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Abstract. We determine the metric shape of Euclidean hypersurfaces with large λ1

or small extrinsic radius. The description of the shape is improved when we assume
an a priori bound on the Lp norm of the mean curvature with p+ 1 not less than the
dimension of the hypersurfaces.

1. Introduction

Throughout the paper, X:Mn → Rn+1 is a closed, connected, immersed Euclidean
hypersurface (with n > 2). We set vM its volume, B its second fundamental form,
H = 1

ntr B its mean curvature, rM its extrinsic radius (i.e. the least radius of the

Euclidean balls containing M), 0 = λM0 < λM1 6 λ
M
2 6 · · · the non-decreasing sequence

of its eigenvalues labelled with multiplicities, Sp(M) = (λMi )i∈N and X := 1
vM

∫
M X

its center of mass. For any function f : M → R, we set ‖f‖α =
(

1
vM

∫
M |f |

α
) 1
α . We

denote by m1 the 1-dimensional Hausdorff measure on Rn+1 and by Bx(R) the open
Euclidean ball with center x and radius R.

The Hasanis-Koutroufiotis inequality ([7]) asserts that

(1.1) rM‖H‖2 > 1,

with equality if and only if M is the Euclidean sphere SM with center X and radius
1
‖H‖2 . The Reilly inequality ([12]) asserts that

(1.2) λM1 6 n‖H‖22,

once again with equality if and only if M is the sphere SM .
In this paper, we characterize the limit-points for the Hausdorff distance of the ex-

tremizing sequences of Euclidean-hypersurfaces for the Reilly or the Hasanis-Koutroufiotis
inequalities. Our study of these almost extremal hypersurfaces began in [2], where their
limit-spectrum was described.
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1.1. Weak Hausdorff convergence vs Hausdorff convergence. The results de-
scribed in this subsection arise as a technical tool to deal with our main problem, but
we consider it to be of general interest for stability problems involving submanifolds.

Let us remind some basic facts about Hausdorff-Attouch-Wetts topology on closed
sets of Rn+1. For any subset A ⊂ Rn+1 and any positive real number ε > 0, we set
Aε = {x ∈ Rn+1/ d(A, x) 6 ε} the tubular neighbourhood of radius ε of A. dH(A,B) =
inf{ε > 0/A ⊂ Bε and B ⊂ Aε} defines a complete distance on the compact subsets
of Rn+1 called the Hausdorff distance. If dA : Rn+1 → R denotes the distance function
to the subset A, we have dH(A,B) = ‖dA − dB‖∞ and so the Hausdorff topology on
compact subset of Rn+1 coincides with the topology of the uniform convergence on Rn+1

of the associated distance functions. Seemingly, on the set of closed subset of Rn+1 we
consider the Attouch-Wetts topology , that is the topology of the uniform convergence
on compact subset of the distance functions. It is a complete, metrizable topology
induced by the distance dAW (A,B) =

∑
R∈N∗ 2−R inf

(
1, supx∈B0(R) |dA(x) − dB(x)|

)
.

We have limk dAW (Ak, B) = 0 if and only if limk d
′
R(Ak, B) = 0 for any R ∈ N large

enough, where d′R(A,B) = inf{ε > 0/A ∩ B0(R) ⊂ Bε and B ∩ B0(R) ⊂ Aε} (see the
proof of Proposition 3.1.6 in [5]). If (An) is a sequence of closed, connected subsets of
Rn+1 that converges to a closed, bounded limit Z, then Z is connected, the (An) are
uniformly bounded for n large enough and we have dH(An, Z) → 0 (see Lemma 3.2.2
in [5]). Note also that when dAW (An, B)→ 0 then we have the relation

B =
⋃

(al)∈
∏
l∈N Al

limit set of (al)l∈N

In this paper, a sequence (Mm
k )k∈N of immersed submanifolds of dimensionm in Rn+1

is said to weakly converge in Hausdorff topology to a non empty closed subset Z ⊂ Rn+1

if there exists a sequence of closed subsets Ak ⊂ Mk such that dAW (Ak, Z) → 0 and
Vol (Mk \ Ak)/VolMk → 0. Note that the weak limit of a sequence is not unique
a priori. Any sequence (Mk) that weakly converges to Z has a non-empty limit-set
for the Attouch-Wetts distance that is made of closed, connected subset of Rn+1 that
contain Z (it is an easy consequence of the Ascoli theorem and Lemma 3.1.1 of [5]).
Of course, this limit-set is not always equal to {Z}. Our aim in this part is to describe
this limit-set when an a priori Lp bound on the mean curvature is assumed.

Theorem 1.1. Let A > 0 and p > m− 1 and (Mk)k∈N be any sequence of immersed,
compact submanifolds of dimension m which weakly converges to Z ⊂ Rn+1.

If Vol (Mk)‖H‖m−1p 6 A for any k, then Z is compact, dH(Mk, Z) → 0 and so the
limit-set of (Mk)k∈N for the Hausdorff distance is reduced to {Z}.

If Vol (Mk)‖H‖m−1m−1 6 A for any k, then any limit point of (Mk)k∈N for the Hausdorff

distance is a compact, connected subset of the form Z∪T ⊂ Rn+1 with m1(T ) 6 C(m)A
where C(m) is a (computable) constant that depends only on the dimension m.

Note that it derives from the proof that in the case p = m − 1, we actually have
m1(T ) 6 C(m) supε>0 lim infk

∫
Mk\Zε |H|

m−1.

This theorem is a consequence of the following decomposition result (see section 4.1),
which asserts that a submanifold M can be approximated in Hausdorff distance by the
union of any subset A ⊂Mm of large relative volume with a finite number of geodesic
subtrees, whose total length is bounded by the Lm−1 norm of the mean curvature. The
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proof is a refinement of an argument developed by P.Topping in [15] to get an upper
bound of Diam(M) by

∫
M |H|

m−1.

Lemma 1.2. There exists a (computable) constant C = C(m) such that, for any com-
pact submanifold Mm of Rn+1 and any closed subset A ⊂M , there exists a finite family
(Ti)∈∈I of geodesic trees in M with A ∩ Ti 6= ∅ for any i ∈ I, dH

(
A ∪ (∪i∈ITi),M

)
6

C
(
Vol (M \A)

) 1
m and

∑
i∈I m1(Ti) 6 Cm(m−1) ∫

M\A |H|
m−1.

The description of the Hausdorff limit-point of weakly convergent sequence given by
Theorem 1.1 is rather optimal since we have the following result.

Proposition 1.3. Let Z ⊂ Z ′ be two closed sets of Rn+1 with Z ′ connected and M be
a compact, immersible hypersurface of Rn+1.

For any α ∈]0, n − 1[ and any A > 0, there exists a sequence of immersion ik :
M → Rn+1 such that Vol ik(M)‖B‖n−1α,ik(M) 6 A and ik(M) weakly converges to Z and

strongly to Z ′.
For any A > 0, there exists a sequence of immersion ik : M → Rn+1 such that

Vol ik(M)‖B‖n−1n−1,ik(M) 6 A + VolSn−1m1(Z
′ \ Z), Vol ik(M)‖H‖n−1n−1,ik(M) 6 A +

(n−1n )n−1VolSn−1m1(Z
′ \ Z) and ik(M) weakly converges to Z and strongly to Z ′.

It shows that if a sequence (Mk) weakly converges to Z with VolMk‖H‖m−1p bounded
for some p < m− 1 then nothing can be said a priori about the strong limit points for
the Attouch-Wetts topology except that they have to be closed, connected subsets of
Rn+1 that contains Z. In the case p = m − 1, it proves that the limit points can be
essentially any closed, connected Euclidean subset obtained by attaching hair to Z with
total length bounded by the Lm−1 norm of the mean curvature. Note however that the

constant C(m) obtained in Theorem 1.1 was larger than
(
(m−1m )m−1VolSm−1

)−1
. The

previous proposition is a corollary of the following, more general result.

Theorem 1.4. Let Mm
1 ,M

m
2 ↪→ Rn+1 be two immersed compact submanifolds, M1#M2

be their connected sum and T be any closed subset of Rn+1 such that M1∪T is connected.
Then there exists a sequence of immersions ik : M1#M2 ↪→ Rn+1 such that

(1) ik(M1#M2) weakly converges to M1 and strongly converges to M1 ∪ T ,
(2) the curvatures of ik(M1#M2) satisfy∫

ik(M1#M2)
|H|m−1 →

∫
M1

|H|m−1 + (
m− 1

m
)m−1VolSm−1m1(T

′),∫
ik(M1#M2)

|B|m−1 →
∫
M1

|B|m−1 + VolSm−1m1(T
′),∫

ik(M1#M2)
|H|α →

∫
M1

|H|α for any α ∈ [1,m− 1),∫
ik(M1#M2)

|B|α →
∫
M1

|B|α for any α ∈ [1,m− 1),

where T ′ = T \M1,
(3) λp(ik(M1#M2))→ λp(M1) for any p ∈ N,
(4) Vol (ik(M1#M2))→ VolM1.
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Note that T ′ ⊂ T , M1 ∪T ′ = M1 ∪T and that m1(T
′) 6 m1(T ). Conditions (3) and

(4) in Theorem 1.4 are designed on purpose for our study of almost extremal Euclidean
hypersurfaces for the Reilly or Hasanis-Koutroufiotis Inequalities. Of course, the main
difficulty in the proof of Theorem 1.4 is to get condition (3).

All the results of this section can be easily extended to the case where Rn+1 is
replaced by any fixed Riemannian manifold (N, g).

1.2. Hypersurfaces with large λ1 or small Extrinsic radius. Our aim in this
section is to study the metric shape of the Euclidean hypersurfaces with almost extremal
extrinsic radius or λ1.

1.2.1. Almost extremal hypersurfaces weakly converge to SM . Our first result describes
some volume and curvature concentration properties of almost extremal hypersurfaces
that imply weak convergence to SM . Note that in this result we do not assume any
bound on the mean curvature. It easily implies that convex, almost extremal hyper-
surfaces are Lipschitz close to a Euclidean sphere.

We set Bx(r) the closed ball with center x and radius r in Rn+1 and Aη the annulus{
X ∈ Rn+1/

∣∣‖X − X̄‖ − 1
‖H‖2

∣∣ 6 η
‖H‖2

}
. Throughout the paper we shall adopt the

notation that τ(ε|n, p, h, · · · ) is a positive function which depends on n, p, h, · · · and
which converges to zero as ε→ 0. Note that these functions τ will always be explicitly
computable.

Theorem 1.5. Any immersed hypersurface M ↪→ Rn+1 with rM‖H‖2 6 1 + ε (or with
n‖H‖22
λM1

6 1 + ε) satisfies ∥∥|H| − ‖H‖2∥∥2 6 100 8
√
ε‖H‖2,(1.3)

Vol (M \A 8√ε) 6 100 8
√
εvM .(1.4)

Moreover, for any r > 0 and any x ∈ SM = X + 1
‖H‖2 · S

n, we have

∣∣∣Vol
(
Bx( r

‖H‖2 ) ∩M
)

vM
−

Vol
(
Bx( r

‖H‖2 ) ∩ SM
)

VolSM

∣∣∣ 6 τ(ε|n, r)
Vol

(
Bx( r

‖H‖2 ) ∩ SM
)

VolSM
.

(1.5)

Note that (1.5) implies not only that M goes near any point of the sphere SM , but
also that the density of M near each point of SM converges to vM/VolSM at any scale.
However, the convergence is not uniform with respect to the radius r. We infer that
Aτ(ε|n) ∩M is Hausdorff close to SM , which implies weak convergence to SM of almost
extremal hypersurfaces.

Corollary 1.6. For any immersed hypersurface M ↪→ Rn+1 with rM‖H‖2 6 1 + ε (or

with
n‖H‖22
λM1

6 1 + ε) there exists a subset A ⊂M such that Vol (M \A) 6 τ(ε|n)vM and

dH(A,SM ) 6 τ(ε|n)
‖H‖2 .

In the case where M is the boundary of a convex body in Rn+1 with rM‖H‖2 6 1+ε

(or with
n‖H‖22
λM1

6 1 + ε), the previous result implies easily the following.

Theorem 1.7. Any convex, compact hypersurface M ↪→ Rn+1 with rM‖H‖2 6 1 + ε

(or with
n‖H‖22
λM1

6 1+ε) satisfies dL(M,SM ) 6 τ(ε|n)
‖H‖2 , where dL is the Lipschitz distance.
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1.2.2. Hausdorff limit-set of extremizing sequences. Constructions similar to that made
in the proof of Theorem 1.4 shows that we can not expect any control on the topology
of almost extremal hypersurfaces nor on the metric shape (even on the diameter) of
the part M \ A of Corollary 1.6 if we do not assume a strong enough upper bound on
the curvature of almost extremal hypersurfaces.

Theorem 1.8. Let M be any hypersurface immersible in Rn+1 and T be a closed subset
of Rn+1, such that Sn ∪ T is connected (resp. and T ∪ Sn ⊂ B0(1)). There exists a
sequence of immersions ji : M ↪→ Rn+1 of M which satisfies

1) λ
ji(M)
1 → λ1(Sn) (resp. rji(M) → 1),

2) ‖Bi − Id‖p → 1 for any p < n− 1,
3) Vol ji(M)→ VolSn,
4) ji(M) converges to Sn ∪ T in Hausdorff distance,
5) Vol ji(M)‖Hi‖n−1n−1 → C(n)m1(T ) + VolSn.

Note that in the constructions of almost extremal hypersurfaces made in Theorem
1.8, the only way to keep ‖Hi‖n−1n−1 bounded is to take a limit Sn ∪ T with T a set
of Hausdorff dimension 1 and length bounded (due to point 5)). On the other hand,
Corollary 1.6 and Theorem 1.1 imply the following metric shape stability result.

Theorem 1.9. For any n > 3 and any immersed hypersurface M ↪→ Rn+1 with

vM‖H‖nn−1 6 A and rM‖H‖2 ≤ 1 + ε (or with vM‖H‖nn−1 6 A and
n‖H‖22
λ1

6 1 + ε)

there exists a subset T of 1-dimensional Haussdorff measure less than C(n)
∫
M |H|

n−1 6
C(n)A‖H‖−12 such that T ∪ SM is connected and dH(M,SM ∪ T ) 6 τ(ε|n,A)‖H‖−12 .

More precisely, for any sequence (Mk)k∈N of immersed hypersurfaces normalized
by ‖Hk‖2 = 1 and Xk = 0, which satisfies vMk

‖Hk‖nn−1 6 A and rMk
→ 1 (or

vMk
‖Hk‖nn−1 6 A and n

λ1(Mk)
→ 1) there exist a closed subset T ⊂ Rn+1 and a sub-

sequence Mk′ such that m1(T ) 6 C(n)A, T ∪Sn is connected and dH(Mk′ ,Sn∪T )→ 0.

Here also the constant C(n) of this theorem is not the same as in Theorem 1.8. So
we do not have an exact computation of the Hausdorff limit point in the case p = n−1
but we conjecture that it is just a mater of non optimality of the constant C(m) in the
bound on m1(T ) in Theorem 1.1.

Finally, as a direct consequence of Theorem 1.1, we get the following result.

Theorem 1.10. Let 2 6 n − 1 < p 6 +∞. Any immersed hypersurface M ↪→ Rn+1

with vM‖H‖np 6 A and rM‖H‖2 ≤ 1 + ε (or with vM‖H‖np 6 A and
n‖H‖22
λ1

6 1 + ε)

satisfies dH(M,SM ) 6 τ(ε|n, p,A)‖H‖−12 .

Theorem 1.10 was already proved in the case p = +∞ and under the stronger
assumption (1 + ε)λ1 > n‖H‖24 in [6], and in the case p = +∞ and under the stronger
assumption rM‖H‖4 ≤ 1+ε in [13]. It is also proved in an unpublished previous version
of this paper [3] in the case p > n. In all these papers, the Hausdorff convergence is
obtained by first proving that ‖X‖ is almost constant in L2 norm and then by applying
a Moser iteration technique to infer that ‖X‖ is almost constant is L∞-norm. This
scheme of proof cannot be applied in the case n > p > n− 1 since the critical exponent
for the iteration is p = n.

Note that by Theorem 1.9, in the case vM‖H‖np 6 A with p > n − 1, almost ex-
tremal hypersurfaces for the Reilly inequality are almost extremal hypersurfaces for
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the Hasanis-Koutroufiotis inequality. Actually, in that case, an hypersurface is Haus-
dorff close to a sphere if and only if it is almost extremal for the Hasanis-Koutroufiotis
inequality. In [2], we prove that an hypersurface Hausdorff close to a sphere or almost
extremal for the Hasanis-Koutroufiotis inequality is not necessarily almost extremal for
the Reilly inequality, even under the assumption vM‖B‖np 6 A, for any p 6 n.

The structure of the paper is as follows: in Section 2, we recall some concentration
properties for the volume and the mean curvature of almost extremal hypersurfaces
(in particular Inequalities (1.4) and (1.3)) and some estimates on the restrictions to
hypersurfaces of the homogeneous, harmonic polynomials of Rn+1, proved in [2]. They
are used in Section 3 to prove Inequality (1.5). Theorem 1.1 is proved in Section 4. We
end the paper in section 5 by the proof of Theorem 1.4.

Throughout the paper we adopt the notation that C(n, k, p, · · · ) is function greater
than 1 which depends on p, q, n, · · · . It eases the exposition to disregard the explicit
nature of these functions. The convenience of this notation is that even though C might
change from line to line in a calculation it still maintains these basic features.

Acknowledgments: We thank C.Anné and P.Jammes for very fruitful discussions on
Theorem 1.4. Part of this work was done while the first author was invited at the
MSI, ANU Canberra, funded by the PICS-CNRS Progress in Geometric Analysis and
Applications. The first author thanks P.Delanoe, J.Clutterbuck and J.X. Wang for
giving him this opportunity and J.Clutterbuck for bringing P.Topping’s paper [15] to
his attention.

2. Some estimates on almost extremal hypersurfaces

We recall some estimate on almost extremal hypersurfaces proved in [2]. From now
on, we assume, without loss of generality, that X̄ = 0. Let XT (x) denote the orthogonal
projection of X(x) on the tangent space TxM .

Lemma 2.1 ([2]). If n‖H‖22/λM1 6 1 + ε or rM‖H‖2 6 1 + ε holds, then we have

‖XT ‖2 6
√

3ε‖X‖2 and ‖X − H
‖H‖22

ν‖2 6
√

3ε‖X‖2.

We set Aη = B0(
1+η
‖H‖2 ) \B0(

1−η
‖H‖2 ).

Lemma 2.2 ([2]). If n‖H‖22/λM1 6 1 + ε or rM‖H‖2 6 1 + ε holds (with ε 6 1
100), then

we have
∥∥‖X‖ − 1

‖H‖2

∥∥
2
6 C
‖H‖2

8
√
ε, ‖|H| − ‖H‖2‖2 ≤ C 8

√
ε‖H‖2 and Vol (M \ A 8√ε) ≤

C 8
√
εvM , where C = 6× 2

2p
p−2 in the case (Pp,ε) and C = 100 in the other cases.

We set Hk(M) the set of functions {P|M}, where P is any harmonic, homogeneous

polynomials of degree k of Rn+1. We also set ψ:[0,∞)→ [0, 1] a smooth function, which

is 0 outside [ (1−2
16√ε)2

‖H‖22
, (1+2 16√ε)2

‖H‖22
] and 1 on [ (1−

16√ε)2
‖H‖22

, (1+
16√ε)2
‖H‖22

], and ϕ the function on

M defined by ϕ(x) = ψ(|Xx|2).

Lemma 2.3 ([2]). For any hypersurface M ↪→ Rn+1 isometrically immersed with

rM‖H‖2 6 1 + ε (or
n‖H‖22
λ1
6 1 + ε) and for any P ∈ Hk(M), we have∣∣‖H‖2k2 ‖ϕP‖22 − ‖P‖2Sn∣∣ 6 C 32

√
ε ‖P‖2Sn ,

where C = C(n, k).
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If moreover ε 6 1
(2C)32

, then we have
∥∥∆(ϕP )− µSMk ϕP

∥∥
2
6 C 16

√
εµSMk ‖ϕP‖2.

3. Proof of Inequality 1.5

By a homogeneity, we can assume ‖H‖2 = 1. Let θ ∈ (0, 1), x ∈ Sn and set V n(s) =
Vol (B(x, s) ∩ Sn). Let β(θ, r) > 0 small enough so that (1 + θ/2)V n

(
(1 + 2β)r

)
6

(1 + θ)V n(r) and (1 − θ/2)V n
(
(1 − 2β)r

)
> (1 − θ)V n(r). Let f1 : Sn → [0, 1] (resp.

f2 : Sn → [0, 1]) be a smooth function such that f1 = 1 on Bx
(
(1 + β)r

)
∩ Sn (resp.

f2 = 1 on Bx
(
(1 − 2β)r

)
∩ Sn) and f1 = 0 outside Bx

(
(1 + 2β)r

)
∩ Sn (resp. f2 = 0

outside Bx
(
(1− β)r

)
∩ Sn). There exist an integer N(θ, r) and a family (P ik)k6N such

that P ik ∈ Hk(Rn+1) and A = supSn
∣∣fi −∑k6N P

i
k

∣∣ 6 ‖fi‖Snθ/18. We extend fi to

Rn+1 \ {0} by fi(X) = fi
(
X
|X|
)
. Then we have∣∣∣‖ϕfi‖22 − 1

VolSn

∫
Sn
|fi|2

∣∣∣ 6 I1 + I2 + I3

where

I1 :=
∣∣∣ 1

vM

∫
M

(
|ϕfi|2 − ϕ2

(∑
k6N

|X|−kP ik
)2)

dv
∣∣∣

I2 :=
∣∣∣ 1

vM

∫
M
ϕ2
(∑
k6N

|X|−kP ik
)2
dv −

∑
k6N

‖P ik‖2Sn
∣∣∣

and

I3 :=
∣∣∣ 1

VolSn

∫
Sn

((∑
k6N

P ik
)2 − f2i )∣∣∣.

On Sn we have
∣∣f2i − (

∑
k6N P

i
k)

2
∣∣ 6 A

(
2 supSn |fi| + A

)
6 ‖fi‖2Snθ/6 and on M we

have

ϕ2
∣∣∣f2i (X)−

(∑
k6N

|X|−kP ik(X)
)2∣∣∣ 6 ∣∣∣f2i ( X|X|)− (∑

k6N

P ik
( X
|X|
))2∣∣∣ 6 ‖fi‖2Snθ/6

.

Hence I1 + I3 6 ‖fi‖2Snθ/3. Now

I2 6
∣∣∣ 1

vM

∫
M
ϕ2
∑
k6N

(P ik)
2

|X|2k
dv −

∑
k6N

‖P ik‖2Sn
∣∣∣+

1

vM

∣∣∣∫
M
ϕ2

∑
16k 6=k′6N

P ikP
i
k′

|X|k+k′
dv
∣∣∣

6
1

vM

∫
M
ϕ2
∑
k6N

∣∣∣ 1

|X|2k
− ‖H‖2k2

∣∣∣(P ik)2dv
+

1

vM

∫
M

∑
16k 6=k′6N

ϕ2
∣∣∣ 1

|X|k+k′
− ‖H‖k+k′2

∣∣∣|P ikP ik′ |dv
+
∑
k6N

∣∣‖H‖2k2 ‖ϕP ik‖22 − ∥∥P ik∥∥2Sn∣∣+
∑

16k 6=k′6N

‖H‖k+k′2

vM

∣∣∣∫
M
ϕ2P ikP

i
k′dv

∣∣∣
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We have ϕ2
∣∣ 1
|X|k+k′ − ‖H‖

k+k′

2

∣∣ 6 ϕ2(k + k′)2k+k
′+2 16
√
ε‖H‖k+k′2 by assumption on ϕ.

From this and Lemma 2.3, we have

I2 6N
24N+1 16

√
ε
∑
k6N

‖H‖2k2 ‖ϕP ik‖22 + 32
√
ε
∑
k6N

C(n, k)
∥∥P ik∥∥2Sn

+
∑

16k 6=k′6N

‖H‖k+k′2

vM

∣∣∣∫
M
ϕ2P ikP

i
k′dv

∣∣∣
6C(n,N) 32

√
ε+

∑
16k 6=k′6N

‖H‖k+k′2

vM

∣∣∣∫
M
ϕ2P ikP

i
k′dv

∣∣∣
and, by Lemma 2.3, we have

|‖H‖
2
2(µk − µk′)
vM

∫
M
ϕ2P ikP

i
k′dv

∣∣∣
6
∫
M

|ϕP ik
(
∆(ϕP ik′)− ‖H‖22µk′ϕP ik′

)
|

vM
dv +

∫
M

|ϕP ik′
(
∆(ϕP ik)− ‖H‖22µkϕP ik

)
|

vM
dv

6 ‖ϕP ik‖2
∥∥∆(ϕP ik′)− ‖H‖22µk′ϕP ik′

∥∥
2

+ ‖ϕP ik′‖2
∥∥∆(ϕP ik)− ‖H‖22µkϕP ik

∥∥
2

6 C(n,N) 16
√
ε‖H‖22‖ϕP ik′‖2‖ϕP ik‖2

under the condition ε 6 ( 1
2C(n,N))

32. Since µk − µk′ > n when k 6= k′, we get∑
16k 6=k′6N

∣∣∣ 1

vM

∫
M
ϕ2P ikP

i
k′dv

∣∣∣ 6 ∑
16k 6=k′6N

C(n,N) 16
√
ε‖ϕP ik′‖2‖ϕP ik‖2 6

C(n,N) 16
√
ε

‖H‖k+k′2

hence I2 6 C(n,N) 32
√
ε and∣∣∣‖ϕfi‖22 − 1

VolSn

∫
Sn
f2i

∣∣∣ 6 C(n,N) 32
√
ε+

θ

3
‖fi‖2Sn .

We infer that if 32
√
ε 6 V n((1−2β)r)θ

6C(n,N)Vol Sn 6
‖fi‖2Snθ
6C(n,N) , then we have∣∣∣‖ϕfi‖22 − 1

VolSn

∫
Sn
|fi|2

∣∣∣ 6 θ‖fi‖2Sn/2
Note that N depends on r and θ but not on x since O(n + 1) acts transitively on Sn.
By assumption on f1 and f2, we have

Vol (Bx((1 + β)r − 16
√
ε)) ∩M ∩A 16√ε)

vM
6 ‖ϕf1‖22 6 (1 +

θ

2
)‖f1‖2Sn

6 (1 +
θ

2
)
V n((1 + 2β)r)

VolSn
6 (1 + θ)

V n(r)

VolSn
Vol (Bx((1− β)r + 2 16

√
ε) ∩M ∩A2 16√ε)

vM
> ‖ϕf2‖22 > (1− θ

2
)‖f2‖2Sn

> (1− θ

2
)
V n((1− 2β)r)

VolSn
> (1− θ)V

n(r)

VolSn

In the second estimates, we can replace ε by ε/216 as soon as we assume that ε 6(
min( 1

416
, 1
(2C(n,N))32

, (βr)16, (
‖fi‖2Snθ
6(C(n,N))

32
)

= K(θ, r, n). Then we have (1−β)r+ 16
√
ε 6
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r 6 (1 + β)r − 16
√
ε and get∣∣∣Vol (Bx(r) ∩M ∩A 16√ε)

vM
− V n(r)

VolSn
∣∣∣ 6 θ V n(r)

VolSn

Combined with Lemma 2.2, we get the result with τ(ε|r, n) = min{θ/ 216ε 6 K(θ, r, n)}.

4. Proof of Theorem 1.1

4.1. Proof of Lemma 1.2.

Proof. In [15], using the Michael-Simon Sobolev inequality as a differential inequation
on the volume of intrinsic spheres, P.Topping prove the following lemma.

Lemma 4.1 ([15]). Suppose that Mm is a submanifold smoothly immersed in Rn+1,
which is complete with respect to the induced metric. Then there exists a constant
δ(m) > 0 such that for any x ∈M and R > 0, at least one of the following is true:

(i) M(x,R) := supr∈(0,R]

∫
Bx(r)

|H|m−1/r > δm−1;

(ii) κ(x,R) := infr∈(0,R]
VolBx(r)

rm > δ.

Where Bx(r) is the geodesic ball in M for the intrinsic distance.

In this section, d stands for the intrinsic distance onM . If dH(A,M) 6 10(VolM\Aδ(m) )
1
m ,

then we just set T = ∅. Otherwise, there exists x0 ∈ M such that d(A, x0) =

dH(A,M) > 10(VolM\Aδ(m) )
1
m . Let γ0 : [0, l0] → M \ A be a normal minimizing geodesic

from x0 to A. For any t ∈ I0 = [0, l0 − (VolM\Aδ(m) )
1
m ], we have Bγ0(t)

(
(VolM\Aδ(m) )

1
m

)
⊂

M \ A and by the previous lemma, there exists r0,t 6 (VolM\Aδ(m) )
1
m such that r0,t 6

1
δm−1

∫
Bγ0(t)(r0,t)

|H|m−1. By compactness of γ0(I0) and by Wiener’s selection principle,

there exists a finite family (tj)j∈J0 of elements of I0 such that the balls of the family
F0 =

(
Bγ0(tj)(r0,tj )

)
j∈J0 are disjoint and γ(I0) ⊂ ∪j∈J0Bγ0(tj)(3r0,tj ). Hence we have

δm−1(l0 − (VolM\Aδ )
1
m )

6
6 δm−1

∑
j∈J0

r0,tj 6
∑
j∈J0

∫
Bγ0(tj)(r0,tj )

|H|m−1

And by assumption on l0, we get 10(VolM\Aδ(m) )
1
m 6 l0 6 10

δm−1

∑
j∈J0

∫
Bγ0(tj)(r0,tj )

|H|m−1.

If dH
(
A∪γ0([0, l0]),M

)
6 10(VolM\Aδ(m) )

1
m , we set T = γ0([0, l0]). Otherwise, we set x1

a point ofM\A at maximal distance l1 from A∪γ0([0, l0]) and γ1 the corresponding min-

imal geodesic. We set I1 = [2(VolM\Aδ(m) )
1
m , l1−2(VolM\Aδ(m) )

1
m ]. Once again, by the Wiener

Lemma applied to γ1(I1) we get a family of disjoint balls F1 =
(
Bγ1(tj)(r1,tj ))j∈J1 such

that

δm−1(l1 − 4(VolM\Aδ )
1
δ )

6
6 δm−1

∑
j∈J1

r1,tj 6
∑
j∈J1

∫
Bγ1(tj)(r1,tj

)
|H|m−1

which gives 10(VolM\Aδ(m) )
1
m 6 l1 6 10

δm−1

∑
j∈J1

∫
Bγ1(tj)(r1,tj

) |H|
m−1. Note also that the

balls of the family F1 ∪ F2 are disjoint.
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If dH
(
A∪γ0([0, l0])∪γ1([0, l1]),M

)
6 10(VolM\Aδ(m) )

1
m , we set T = γ0([0, l0])∪γ1([0, l1]).

Note that T is a geodesic tree (if γ1(l1) ∈ γ0([0, l1])) or the disjoint union of 2 geodesic
trees.

If dH
(
A ∪ γ0([0, l0]) ∪ γ1([0, l1]),M

)
> 10(VolM\Aδ(m) )

1
m , then by iteration of what was

made for x1, γ1 and F1, we construct a family (xj)j of points, a family (γj)j of geodesics

and a family (Fj)j of sets of disjoint balls. Since the (xj)j are 10(VolM\Aδ(m) )
1
m -separated

in M and since M is compact, the families are finite and only a finite step of iterations
can be made. The set T = ∪jγj([0, lj ]) is the disjoint union of a finite set of finite
geodesic trees and we have

m1(T ) 6
10

δm−1

∑
j

∑
k∈Jj

∫
Bγj(tj)(rj,tk )

|H|m−1 6 10

δm−1

∫
M\A

|H|m−1.(4.1)

�

4.2. Proof of Theorem 1.1. We begin the proof by the case where
∫
Mk
|H|m−1 6

A. By Topping’s upper bound on the diameter [15] the sequence (Mk) is contained
in a fixed ball. By Blaschke selection theorem, we can assume that the sequence
Mk converges in Hausdorff topology to a compact, connected limit set M∞, which
contains Z. Note also that the classical Michael-Simon Sobolev inequality applied

to f = 1 gives us (VolMk)
1− 1

n 6 C(n)
∫
Mk
|H| and so by Hölder, we get VolMk 6

C(n)(
∫
Mk
|H|n−1)n 6 C(n,A).

It just remain to prove that m1(M∞ \ Z) 6 C(m)A. Let ` ∈ N∗ fixed. We set
Zr = {x ∈ Rn+1/ d(x, Z) 6 r}. By weak convergence of (Mk)k to Z and the above
upper bound on the volume, we have limk Vol (Mk \Z 1

3`
) = 0 and by Lemma 1.2, there

exists a finite union of geodesic trees T `k such that limk dH
(
(Mk ∩ Z 1

3`
) ∪ T `k ,M∞

)
= 0

and m1(T
`
k) 6 C(m)

∫
Mk\Z 1

3`

|H|m−1 for any k. Moreover, by construction of the part

T in the proof of Lemma 1.2, each connected part of T `k is a geodesic tree intersecting
Z 1

3`
∩Mk, and by Inequality (4.1), the number of such component intersecting Rn+1\Z 2

3`

is bounded above by 3`C(m)
∫
Mk\Z 1

3`

|H|m−1. We can assume that this number is

constant up to a subsequence. Their union forms a sequence of compact sets (T̃ `k)
which, up to a subsequence, converges to a set Y that contains M∞ \ Z 1

`
. By lower

semi-continuity of the m1-measure for sequence of trees (see Theorem 3.18 in [8]), we get

that m1(M∞ \ Z 1
`
) 6 m1(Y ) 6 lim infkm1(T̃

`
k) 6 C(m) lim infk

∫
Mk\Z 1

3`

|H|m−1. Since

M∞ \ Z is the monotone union of the M∞ \ Z 1
`
, we get that M∞ = Z ∪ T with T a

1-dimensional subset of Rn+1 of measure less than C(m) supl lim infk
∫
Mk\Z 1

3l

|H|m−1 6

C(m)A.
In the case

∫
Mk
|H|p 6 A with p > m− 1, we have

∫
Mk\Z 1

3`

|H|m−1 6
(VolMk \ Z 1

3`

VolMk

) p−m+1
p VolMk‖H‖m−1p
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So the weak convergence to Z implies that m1(M∞ \ Z 1
3`

) = 0 for any `. Since M∞ \
Z 1

3`
6= ∅ implies m1(M∞ \Z) > 1

3` by what precedes, we get M∞ ⊂ Z 1
3l

for any l, hence

M∞ = Z.

4.3. Proof of Theorems 1.9 and 1.10. We can assume that X(Mk) = 0 and ‖H‖2 =
1 6 ‖H‖p by scaling. Hence we have vMk

‖H‖n−1p 6 vMk
‖H‖np 6 A and SMk

= Sn for
any k. We now conclude by Corollary 1.6 and Theorem 1.1.

5. Proof of Theorem 1.4

We first deal the case where T is a segment [x0, x0+ lν] with x0 ∈M1 and ν a normal
vector to M1 at x0. The general case will be obtained by iterating this simple case.

5.1. case where T is a segment.

5.1.1. basic construction. We take off a small ball of M2 and glue smoothly instead a
curved cylinder that is isometric to the product [0, 1]× 1

10S
m−1 at the neighbourhood

of its left boundary component.

M2
H1 l,1T J1

We note H1 the resulting submanifold and Hε = εH1. Let c : [0, l] → R+ be a
C1 positive function, constant equal to 1

10 at the neighbourhoods of 0 and l, Tc,ε be
a cylinder of revolution isometric to {(t, u) ∈ [0, l] × Rm/|u| = εc(t)} and J1 be a
cylinder of revolution isometric to [0, 1/4]× 1

10S
m−1 at the neighbourhood of one of its

boundary component and isometric to the flat annulus B0(
3
10) \ B0(

2
10) ⊂ Rm) at the

neighbourhood of its other boundary component. We also set Jε = εJ1 and Nc,ε the
submanifold obtained by gluing Hε, Tc,ε and Jε.

Since the second fundamental form of Tc,ε is given by |B|2 = (εc′′)2

(1+(εc′)2)3 + m−1
ε2c2(1+(εc′)2) ,

we get∫
Nc,ε

|B|αdv = a(H1, J1)ε
m−α + VolSm−1εm−1−α(m− 1)

α
2

∫ l

0
cm−1−α +Oc,α(εm+1−α),

with a(H1, J1) a constant that depends only on H1 and J1 (not on c, l and ε).
We set M ε

1 the submanifold of Rn+1 obtained by flattening M1 at the neighbourhood
of a point x0 ∈ M1 and taking out a ball centred at x0 and of radius 3ε

10 . More
precisely, M1 is locally equal to {x0 + w + f(w), w ∈ B0(ε0) ⊂ Tx0M1} where f :
B0(ε0) ⊂ Tx0M1 → Nx0M1 is a smooth function and Nx0M1 is the normal bundle
M1 at x0. Let ϕ : R+ → [0, 1] be a smooth function such that ϕ = 0 on [0, ε03 ] and

ϕ = 1 on [2ε03 ,+∞). We set M ε
1 the submanifold obtained by replacing the subset

{x0 + w + f(w), w ∈ B0(ε0) ⊂ Tx0M1} by {x0 + w + fε(w), w ∈ B0(ε0) \B0(3ε/10) ⊂
Tx0M1}, with fε(w) = f

(
ϕ( ε0‖w‖ε )w

)
for any ε 6 3ε0/2. Note that M ε

1 is a smooth
deformation of M1 in a neighbourhood of x0 and its boundary has a neighbourhood
isometric to a flat annulus B0(ε/3) \ B0(3ε/10) in Rm. Note that for ε small enough,
M ε

1 \ {x ∈ M ε
1/d(x, ∂M ε

1 ) 6 8ε} is a subset of M1. This fact will be used below. As a
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graph of a function, the curvatures of M ε
1 at the neighbourhood of x0 are given by the

formulae

|Bε|2 =

m∑
i,j,k,l=1

n+1∑
p,q=m+1

Ddfp(ei, ek)Ddfq(ej , el)H
i,jHk,lGp,q

Hε =
1

m

n+1∑
k,l=m+1

m∑
i,j=1

Ddfk(ei, ej)H
i,jGk,l(∇fl − el)

where (e1, · · · , em) is an ONB of Tx0M1, (em+1, · · · , en+1) an ONB of Nx0M1, fε(w) =∑n+1
i=m+1 fi(w)ei, Gkl = δkl + 〈∇fk,∇fl〉 and Hkl = δkl + 〈dfε(ek), dfε(el)〉. Now fε

converges in C∞ norm to f on any compact subset of B0(ε0) \ {0}, while |dfε| and
|Ddfε| remain uniformly bounded on B0(ε0) when ε tends to 0. By the Lebesgue
convergence theorem, we get∫

Mε
1

|Hε|αdv →
∫
M1

|H|αdv
∫
Mε

1

|Bε|αdv →
∫
M1

|B|αdv

We set Mε the m-submanifold of Rn+1 obtained by gluing M ε
1 and Nc,ε along their

boundaries in a fixed direction ν ∈ Nx0M1. Note that Mε is a smooth immersion of
M1#M2.

JeTl,eH
ε

M
ε

1

By the computations above, the sequence of immersion ik(M1#M2) = M 1
k

satisfies the

properties 1), 2) an 4) announced in Theorem 1.4 when k tends to∞ (in the case where
T is a segment).

5.1.2. Computation of the limit spectrum of the basic construction. Let (λk)k∈N be
the spectrum with multiplicities obtained by union the spectrum of M1 and of the
spectrum Sp(Pc) of the operator P (f) = −f ′′ − (m − 1) c

′

c f
′ on [0, l] with Dirichlet

condition at 0 and Neumann condition at l. We will adapt the method developed
by C.Anné in [4] to prove that the spectrum of the immersions constructed in the
previous toy case converges to (λk)k∈N. We denote by (µk)k∈N the eigenvalues of M1

counted with multiplicities and by (Pk)k∈N a L2-ONB of eigenfunctions of M1. We set
(νk, hk)k∈N and (λεk, f

ε
k)k∈N the corresponding data on ([0, l], cn−1(t) dt) and Mε. We

set h̃εk the function on Mε obtained by considering hk as a function on the cylinder
Tc,ε, extending it continuously by 0 on Jε and M ε

1 , and by hk(l) on Hε. We also set

P̃ εk the function on Mε which is equal to ψε
(
d(∂M ε

1 , ·)
)
Pk on M ε

1 (with ψε(t) = 0 when

t 6 8ε, ψε(t) = ln t−ln(8ε)
− ln(8

√
ε)

when t ∈ [8ε,
√
ε] and ψε(t) = 1 otherwise) and is extended

by 0 outside M ε
1 . Using the family (h̃εk, P̃

ε
k ) as test functions, the min-max principle

easily gives us

(5.1) λεk 6 λk
(
1 + τ(ε|k, n, c,M1)

)
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For any k ∈ N, we set αk = lim infε→0 λ
ε
k, ϕ

(1)
k,ε(x) = ε

m
2 (f εk)|Hε∪Jε(εx), seen as a

function onH1∪J1, ϕ(2)
k,ε(t, x) = ε

m−1
2 (f εk)|Tc,ε(t, εc(t)x) seen as a function on [0, l]×Sm−1

and ϕ
(3)
k,ε the function on M1 equal to f εk on {x ∈ M ε

1/ d(x, ∂M ε
1 ) > 8ε} and extended

harmonically to M1.
Easy computations give us

∫
H1∪J1

|ϕ(1)
k,ε|

2 =

∫
Hε∪Jε

|f εk |2,
∫
H1∪J1

|dϕ(1)
k,ε|

2 = ε2
∫
Hε∪Jε

|df εk |2

(5.2)

∫
Tc,ε

|f εk |2 =

∫ l

0

(∫
Sm−1

|ϕ(2)
k,ε(t, u)|2du

)√
1 + ε2(c′(t))2cm−1(t)dt,

(5.3)

∫
Tc,ε

|df εk |2 =

∫ l

0

[ cm−1√
1 + ε2(c′)2

∫
Sm−1

|
∂ϕ

(2)
k,ε

∂t
|2 +

√
1 + ε2(c′)2cm−1

ε2c2

∫
Sm−1

|dSm−1ϕ
(2)
k,ε|

2
]
.

(5.4)

The argument of C. Anne in [4] (or of Rauch and Taylor in [11]) can be adapted to get

that there exists a constant C(M1) such that ‖ϕ(3)
k,ε‖H1(M1) 6 C‖f εk‖H1(Mε). Since we

have ‖f εk‖H1(Mε) = 1+λεk, (5.1) gives us ‖ϕ(3)
k,ε‖H1(M1) 6 C(k,M1, l) for ε 6 ε0(k,M1, l).

We infer that for any k ∈ N there is a subsequence ϕ
(3)
k,εi

which weakly converges to

f̃
(3)
k ∈ H1(M1) and strongly in L2(M1) and such that limi λ

εi
k = αk. By definitions of

M ε
1 and ϕ

(3)
k,ε, and since C∞0 (M1 \ {x0}) is dense in C∞(M1), it is easy to see that f̃

(3)
k

is a distributional (hence a strong) solution to ∆f̃
(3)
k = αkf̃

(3)
k on M1 (see [14], p.206).

In particular, either f̃
(3)
k is 0 or αk is an eigenvalue of M1.

By the same compactness argument, there exists a subsequence ϕ
(1)
k,εi

which weakly

converges to f̃
(1)
k in H1(H1 ∪ J1) and strongly in L2(H1 ∪ J1). By Equalities (5.2), we

get that ‖df̃ (1)k ‖L2(H1) = 0 and so f̃
(1)
k is constant on H1 and on J1 and ϕ

(1)
k,εi

strongly

converges to f̃
(1)
k in H1(H1 ∪ J1). Let η : [0, 10] → [0, 1] be a smooth function such

that η(x) = 1 for any x 6 1/2, η(x) = 0 for any x > 1 and |η′| 6 4. We set sε the
distance function to ∂Sε = {0} × ε

10S
m−1 in Sε = M ε

1 ∪ Jε and θε the volume density
of Sε in normal coordinate to ∂Sε. We set L the distance between the two boundary
components of J1. By construction of Sε, we have 3

10 > θε(sε, u) = θ1(sε/ε) > 1 for any

sε ∈ [0, Lε] and any u normal to ∂Sε, and c(M1)(
sε
ε )m−1 > θε(sε, u) > 1

c(M1)
( sεε )m−1

for sε ∈ [εL, 8ε]. Hence, if we denote by S∂Sε(r) the set of points in Sε at distance r
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from ∂Sε, we get for any r 6 8 + L that∫
S∂Sε (εr)

(f εk)2 =

∫
ε
10

Sm−1

(∫ 1

εr

∂

∂sε
[η(·)f εk(·, u)]dsε

)2
θε(rε, u)du

=
εm−1

10m−1

∫
Sm−1

(∫ 1

εr

∂

∂sε
[η(·)f εk(·, ε

10
u)]dsε

)2
θε(rε,

ε

10
u)du

6
c(M1)ε

m−1

10m−1

∫
Sm−1

(∫ 1

0

( ∂
∂sε

[η(·)f εk(·, ε
10
u)]
)2
θε(sε,

ε

10
u)dsε

)(∫ 1

0

1

θε(sε,
ε
10u)

dsε

)
du∫

S∂Sε (εr)
(f εk)2 6 c(M1)‖f εk‖2H1(Sε)

ε| ln ε|(5.5)

which gives us εi
∫
∂Sεi

(f εik )2 =
∫
∂S1

(ϕ
(1)
k,εi

)2 →
∫
∂S1

(f̃
(1)
k )2 = 0 (by the trace inequality

and the compactness of the trace operator) and so f̃
(1)
k is null on J1.

By (5.4), and since c is positive and C1 on [0, l], there exists a subsequence ϕ
(2)
k,εi

which converges weakly to f̃
(2)
k in H1([0, l] × Sm−1) and strongly in L2([0, l] × Sm−1).

By the trace inequality applied on [0, l] × Sm−1, we also have that ‖ϕ(2)
k,εi
‖L2({l}×Sm−1)

is bounded. Now, since

101−mεi

∫
{l}×Sm−1

|ϕ(2)
k,εi
|2 = εi

∫
{l}× εi

10
Sm−1

|f εik |
2 = εi

∫
∂Hεi

|f εik |
2 =

∫
∂H1

|ϕ(1)
k,εi
|2

we get that f̃
(1)
k = 0 on H1.

We set hi(t) =
∫
Sm−1 ϕ

(2)
k,εi

(t, x)dx and h(t) =
∫
Sm−1 f̃

(2)
k (t, x)dx, we have h, hi ∈

H1([0, l]) (with h′i(t) =
∫
Sm−1

∂ϕ
(2)
k,εi
∂t (t, x)dx), hi → h strongly in L2([0, l]) and weakly

in H1([0, l]). For any ψ ∈ C∞([0, l]) with ψ(0) = 0 and ψ′(l) = 0, seen as a function on
Tc,ε and extended by 0 to Sε and by ψ(l) to Hε, we have∫ l

0
h′(ψcm−1)′ dt− (m− 1)

∫ l

0
h′
c′

c
ψcm−1 dt =

∫ l

0
h′ψ′cm−1 dt

= lim
i

∫ l

0
h′i(t)ψ

′(t)
cm−1√

1 + ε2i (c
′)2

dt = lim
i

∫
Mεi

ε
1−m

2
i 〈df εik , dψ〉 = lim

i

∫
Mεi

ε
1−m

2
i λεik f

εi
k ψ

= αk lim
i

(∫
[0,l]×Sm−1

ϕ
(2)
k,εi

ψcm−1
√

1 + ε2i (c
′)2 + ψ(l)ε

1−m
2

i

∫
Hεi

f εik

)
= αk

∫ l

0
hψcm−1 dt

where we have used that ε
1−m

2
i |

∫
Hεi

f εik | 6
√
εi
√

Vol (H1)
∫
Hεi

(f εik )2. Since c is positive,

we get that h is a weak solution to y′′ + (m − 1) c
′

c y
′ + αky = 0 on [0, l] and that

h′(l) = 0. Since we have 10m−1
∫
∂Sεi

(f εik )2 =
∫
{0}×Sm−1(ϕ

(2)
k,εi

)2 →
∫
{0}×Sm−1(f̃

(2)
k )2

(by compactness of the trace operator) and
∫
∂Sεi

(f εik )2 → 0 by (5.5), we get |h(0)|2 6

VolSm−1
∫
{0}×Sm−1(f̃

(2)
k )2 = 0, and so h(0) = 0. Since dSm−1ϕ

(2)
k,εi

converges weakly to

dSm−1 f̃
(2)
k in L2([0, l] × Sm−1), Inequality (5.4) gives ‖dSm−1 f̃

(2)
k ‖L2([0,l]×Sm−1) = 0, i.e.
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f̃
(2)
k is constant on almost every sphere {t} × Sm−1 of [0, l]× Sm−1. We infer that f̃

(2)
k

is equal to 1
Vol Sm−1h seen as a function on [0, l]× Sm−1 and so, either f̃

(2)
k = 0 or αk is

an eigenvalue of Pc for the Dirichlet condition at 0 and the Neumann condition at l.
To conclude, we have

∫
M1

f̃
(3)
k f̃

(3)
l +

∫
[0,l]×Sm−1

f̃
(2)
k f̃

(2)
l cm−1

= lim
i

∫
M1

ϕ
(3)
k,εi

ϕ
(3)
l,εi

+

∫
J1∪H1

ϕ
(1)
k,εi

ϕ
(1)
l,εi

+

∫
[0,l]×Sm−1

ϕ
(2)
k,εi

ϕ
(2)
l,εi
cm−1

√
1 + ε2i (c

′)2

= lim
i

∫
Mεi

f εik f
εi
l − lim

i

∫
M
εi
1 ∩B(∂M

εi
1 ,8εi)

f εik f
εi
l + lim

i

∫
M1\
(
M
εi
1 \B(∂M

εi
1 ,8εi)

) ϕ(3)
k,εi

ϕ
(3)
l,εi

= δkl,

where, in the last equality, we have used that ϕ
(3)
k,εi

and ϕ
(3)
l,εi

converge strongly to f̃
(3)
k

and f̃
(3)
l in L2(M1), that Vol

(
M1 \ (M εi

1 \ B(∂M εi
1 , 8εi)

)
tends to 0 with εi, and the

inequality ∫
M
εi
1 ∩B(∂M

εi
1 ,8εi)

(f εik )2 6 c(M1)‖f εik ‖H1(Mεi )
ε2i | ln εi|

which is obtained by integration of Inequality (5.5) with respect on r ∈ [L,L+8]. Note
that we need the inclusion. Hence, by the min-max principle, we have αk > λk for any
k ∈ N. We conclude that limε→0 λk(Mε) = λk for any k ∈ N. Note that in the case
c ≡ 1

10 , the spectrum of Pc with Dirichlet condition at 0 and Neumann condition at l

is {π2

l2
(k + 1

2)2, k ∈ N} with all the multiplicities equal to 1.

5.1.3. End of the proof of Theorem 1.4 in the case where T is a segment. The sequence
of basic immersions (Mε) gives Theorem 1.4 for T = [x0, x0+lν], except for the point 3)
since all the eigenvalues of [0, l] appear in the spectrum of the limit. To get also point
3) of Theorem 1.4, we will iterate the basic construction. We fix k ∈ N and lk small
enough such that λ1([0, lk]) > 2k and with l/lk ∈ N. Applying the basic construction
to M ′1 = M1, M

′
2 = Sn and T ′ = [x0, x0 + lkν], we get an immersion of N1 = M1#Sm

such that dH(M1 ∪ [x0, x0 + lkν], N1) 6 2
− l
lk , |λp(N1) − λp(M1)| 6 2

− l
lk for any p

such that λp(M1) 6 k, |VolN1 \M ε0
1 | 6 2

− l
lk VolM1, |

∫
N1\M

ε0
1
|B|m−1 −VolSm−1lk| 6

2
− l
lk

∫
M1
|B|m−1, |

∫
N1\M

ε0
1
|H|m−1 − VolSm−1(m−1m )m−1lk| 6 2

− l
lk

∫
M1
|H|m−1, where

ε0 = ε0(k) and limk ε0 = 0 and
∫
N1\M

ε0
1
|B|(m−1)

k−1
k 6 2

− l
lk

∫
M1
|H|(m−1)

k−1
k . We now

iterate the basic construction (with M ′1 = Ni, M
′
2 = Sn and T ′ = [xi, xi + lkν], where

{xi} = Ni∩(x0+R+ν)) to get a sequence of l
lk

immersions N2 = N1#Sm, · · · , N l
lk
−1 =
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N l
lk
−2#Sm, N l

lk

= N l
lk
−1#M2 such that

dH(Ni,M1 ∪ [x0, x0 + ilkν]) 6 i2
− l
lk , |VolNi+1 \N εi

i | 6 2
− l
lk VolM1,

|
∫
Ni+1\N

εi
i

|B|m−1 −VolSm−1lk| 6 2
− l
lk

∫
M1

|B|m−1,

|
∫
Ni+1\N

εi
i

|H|m−1 −VolSm−1(
m− 1

m
)m−1lk| 6 2

− l
lk

∫
M1

|H|m−1,∫
Ni+1\N

εi
i

|B|(m−1)
k−1
k 6 2

− l
lk

∫
M1

|H|(m−1)
k−1
k ,

|λp(Ni)− λp(Ni+1)| 6 2
− l
lk for any i 6

l

lk
− 1 and any p such that λp(M1) 6 k.

By gathering these estimates, we derive that the sequence of immersion ik(M1#M2) :=
N l

lk

satisfies

dH
(
ik(M1#M2),M1 ∪ [x0, x0 + lν]

)
6

l

lk
2
− l
lk ,

|Vol
(
ik(M1#M2)

)
−VolM ε0

1 | 6
l

lk
2
− l
lk VolM1,

|
∫
ik(M1#M2)

|B|m−1 −
∫
M
ε0
1

|B|m−1 −VolSm−1l| 6 l

lk
2
− l
lk

∫
M1

|B|m−1,

|
∫
ik(M1#M2)

|H|m−1 −
∫
M
ε0
1

|H|m−1 −VolSm−1(
m− 1

m
)m−1l| 6 l

lk
2
− l
lk

∫
M1

|H|m−1,∫
Ni+1\Nε

i

|B|(m−1)
k−1
k 6 2

− l
lk

∫
M1

|H|(m−1)
k−1
k ,

|λp(Ni)− λp(Ni+1)| 6 2
− l
lk for any i 6

l

lk
− 1 and any p such that λp(M1) 6 k.

By Hölder inequality, we get for any α 6 (m−1)(k−1)
k∣∣∫

ik(M1#M2)
|B|α −

∫
M
ε0
1

|B|α
∣∣ 6∑

i

∫
Ni+1\Nε

i

|B|α 6 l

lk
2
− l
lk Vol (M1)‖H‖αM1,m−1.

Since we have limk ε0 = 0, we get that limk

∫
ik(M1#M2)

|B|α =
∫
M1
|B|α for any α <

m− 1. This gives Theorem 1.4 in the case T = [x0, x0 + lν].

5.2. Case where T is a finite Euclidean tree. The iteration of the basic construc-
tion used to finish the proof of Theorem 1.4 in the case of a segment can easily be
generalized to get Theorem 1.4 for any finite union of finite Euclidean trees T = ∪iTi
each intersecting M1 only once, and such that

∑
im1(Ti) 6 l (note that since n+1 > 3,

we can assume up to small perturbations still converging to M1 ∪ T , that the trees are
disjoint and by adding some vertices, that the edges intersecting M1 are orthogonal to
M1).
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5.3. Case m1(T ) finite. When T is a closed subset with m1(T ) < ∞ and M1 ∪ T
connected, then each connected component of T ′ = T \M1 intersects M1. As in the
proof of Theorem 1.1, the family (Fi)i∈Ik of the connected components of T ′ that
intersect Rn+1 \ (M1) 1

k
is finite. Moreover, we have T ′ ⊃ ∪i∈IkFi ⊃ T \M 1

k
, hence

T ′ = ∪k ∪i∈Ik Fi. Since m1(Fi) is finite, for any i ∈ Ik, there exists a finite Euclidean
tree Ti,k such that dH(Ti,k, Fi) 6

1
k and |m1(Fi)−m1(Ti,k)| 6 1

k#Ik
(see [8]). Since Fi

intersects M1, we can assume that each Ti,k intersects M1 orthogonally (by adding a
segment and vertices if necessary, and small perturbations) only once (by suppressing
unnecessary open segments of Ti,k). Then the sequence

(
M1∪(∪i∈IkTi,k)

)
k∈N converges

to M1 ∪ T ′ = M1 ∪ T in Hausdorff distance. Since Theorem 1.4 is valid for M1 ∪
(∪i∈IkTi,k), there exists for any k ∈ N∗ an immersion ik(M1#M2) such that

dH
(
ik(M1#M2),M1 ∪ (∪i∈IkTi,k)

)
6

1

k∣∣∫
ik(M1#M2)

|H|m−1 −
∫
M1

|H|m−1 − (
m− 1

m
)m−1VolSm−1

∑
i

m1(Ti,k)
∣∣ 6 1

k
,

∣∣∫
ik(M1#M2)

|B|m−1 −
∫
M1

|B|m−1 −VolSm−1
∑
i

m1(Ti,k)
∣∣ 6 1

k
,

∣∣∫
ik(M1#M2)

|H|α −
∫
M1

|H|α
∣∣ 6 1

k
for any α ∈ [1,m− 1),

∣∣∫
ik(M1#M2)

|B|α −
∫
M1

|B|α
∣∣ 6 1

k
for any α ∈ [1,m− 1),

∣∣λp(ik(M1#M2))− λp(M1)
∣∣ 6 1

k
for any p 6 k,∣∣Vol (ik(M1#M2))−VolM1

∣∣ 6 1

k
.

Hence the sequence ik(M1#M2) converges to M1 ∪ T and since limk
∑

i∈Ik m1(Ti,k) =

limkm1(∪i∈IkFi) = m1(∪k∪i∈Ik Fi) = m1(T
′) (by the monotone convergence theorem).

5.4. Case m1(T ) = ∞. The Lm−1 control of the curvature in condition 2) are auto-
matically fulfilled. To deal with the remaining conditions, we approximate M1 ∪ T in
Attouch-Wetts distance by some unions of M1 with finite number of finite Euclidean
trees. Firstly, M1 ∪ T is the dAW -limit of the sequence of compact, connected sets
M1 ∪ T ′k :=

(
(M1 ∪ T ) ∩ B0(k)

)
∪ kSn. Let Nk be a maximal set of points of T ′k such

that any two different points of Nk are at distance larger than 1
k (note that Nk is finite

since M1 ∪T ′k is bounded), N ′k the family of points of Nk that are at distance from M1

less than 6
k and for any x ∈ N ′k, let yx ∈M1 be a point such that ‖x− yx‖ = d(x,M1).

Let Gk be a graph whose vertices are the points of Nk ∪{yx, x ∈ N ′k} and whose edges
are the Euclidean segments between any couple of points of Nk at distance less than 6/k
and the euclidean segments {[x, yx], x ∈ N ′k}. Then M1 ∪Gk is closed and connected.
We finally consider M1 ∪ Tk obtained from M1 ∪ Gk by suppressing some open-edges
from Tk as long as M1∪Tk remains connected. Note that the set of vertices of Tk is the
same vertices as for Gk, hence contains Nk, and that Tk has no cycle, hence is a finite
union of Euclidean trees. So M1 ∪ Tk is closed, connected, with Tk a finite union of
finite trees each intersecting M1 and the sequence converge to M1∪T in dAW -distance.
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Applying Theorem 1.4 to M1∪Tk and arguing as in the previous case, we get Theorem
1.4 for M ∪ T .

6. Proof of Proposition 1.3

In the case where Z ′ is reduced to a point {z}, we just take Mk = z + 1
kM .

We now suppose that Z ′ is not reduced to a point. Z is the limit in Attouch-
Wetts topology of the sequence

(
Z∩B(R)

)
R∈N, which itself is the limit of the sequence

MR = ∪x∈NR∂Bx( 1
R3n ), where NR is a maximal set of points of Z∩B(R) such that any

two different points of NR are at distance larger than 1
R . Then MR is a hypersurface

of Rn+1. Note that by connectedness of Z ′, any sphere of MR intersect Z ′ except if NR

is reduced to a point z and if Z ′ ⊂ Bz(R). Since Z ′ contains at least two points, we
infer that MR ∪Z ′ is connected for any R large enough. Applying the same procedure
as in the proof on Theorem 1.4, we get a disjoint, finite family of Euclidean finite trees
(Ti,R)i∈IR such that the sequence (MR ∪ (∪i∈IRTi,R))R of simply connected set (since
we have suppressed all the cycles by sutting unnecessary edges) converges to Z ′ in dAW
distance (and each tree intersects the connected component of MR at most once). We
can then iterate the basic construction to approximate the set MR ∪ (∪i∈IRTi,R) by
a submanifold M ′R = MR ∪ (∪i∈IRNi,R) with all vertices of the trees replace by some
small sphere and each edges replaced by a pinched cylinder. Then M ′R is diffeomorphic
to Sn, and so can be appoximated in distance dAW by an immersion of M by connected
sum of M ′R with a scaled copy of M . So we get a sequence of immersions of M that
converge strongly to Z ′ and weakly to Z.

By construction we have #NR = O(R2n) and so VolMR‖B‖n−1α,MR
= O( 1

Rn ), we get
the bounds on curvature as in the proof of Theorem 1.4.
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