DIAMETER PINCHING IN ALMOST POSITIVE RICCI CURVATURE

ERWANN AUBRY

Abstract

In this paper we prove a diameter sphere theorem and its corresponding λ_{1} sphere theorem under L^{p} control of the curvature. They are generalizations of some results due to S . Ilias [8].

1. Introduction

Let $\left(M^{n}, g\right)$ be a complete manifold with Ricci curvature Ric $\geq n-1$. Then $\left(M^{n}, g\right)$ satisfies the following classical results (the proofs can be found in [13] for instance):

- $\operatorname{Diam}\left(M^{n}, g\right) \leq \pi$ (S. Myers) with equality iff $\left(M^{n}, g\right)=\left(\mathbb{S}^{n}\right.$, can $)$ (S. Cheng),
- $\lambda_{1}\left(M^{n}, g\right) \geq n$ (A. Lichnerowicz) with equality iff $\left(M^{n}, g\right)=\left(\mathbb{S}^{n}\right.$, can $)$ (M. Obata), where Diam is the diameter and λ_{1} is the first positive eigenvalue.

Studying the properties of the sphere kept by manifold with Ric $\geq n-1$ and almost extremal diameter or λ_{1}, S. Ilias proved in [8] the following results:
Theorem 1.1 (S. Ilias). For any $A>0$, there exists $\epsilon(A, n)>0$ such that any n-manifolds with Ric $\geq n-1$, sectional curvature $\sigma \leq A$ and $\lambda_{1} \leq n+\epsilon$ is homeomorphic to \mathbb{S}^{n}.

Theorem 1.2 (S. Ilias). For any $A>0$, there exists $\epsilon(A, n)>0$ such that any n-manifolds with $\operatorname{Ric} \geq n-1, \sigma \leq A$ and $\operatorname{Diam}(M) \geq \pi-\epsilon$ is homeomorphic to \mathbb{S}^{n}.
Remark 1.3. C. Croke proves in [7] that for n-manifolds with $\mathrm{Ric} \geq n-1, \lambda_{1}(M)$ close to n implies $\operatorname{Diam}(M)$ close to π. The converse is proved in [8] (using a spectral inequality due to S. Cheng [6]).
Remark 1.4. For $n \geq 4, M$. Anderson [1] and Y. Otsu [10] construct sequences of complete metrics g_{i} with $\operatorname{Ric}\left(g_{i}\right) \geq n-1, \lambda_{1}\left(g_{i}\right) \rightarrow n$ and $\operatorname{Diam}\left(g_{i}\right) \rightarrow \pi$ on manifolds that are not homotope to \mathbb{S}^{n} (more precisely, Otsu shows that if $n \geq 5$, these manifolds can have infinitely many different fundamental groups).
Remark 1.5. The two results of S. Ilias have been improved by G. Perelman in [11], where the assumption $\sigma \leq A$ is replaced by $\sigma \geq-A$ (note that under the Ilias's assumptions $\sigma \leq A$ and Ric $\geq n-1$ we have $|\sigma| \leq(n-2) A)$.

Subsequently, we denote $\underline{\operatorname{Ric}}(x)$ the lowest eigenvalue of the Ricci tensor and $\bar{\sigma}(x)$ the maximal sectional curvature at x. In [4], we prove the following generalization of the Myers and Lichnerowicz theorems:

Theorem 1.6. For any $p>n / 2$, there exists $C(p, n)$ such that if $\left(M^{n}, g\right)$ is a complete manifold with $\int_{M}(\underline{\operatorname{Ric}}-(n-1))_{-}^{p}<\frac{\mathrm{Vol} M}{C(p, n)}$, then M is compact, has finite fundamental group and satisfies

$$
\begin{gathered}
\operatorname{Diam}(M) \leq \pi\left[1+C(p, n)\left(\frac{\rho_{p}}{\operatorname{Vol} M}\right)^{\frac{1}{10}}\right] \\
\lambda_{1}(M) \geq n\left[1-C(p, n)\left(\frac{\rho_{p}}{\operatorname{Vol} M}\right)^{\frac{1}{p}}\right]
\end{gathered}
$$

where $\rho_{p}=\int_{M}(\text { Ric }-(n-1))_{-}^{p}$ and $x_{-}=\max (0,-x)$.

[^0]Remark 1.7. It follows from [4] that the constant $C(p, n)$ is computable, that if $\int_{M}(\underline{\text { Ric }}-$ $(n-1))_{-}^{p}$ is finite (for $p>n / 2$) then $\operatorname{Vol} M$ is finite, and that we can not bound the diameter or the first non zero eigenvalue under the assumption $\rho_{p} \leq \frac{1}{C(p, n)}$ or $\rho_{\frac{n}{2}}$ small (see [4]).

In this paper we prove the following extensions of the Ilias's stability results.
Theorem 1.8. Let $n \geq 2$ be an integer, $A>0$ and $p>n$ be some reals. There exists a positive constant $C(p, n, A)$ such that any complete n-manifold which satisfies

$$
\begin{gathered}
\int_{M}(\underline{\operatorname{Ric}}-(n-1))_{-}^{p}<C(p, n, A) \operatorname{Vol} M, \quad \int_{M} \bar{\sigma}_{+}^{p}<A \operatorname{Vol} M \\
\text { and } \quad \operatorname{Diam}(M) \geq \pi(1-C(p, n, A))
\end{gathered}
$$

is homeomorphic to \mathbb{S}^{n} (where $\left.x_{+}=\max (0, x)\right)$.
Theorem 1.9. Let $n \geq 2$ be an integer, $A>0$ and $p>n$ be some reals. There exists a positive constant $C(p, n, A)$ such that any complete n-manifold which satisfies

$$
\begin{gathered}
\int_{M}(\underline{\operatorname{Ric}}-(n-1))_{-}^{p}<C(p, n, A) \operatorname{Vol} M, \quad \int_{M} \bar{\sigma}_{+}^{p}<A \operatorname{Vol} M \\
\text { and } \quad \lambda_{1}(M) \leq n(1+C(p, n, A))
\end{gathered}
$$

is homeomorphic to \mathbb{S}^{n}.
Remark 1.10. By the Hölder inequality, the two curvature assumptions of Theorem 1.9 can be replaced by

$$
\int_{M}(\underline{\operatorname{Ric}}-(n-1))_{-}<C(p, n, A) \operatorname{Vol} M, \quad \int_{M} \sigma^{p}<A \operatorname{Vol} M
$$

where $\sigma(x)$ is an upper bound for the absolute value of the sectional curvatures at x.

2. Comparison results in almost positive Ricci curvature

Subsequently we denote $B(x, r)$ (resp. $S(x, r)$) the geodesic ball (resp. sphere) of center x and radius r and $L_{k}(r)$ (resp. $\left.A_{k}(r)\right)$ the volume of a geodesic sphere (resp. ball) of radius r in $\left(\mathbb{S}^{n}, \frac{1}{k} g\right)$. Besides the theorem 1.6, we will need the following comparison results for manifolds of almost positive Ricci curvature (see [4] for a proof).
Proposition 2.1. For any $n \geq 2$ and $p>n / 2(p \geq 1$ if $n=2)$ there exists a constant $C(p, n)$ such that for any complete Riemannian n-manifold $\left(M^{n}, g\right)$ with $\eta^{10}=\frac{\rho_{p}}{\operatorname{Vol} M} \leq$ $\frac{1}{C(p, n)}$, we have

$$
\begin{gathered}
\left(\frac{\operatorname{Vol}_{n-1} S(x, R)}{L_{1-\eta}(R)}\right)^{\frac{1}{2 p-1}}-\left(\frac{\operatorname{Vol}_{n-1} S(x, r)}{L_{1-\eta}(r)}\right)^{\frac{1}{2 p-1}} \leq C(p, n) \eta^{2}(R-r)^{\frac{2 p-n}{2 p-1}} \\
\frac{\operatorname{Vol} B(x, r)}{\operatorname{Vol} B(x, R)} \geq(1-C(p, n) \eta) \frac{A_{1}(r)}{A_{1}(R)} \\
\operatorname{Vol}_{n-1} S(x, R) \leq\left(1+\eta^{2}\right) L_{1-\eta}(R) \\
\operatorname{Vol} B(x, R) \leq(1+\eta) A_{1}(R)
\end{gathered}
$$

for all $x \in M$ and all radii $0 \leq r \leq R$.
For any $n \geq 2$ and $p>n / 2$ there exists a constant $C(p, n)$ such that if $\left(M^{n}, g\right)$ is a complete n-manifold with $\bar{\rho}_{p} \leq \frac{1}{C(p, n)}$, then $\|u\|_{\frac{2 n}{n-2}} \leq \operatorname{Diam}(M) C(p, n)\|d u\|_{2}+\|u\|_{2}$, for any $u \in H^{1,2}(M)$. In the case $n=2$, we have $\|u\|_{4} \leq \operatorname{Diam}(M) C\|d u\|_{2}+\|u\|_{2}$ if $\overline{\rho_{1}} \leq \frac{1}{C}$.

Similar estimates are proved in [12] under the assumption $\operatorname{Diam}^{2 p} \frac{\rho_{p}}{\operatorname{Vol} M} \leq \frac{1}{C(p, n)}$.

3. Theorem 1.9 implies Theorem 1.8

Proposition 3.1. Let $n \geq 2$ and $p>n / 2$. There exists $C(p, n)>0$ such that if $\left(M^{n}, g\right)$ is a complete n-manifold with $\eta^{10}=\bar{\rho}_{p} \leq \frac{1}{C(p, n)}$ and $\operatorname{Diam}(M) \geq \pi-\frac{1}{C(p, n)}$ then we have

$$
\lambda_{1}(M) \leq n+C(p, n)\left[\eta+(\operatorname{Diam}(M)-\pi)_{-}\right] .
$$

The main tool to prove this proposition is the following lemma:
Lemma 3.2. Let $n \geq 2$ and $p>n / 2(p \geq 1$ if $n=2)$ and $\bar{x}_{0} \in \mathbb{S}^{n}$. There exists a constant $C(p, n)$ such that if $\left(M^{n}, g\right)$ is a complete n-manifold with $\eta^{10}=\bar{\rho}_{p} \leq \frac{1}{C(p, n)}$ then there exists $x_{0} \in M$ such that for any C^{1}-function $u:[0,2 \pi] \rightarrow \mathbb{R}$ we have

$$
\begin{aligned}
&\left|\frac{1}{\operatorname{Vol} M} \int_{M} u \circ d_{M}\left(x_{0}, .\right) d v_{g}-\frac{1}{\operatorname{Vol} \mathbb{S}^{n}} \int_{\mathbb{S}^{n}} u \circ d_{\mathbb{S}^{n}}\left(\overline{x_{0}}, .\right) d v_{\mathbb{S}^{n}}\right| \\
& \leq\left\|u^{\prime}\right\|_{\infty} C(p, n)\left[\eta+(\operatorname{Diam}(M)-\pi)_{-}\right]
\end{aligned}
$$

Proof. Let $\left(x_{0}, y_{0}\right) \in M^{2}$ such that $d=\operatorname{Diam}(M)=d\left(x_{0}, y_{0}\right)$. The functions A, L, A_{1} and L_{1} are defined in Proposition 2.1 and prolonged by 0 to \mathbb{R} (note that the diameter of M can be greater than π). The function $r \rightarrow u(r) A(r)$ is continuous and has right differential on \mathbb{R} equal to $u^{\prime} A+u L$. We infer the equalities

$$
\begin{aligned}
u(d) \operatorname{Vol} M & =\int_{0}^{d} u(r) L(r) d r+\int_{0}^{d} u^{\prime}(r) A(r) d r \\
u(\pi) \operatorname{Vol}^{n} & =\int_{0}^{\pi} u(r) L_{1}(r) d r+\int_{0}^{\pi} u^{\prime}(r) A_{1}(r) d r
\end{aligned}
$$

which imply

$$
\begin{gathered}
\left|\frac{1}{\operatorname{Vol} M} \int_{M} u \circ d_{M}\left(x_{0}, x\right) d v_{g}-\frac{1}{\operatorname{Vol} \mathbb{S}^{n}} \int_{\mathbb{S}^{n}} u \circ d_{\mathbb{S}^{n}}\left(\overline{x_{0}}, x\right) d v_{\mathbb{S}^{n}}\right| \\
=\left|\int_{0}^{d} \frac{u(r) L(r)}{\operatorname{Vol} M} d r-\int_{0}^{\pi} \frac{u(r) L_{1}(r)}{\operatorname{Vol} \mathbb{S}^{n}}\right|=\left|u(d)-u(\pi)+\int_{0}^{\pi} \frac{u^{\prime} A_{1}}{\operatorname{Vol} \mathbb{S}^{n}}-\int_{0}^{d} \frac{u^{\prime} A}{\operatorname{Vol} M}\right| \\
=\left|\int_{0}^{d} u^{\prime}\left(\frac{A_{1}}{\operatorname{Vol} \mathbb{S}^{n}}-\frac{A}{\operatorname{Vol} M}\right)+\int_{d}^{\pi} u^{\prime}\left(\frac{A_{1}}{\operatorname{Vol} \mathbb{S}^{n}}-1\right)\right| \\
\leq\left\|u^{\prime}\right\|_{\infty}\left(\int_{0}^{d}\left|\frac{A_{1}}{\operatorname{Vol} \mathbb{S}^{n}}-\frac{A}{\operatorname{Vol} M}\right| d r+|\pi-d|\right)
\end{gathered}
$$

By Proposition 2.1 we have, for all $r \leq d$:

$$
\begin{aligned}
(1-C(p, n) \eta) \frac{A_{1}(r)}{\operatorname{Vol} \mathbb{S}^{n}} \leq \frac{A(r)}{\operatorname{Vol} M} & \leq 1-\frac{\operatorname{Vol} B\left(y_{0}, d-r\right)}{\operatorname{Vol} M} \leq 1-(1-C(p, n) \eta) \frac{A_{1}(d-r)}{\operatorname{Vol} \mathbb{S}^{n}} \\
& \leq \frac{A_{1}(r+\pi-d)}{\operatorname{Vol} \mathbb{S}^{n}}+C(p, n) \eta
\end{aligned}
$$

Hence $\left|\frac{A(r)}{\operatorname{Vol} M}-\frac{A_{1}(r)}{\operatorname{Vol} \mathbb{S}^{n}}\right| \leq C(p, n) \eta+\frac{\left(A_{1}(r)-A_{1}(r+\pi-d)\right)_{-}}{\operatorname{Vol} \mathbb{S}^{n}}$. An easy computation gives $\left\|\frac{\left(A_{1}(\cdot)-A_{1}(\cdot+h)\right)_{-}}{\operatorname{Vol}^{n}}\right\|_{\infty} \leq C(n)(-h)_{-}$, and by Proposition 2.1 we get:

$$
\left|\frac{1}{\operatorname{Vol} M} \int_{M} u \circ d_{M}\left(x_{0}, x\right) d v_{g}-\frac{1}{\operatorname{Vol} \mathbb{S}^{n}} \int_{\mathbb{S}^{n}} u \circ d_{\mathbb{S}^{n}}\left(\overline{x_{0}}, x\right) d v_{\mathbb{S}^{n}}\right|
$$

$$
\leq\left\|u^{\prime}\right\|_{\infty} C(p, n)\left[\eta+(d-\pi)_{-}\right]
$$

We now finish the proof of Proposition 3.1.

Proof. Lemma 3.2 applied to $u=\sin ^{2}, u=\cos ^{2}$ and $u=\cos$ gives:

$$
\begin{aligned}
& \left|\int_{M} \frac{\sin ^{2} d_{M}\left(x_{0}, .\right)}{\operatorname{Vol} M}-\int_{\mathbb{S}^{n}} \frac{\left.\sin ^{2} d_{\mathbb{S}^{n}(} \bar{x}_{0}, .\right)}{\operatorname{Vol} \mathbb{S}^{n}}\right| \leq C(p, n)\left(\eta+(d-\pi)_{-}\right) \leq 1 \\
& \left|\int_{M} \frac{\cos ^{2} d_{M}\left(x_{0}, .\right)}{\operatorname{Vol} M}-\int_{\mathbb{S}^{n}} \frac{\cos ^{2} d_{\mathbb{S}^{n}}\left(\bar{x}_{0}, .\right)}{\operatorname{Vol} \mathbb{S}^{n}}\right| \leq C(p, n)\left(\eta+(d-\pi)_{-}\right) \leq 1 \\
& \left|\int_{M} \frac{\cos d_{M}\left(x_{0}, .\right)}{\operatorname{Vol} M}-\int_{\mathbb{S}^{n}} \frac{\cos d_{\mathbb{S}^{n}}\left(\bar{x}_{0}, .\right)}{\operatorname{Vol} \mathbb{S}^{n}}\right| \leq C(p, n)\left(\eta+(d-\pi)_{-}\right) \leq 1
\end{aligned}
$$

Hence, if we set $f=\cos d_{M}\left(x_{0},.\right)$, we get

$$
\begin{aligned}
& \left|\|\nabla f\|_{2}^{2}-\frac{n}{n+1}\right| \leq C(p, n)\left(\eta+(d-\pi)_{-}\right) \leq 1 \\
& \left|\|f\|_{2}^{2}-\frac{1}{n+1}\right| \leq C(p, n)\left(\eta+(d-\pi)_{-}\right) \leq 1 \\
& \left|\frac{1}{\operatorname{Vol} M} \int_{M} f\right| \leq C(p, n)\left(\eta+(d-\pi)_{-}\right) \leq 1
\end{aligned}
$$

Which readily implies that

$$
\lambda_{1}(M) \leq \frac{\|\nabla(f-\bar{f})\|_{2}^{2}}{\|f-\bar{f}\|_{2}} \leq n\left(1+C(p, n)\left(\eta+(d-\pi)_{-}\right)\right)
$$

where we have set $\bar{f}=\frac{1}{\mathrm{Vol} M} \int_{M} f$.
Remark 3.3. The same technic as in [5] can be used to prove that manifolds with almost positive Ricci curvature and λ_{1} is close to n have a diameter close to π (see [12]).

4. Proof of Theorem 1.9

4.1. Fiber Bundle E. Let E be the fiber bundle $T M \oplus \mathbb{R} e \rightarrow M$ endowed with the following scalar product and linear connection:

$$
\begin{gathered}
<X+f e, Y+h e>_{E}=g(X, Y)+f h \\
D_{Z}^{E}(X+f e)=D_{Z}^{M} X+f Z+(d f(Z)-g(Z, X)) \cdot e
\end{gathered}
$$

Where D^{M} is the Levi-Civita connection of the metric g on M. We set p the orthogonal projection of E on $T M, \operatorname{Ric}^{\prime}(S)=\operatorname{Ric}_{M}(p(S))-(n-1) p(S)$ and $\triangle_{s p h}=\bar{\triangle}^{E}+\operatorname{Ric}^{\prime}$.

The following Lemma is proved in [3]:
Lemma 4.1. If $f: M \rightarrow \mathbb{R}$ satisfies $\triangle f=\lambda f$ then $S_{f}=\nabla f+f$ f.e satisfies $\triangle_{\text {sph }}\left(S_{f}\right)=$ $(\lambda-n)(\nabla f-f e)$ and $\left\langle D_{X}^{E} S_{f}, X\right\rangle=\operatorname{Ddf}(X, X)+f g(X, X)$.

Note also that we have

$$
\mathrm{R}_{(\mathrm{Z}, \mathrm{Y})}^{\mathrm{E}}(\mathrm{X}+\mathrm{fe})=\mathrm{R}^{\mathrm{M}}(\mathrm{Z}, \mathrm{Y}) \mathrm{X}-(\mathrm{g}(\mathrm{Y}, \mathrm{X}) \mathrm{Z}-\mathrm{g}(\mathrm{Z}, \mathrm{X}) \mathrm{Y})
$$

4.2. Bound on the Hessian of the first eigenfunction. To prove Theorem 1.9 we need a L^{∞} bound on the Hessian of the first eigenfunction. In that purpose, we will modify the proof of Theorem 2.4 in [2] (whose proof would give us only a bound on $\left\|D S_{f}\right\|_{n+\epsilon} /\left\|S_{f}\right\|_{\infty}$ for a given $\left.\epsilon=\epsilon(p, n)\right)$. In our case we really need to perform a Möser iteration.

Proposition 4.2. Let $n \geq 2$ and $\infty \geq p>n / 2$. There exists a constant $C(p, n)$ such that if $\left(M^{n}, g\right)$ is any manifold with $\bar{\rho}_{p} \leq \frac{1}{C(p, n)}$ and $\lambda_{1} \leq n+\frac{1}{C(p, n)}$ then for $f: M \rightarrow \mathrm{R}$ such that $\triangle f=\lambda_{1} f$ we have:

$$
\frac{\left\|D^{E} S_{f}\right\|_{\infty}}{\left\|S_{f}\right\|_{\infty}} \leq C(p, n)\left(\lambda_{1}+\|R\|_{2 p}\right)^{\gamma}\left(\left|\lambda_{1}-n\right|+\bar{\rho}_{p}\right)^{\frac{1}{2(1+\gamma)}}
$$

where $S_{f}=\nabla f+f \cdot e$ and $\gamma=\frac{p n}{2 p-n}$.

To prove Proposition 4.2 we need a commutation Lemma (see [2]):
Lemma 4.3. For any section $S \in \Gamma(E)$ we have

$$
\frac{1}{2} \triangle\left(|D S|^{2}\right)+\left|D^{2} S\right|^{2} \leq\left\langle D^{*} R^{E} S, D S\right\rangle+{\underline{\operatorname{Ric}^{-}}}^{-}|D S|^{2}+\langle D \bar{\triangle} S, D S\rangle+\left\|R^{E}\right\| \cdot|D S|^{2}
$$

where $\left\|R^{E}\right\|$ is the norm of the linear map $\mathrm{R}^{\mathrm{E}}: \bigwedge^{2} \mathrm{~T}_{\mathrm{m}} \mathrm{M} \rightarrow \bigwedge^{2} \mathrm{E}_{\mathrm{m}}^{*}$ defined by $R^{E}(u \wedge$ $v)(T, S)=<R^{E}(u, v) T, S>$.

Remark 4.4. This Lemma is valid for any Riemannian fiber bundle $(E, D,\langle\cdot, \cdot\rangle)$.
We now give the proof of Proposition 4.2.
Proof. We set $u=\sqrt{|D S|^{2}+\epsilon^{2}}$. we have

$$
\begin{gathered}
u \triangle u=\frac{1}{2} \triangle\left(u^{2}\right)+|d u|^{2}=\frac{1}{2} \triangle\left(u^{2}\right)+\frac{\left|\left\langle D^{2} S, D S\right\rangle\right|^{2}}{|D S|^{2}+\epsilon^{2}} \\
\leq \frac{1}{2} \triangle\left(|D S|^{2}\right)+\left|D^{2} S\right|^{2}
\end{gathered}
$$

Hence, by Lemma 4.3

$$
\begin{aligned}
& \int_{M}\left|d\left(u^{k}\right)\right|^{2} \leq \frac{k^{2}}{2 k-1} \int_{M}\left(\frac{1}{2} \triangle|D S|^{2}+\left|D^{2} S\right|^{2}\right) u^{2(k-1)} \\
& \leq \frac{k^{2}}{2 k-1}\left(\int_{M}{\underline{R^{-}}}^{-} u^{2 k}\right.+\int_{M}<D \bar{\triangle} S, D S>u^{2(k-1)} \\
&\left.+\int_{M}<D^{*} \mathrm{R}^{\mathrm{E}} \mathrm{~S}, \mathrm{DS}>\mathrm{u}^{2(\mathrm{k}-1)}+\int_{\mathrm{M}}\left\|\mathrm{R}^{\mathrm{E}}\right\| \mathrm{u}^{2 \mathrm{k}}\right)
\end{aligned}
$$

We now apply the divergence theorem to the form $u^{2(k-1)}\left\langle\bar{\triangle} S, D_{\bullet} S\right\rangle$, and get for any $k \geq 1$:
$\int_{M}\langle D \bar{\triangle} S, D S\rangle u^{2(k-1)}$

$$
\begin{aligned}
&=\int_{M}|\bar{\triangle} S|^{2} u^{2(k-1)}-2(k-1) \sum_{i} \int_{M}\langle\bar{\triangle} S, D S(i)\rangle d u(i) \cdot u^{2 k-3} \\
& \leq \int_{M}|\bar{\triangle} S|^{2} u^{2(k-1)}+2(k-1) \int_{M}|\bar{\triangle} S||d u| u^{2(k-1)} \\
& \leq \frac{k-1}{2} \int_{M}|d u|^{2} u^{2(k-1)}+(2 k-1) \int_{M}|\bar{\triangle} S|^{2} u^{2(k-1)}
\end{aligned}
$$

We do the same with the form $u^{2(k-1)}\left(\operatorname{tr}_{1,3}\left(\left\langle R_{(\bullet, \bullet}^{E} S, D \cdot S\right\rangle\right)\right)$ and get

$$
\begin{aligned}
& \int_{M}\left\langle D^{*} R^{E} S, D S\right\rangle u^{2(k-1)} \\
&=\int_{M} \frac{1}{2}\left|\mathrm{R}^{\mathrm{E}} \mathrm{~S}\right|^{2} \mathrm{u}^{2(\mathrm{k}-1)}+2(\mathrm{k}-1) \sum_{\mathrm{i}, \mathrm{j}} \int_{\mathrm{M}}\left\langle\mathrm{R}^{\mathrm{E}}(\mathrm{i}, \mathrm{j}) \mathrm{S}, \mathrm{D}_{\mathrm{j}} \mathrm{~S}\right\rangle \mathrm{du}(\mathrm{i}) \mathrm{u}^{2 \mathrm{k}-3} \\
& \leq \frac{k-1}{2} \int_{M}|d u|^{2} u^{2(k-1)}+(2 k-1) \int_{M}\left|\mathrm{R}^{\mathrm{E}} \mathrm{~S}\right|^{2} \mathrm{u}^{2(\mathrm{k}-1)},
\end{aligned}
$$

Where we have used $\sum_{i, j}\left\langle\mathrm{R}^{\mathrm{E}} \mathrm{S}(\mathrm{i}, \mathrm{j}), \mathrm{D}^{2} \mathrm{~S}(\mathrm{i}, \mathrm{j})\right\rangle=\frac{1}{2}\left|\mathrm{R}^{\mathrm{E}} \mathrm{S}\right|^{2}$.
Since $\int_{M}|d u|^{2} u^{2(k-1)}=\frac{1}{k^{2}} \int_{M}\left|d\left(u^{k}\right)\right|^{2}$, the three last inequalities give, for any $k \geq 1$:

$$
\begin{aligned}
& \left\|d\left(u^{k}\right)\right\|_{2}^{2} \\
& \quad \leq k\left(\int_{M} \underline{R i c}^{-} u^{2 k}+\int_{M}\left\|\mathrm{R}^{\mathrm{E}}\right\| \mathrm{u}^{2 \mathrm{k}}\right)+\mathrm{k}(2 \mathrm{k}-1)\left(\int_{\mathrm{M}}\left\|\mathrm{R}^{\mathrm{E}} \mathrm{~S}\right\|^{2} \mathrm{u}^{2 \mathrm{k}-2}+\int_{\mathrm{M}}\|\bar{\triangle} \mathrm{~S}\|^{2} \mathrm{u}^{2 \mathrm{k}-2}\right)
\end{aligned}
$$

$$
\leq 4 k^{2}\left(B_{1}\|u\|_{\frac{2 k p}{p-1}}^{2 k}+B_{2}\|S\|_{\infty}^{2}\|u\|_{\frac{(k-1) p}{p-1}}^{2(k-1)}\right)
$$

where we have set

$$
\begin{gathered}
B_{1}=\left\|{\underline{\operatorname{Ric}^{-}}}^{-}\right\|_{p}+\left\|R^{E}\right\|_{p} \leq C(n)\left(\left\|R^{M}\right\|_{2 p}^{2}+\lambda_{1}^{2}\right)=B^{2} \\
B_{2}=\frac{\|\bar{\triangle} S\|_{2 p}^{2}}{\|S\|_{\infty}^{2}}+\frac{\left\|R^{E} S\right\|_{2 p}^{2}}{\|S\|_{\infty}^{2}} \leq \frac{\left\|\triangle_{S p h} S\right\|_{2 p}^{2}}{\|S\|_{\infty}^{2}}+\left\|\operatorname{Ric}^{\prime}\right\|_{2 p}^{2}+\left\|R^{E}\right\|_{2 p}^{2} \\
\leq C(n)\left(\lambda_{1}^{2}+\left\|R^{M}\right\|_{2 p}^{2}\right)=B^{2}
\end{gathered}
$$

By the Sobolev inequality given by Proposition 2.1, we get

$$
\|D S\|_{\frac{2 k n}{n-2}}^{k} \leq\|D S\|_{2 k}^{k}+C(p, n) B k \sqrt{\|D S\|_{\frac{2 k p}{p-1}}^{2 k}+\|S\|_{\infty}^{2}\|D S\|_{\frac{2(k-1) p}{p-1}}^{2(k-1)}},
$$

and by $\|D S\|_{2 k} \leq\|D S\|_{\frac{2 k p}{p-1}} \leq\|D S\|_{\infty}^{1 / k}\|D S\|_{\frac{2(k-1) p}{p-1}}^{(1-1 / k)}$, we have

$$
\left(\frac{\|D S\|_{\frac{2 k n}{n-2}}}{\|D S\|_{\infty}}\right)^{\frac{2 k n}{n-2}} \leq\left[1+B k C(p, n)\left(1+\frac{\|S\|_{\infty}^{2}}{\|D S\|_{\infty}^{2}}\right)\right]^{\frac{2 n}{n-2}}\left(\frac{\|D S\|_{\frac{2(k-1) p}{p-1}}}{\|D S\|_{\infty}}\right)^{\nu \frac{2(k-1) p}{p-1}}
$$

where $\nu=\frac{n(p-1)}{2 p(n-2)}>1$. We set $k=\frac{a_{n}(p-1)}{2 p}+1$ where $\left(a_{n}\right)_{n}$ is the sequence defined by $a_{0}=\frac{2 p}{p-1}$ and $a_{n+1}=\nu a_{n}+\frac{2 n}{n-2}$. Then we get

$$
\left(\frac{\|D S\|_{a_{n+1}}}{\|D S\|_{\infty}}\right)^{\frac{a_{n+1}}{v^{n+1}}} \leq\left[1+a_{n} C(p, n) B\left(1+\frac{\|S\|_{\infty}^{2}}{\|D S\|_{\infty}^{2}}\right)\right]^{\frac{2 n}{(n-2) \nu^{n+1}}}\left(\frac{\|D S\|_{a_{n}}}{\|D S\|_{\infty}}\right)^{\frac{a_{n}}{\nu n}}
$$

Hence

$$
1=\lim _{n \rightarrow+\infty}\left(\frac{\|D S\|_{a_{n}}}{\|D S\|_{\infty}}\right)^{\frac{a_{n}}{\nu n}} \leq \prod_{i=1}^{\infty}\left(1+C(p, n) a_{i} B\left(1+\frac{\|S\|_{\infty}^{2}}{\|D S\|_{\infty}^{2}}\right)\right)^{\frac{2 n}{(n-2) \nu^{2}}}\left(\frac{\|D S\|_{a_{0}}}{\|D S\|_{\infty}}\right)^{a_{0}}
$$

The Hölder inequality $\|D S\|_{a_{0}} \leq\|D S\|_{2}^{1-\frac{1}{p}}\|D S\|^{\frac{1}{p}}$, gives

$$
\begin{equation*}
\|D S\|_{\infty} \leq \prod_{i=1}^{\infty}\left(1+C(p, n) a_{i} B\left(1+\frac{\|S\|_{\infty}^{2}}{\|D S\|_{\infty}^{2}}\right)\right)^{\frac{n}{(n-2) \nu^{i}}}\|D S\|_{2} \tag{*}
\end{equation*}
$$

If $\|D S\|_{\infty} \geq\|S\|_{\infty}$ then inequality ($*$) gives

$$
\|D S\|_{\infty} \leq \prod_{i=1}^{\infty}\left(1+C(p, n) a_{i} B\right)^{\frac{n}{(n-2) \nu^{2}}}\|D S\|_{2} \leq C(p, n)\left(\lambda_{1}+\|R\|_{2 p}\right)^{\frac{p n}{2 p-n}}\|D S\|_{2}
$$

If $\|D S\|_{\infty} \leq\|S\|_{\infty}$ then inequality $(*)$ gives

$$
\frac{\|D S\|_{\infty}}{\|D S\|_{2}} \leq\left(\frac{\|S\|_{\infty}}{\|D S\|_{\infty}}\right)^{\frac{2 p n}{2 p-n}} \prod_{i=1}^{\infty}\left(1+C(p, n) a_{i} B\right)^{\frac{n}{(n-2) \nu^{i}}}
$$

hence

$$
\frac{\|D S\|_{\infty}}{\|S\|_{\infty}} \leq C(p, n)\left(\lambda_{1}+\|R\|_{2 p}\right)^{\frac{p n}{2 p-n)}}\left(\frac{\|D S\|_{2}}{\|S\|_{\infty}}\right)^{\frac{2 p-n}{2 p-n+2 p n}} .
$$

At this stage note that, by Lemma 4.1 we have

$$
\begin{aligned}
\|D S\|_{2}^{2}=<\bar{\triangle}_{s p h}(S), S & >_{L^{2}}-<\operatorname{Ric}^{\prime}(S), S>_{L^{2}} \\
& \leq\left|\lambda_{1}-n\right|\|S\|_{2}^{2}+\int_{M} \frac{\left(\underline{\operatorname{Ric}-(n-1))^{-}}\right.}{\operatorname{Vol} M}|S|^{2} \leq\left(\left|\lambda_{1}-n\right|+\bar{\rho}_{p}\right)\|S\|_{\infty}^{2}
\end{aligned}
$$

Since we have $\frac{2 p-n}{2 p-n+2 p n} \leq 1$, we get the result.
4.3. Critical points of the first eigenfunction. By Proposition 4.2 the section $S_{f}=$ $\nabla f+f e$ of E satisfies $\left\|D^{E} S_{f}\right\|_{\infty} \leq C(p, n, A)\left(\left|\lambda_{1}-n\right|+\bar{\rho}_{p}\right)^{\frac{1}{1+\gamma}}\left\|S_{f}\right\|_{\infty}$. Since we can suppose the pinching on $\left|\lambda_{1}-n\right|$ and $\bar{\rho}_{p}$ small enough to have $C(p, n, A)\left(\left|\lambda_{1}-n\right|+\bar{\rho}_{p}\right)^{\frac{1}{1+\gamma}} \leq$ $1 / 4$, the previous inequality and Theorem 1.6 give

$$
\begin{aligned}
& \inf \left|S_{f}\right| \geq\left[1-C(p, n, A)\left(\left|\lambda_{1}-n\right|+\bar{\rho}_{p}\right)^{\frac{1}{1+\gamma}}\right]\left\|S_{f}\right\|_{\infty} \\
& \quad>C(p, n, A)\left(\left|\lambda_{1}-n\right|+\bar{\rho}_{p}\right)^{\frac{1}{1+\gamma}}\left\|S_{f}\right\|_{\infty} \geq\left\|D^{E} S_{f}\right\|_{\infty}
\end{aligned}
$$

We infer that if x_{0} is a critical point of f then by Lemma 4.1 we have

$$
\left|D d f_{x_{0}}(X, X)+f\left(x_{0}\right)\right|=\left|\left\langle D_{X}^{E} S_{f}, X\right\rangle_{E}\right| \leq\left\|D^{E} S_{f}\right\|_{\infty}<\left|S_{f}\left(x_{0}\right)\right|=\left|f\left(x_{0}\right)\right|
$$

for any unit vector X of $T_{x_{0}} M$. Hence we have $-\left|f\left(x_{0}\right)\right|-f\left(x_{0}\right)<D d f_{x_{0}}(X, X)<$ $\left|f\left(x_{0}\right)\right|-f\left(x_{0}\right)$ for any critical point x_{0} of f. So the only critical points of f are non degenerate global extrema, which implies that M is homeomorphic to \mathbb{S}^{n} by the Reeb's theorem.

References

[1] M. Anderson, Metrics of positive Ricci curvature with large diameter, Manuscripta Math. 68 (1990), p. 405-415.
[2] E. Aubry, B. Colbois, P. Ghanaat, E. Ruh, Curvature, Harnack's inequality, and a spectral characterization of Nilmanifolds, Ann. Glob. Anal. Geom. 23 (2003), p. 227-246.
[3] E. Aubry, Pincement sur le spectre et le volume en courbure de Ricci positive, Ann. Scient. c. Norm. Sup. 38 (2005) p. 387-405.
[4] E. Aubry, Finiteness of π_{1} and geometric inequalities in almost positive Ricci curvature, Ann. Scient. c. Norm. Sup. 40 (2007), p.675-695.
[5] P. Brard, G. Besson, S. Gallot, Sur une ingalit isoprimtrique qui gnralise celle de Paul LevyGromov, Invent. Math. 80 (1985), p. 295-308.
[6] S. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), p. 289-297.
[7] C. Croke, An eigenvalue pinching theorem, Invent. Math. 68 (1982), p. 253-256.
[8] S. Ilias, Un nouveau rsultat de pincement de la premire valeur propre du laplacien et preuve de la conjecture du diamtre pinc, Ann. Inst. Fourier 43 (1993), p. 843-863.
[9] M. Le Couturier, G. Robert L^{p}-pinching and the geometry of compact Riemannian manifolds, Comment. Math. Helv. 69 (1994), p. 249-271.
[10] Y. Otsu, On manifolds of positive Ricci curvature with large diameter, Math. Z. 206 (1991), p. 252-264.
[11] G. Perelman, A diameter sphere theorem for manifolds of positive Ricci curvature, Math. Z. 218 (1998), p. 595-596.
[12] , P. Petersen, C. Sprouse Integral curvature bounds, distance estimates and applications, J. Diff. Geom. 50 (1998), p. 269-298.
[13] T. Sakai, Riemannian Geometry, American Math. Soc. Providence, Rhode Island (1996).
Laboratoire Dieudonné, Univ. Nice Sophia-Antipolis, Parc Valrose, 06108 Nice, FRANCE
E-mail address: eaubry@math.unice.fr

[^0]: Key words and phrases. Ricci curvature, comparison theorems, integral bounds on the curvature, sphere theorems.

