tix)| < —,
‘/z‘k(Ml#Mz) My zl: ‘ k

| / H|" / H| <
i (M1#Ma3) My

1
k
1

’/ |B|O‘—/ |B\a‘ < - for any a € [1,m — 1),
: M, M,y k
1
k

for any a € [1,m — 1),

I\ (i (M1 #Mz)) — \p(M:)] <
[Vol (i, (Mi#My)) — Vol My| < =,

Hence the sequence iy (My#Ms) converges to M; UT and since limy Ziélk mi (T i) =
limg, my (Uier,, Fi) = m1(Ug Uier, Fi) = mi(T”) (by the monotone convergence theorem).

5.4. Case m1(T) = oo. The L™ ! control of the curvature in condition 2) are auto-
matically fulfilled. To deal with the remaining conditions, we approximate M; U T in
Attouch-Wetts distance by some unions of M; with finite number of finite Euclidean
trees. Firstly, M7 UT is the daw-limit of the sequence of compact, connected sets
M{UT! = ((M1 uT)n Bo(k)) U kS™. Let Nj be a maximal set of points of T}, such
that any two different points of Vi are at distance larger than % (note that Ny is finite
since My UTj, is bounded), Nj, the family of points of Ny that are at distance from M;
less than ¥ and for any « € N}, let y, € M; be a point such that ||z — y,|| = d(z, M7).
Let G}, be a graph whose vertices are the points of N U{y,, € N} and whose edges
are the Euclidean segments between any couple of points of Ny at distance less than 6/k
and the euclidean segments {[z,y,], « € N;}. Then M; U Gy, is closed and connected.
We finally consider M; U T} obtained from Mj; U G by suppressing some open-edges
from T}, as long as M7 UT}, remains connected. Note that the set of vertices of T}, is the
same vertices as for Gy, hence contains Ny, and that T} has no cycle, hence is a finite
union of Euclidean trees. So Mj; U T}, is closed, connected, with T} a finite union of
finite trees each intersecting M; and the sequence converge to M; UT in d ap-distance.
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Applying Theorem 1.4 to M7 UT}, and arguing as in the previous case, we get Theorem
1.4 for MUT.

6. PROOF OF PROPOSITION 1.3

In the case where Z’ is reduced to a point {z}, we just take My = z + %M
We now suppose that Z’ is not reduced to a point. Z is the limit in Attouch-
Wetts topology of the sequence (Z OB(R)) ren Which itself is the limit of the sequence

Mp = UxeNROBm(#), where Np is a maximal set of points of ZN B(R) such that any

two different points of Ni are at distance larger than %. Then Mg is a hypersurface
of R™*1. Note that by connectedness of Z’, any sphere of My intersect Z’ except if Ny
is reduced to a point z and if Z' C B,(R). Since Z’ contains at least two points, we
infer that Mg U Z’ is connected for any R large enough. Applying the same procedure
as in the proof on Theorem 1.4, we get a disjoint, finite family of Euclidean finite trees
(Ti,r)icI, such that the sequence (Mp U (Uicr,Ti r))r of simply connected set (since
we have suppressed all the cycles by sutting unnecessary edges) converges to Z’ in d
distance (and each tree intersects the connected component of My at most once). We
can then iterate the basic construction to approximate the set Mp U (Uier,Ti r) by
a submanifold M, = Mg U (U;jer, N; r) with all vertices of the trees replace by some
small sphere and each edges replaced by a pinched cylinder. Then My, is diffeomorphic
to S”, and so can be appoximated in distance dy by an immersion of M by connected
sum of My, with a scaled copy of M. So we get a sequence of immersions of M that
converge strongly to Z’ and weakly to Z.

By construction we have #Nr = O(R?") and so Vol MR||B||25\}IR = O(4-), we get
the bounds on curvature as in the proof of Theorem 1.4.
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