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Abstract. We prove a combination theorem for finite graphs of relatively hyperbolic
groups, with both Farb’s and Gromov’s definitions.

1. Introduction

We prove in this paper a quite general theorem (termed combination theorem) giving
a condition for the fundamental group of a graph of relatively hyperbolic groups being
a relatively hyperbolic group (with both Farb’s and Gromov’s definitions - we refer the
reader to [20, 10, 5, 29, 7] for the various definitions of relative hyperbolicity and their
relationships). This is an extension, to the relative hyperbolicity setting, of a famous
theorem due to Bestvina and Feighn [3] (see also [23]): the authors introduce there the
notion of (finite) graphs of qi-embedded groups and, assuming the Gromov hyperbolicity
of the vertex groups, give a sufficient condition for the Gromov hyperbolicity of the fun-
damental group of the given graph of groups. Since then different proofs have appeared,
which treat the so-called ‘acylindrical case’: see, among others, [19, 26]. A graph of groups
is acylindrical if the fixed set of the action of any element of its fundamental group on
the universal covering has uniformly bounded diameter. The non-acylindrical case is less
common: see [24] which relies on [3] but clarifies its consequences when dealing with a
certain class of mapping-tori of injective, non surjective free group endomorphisms, or
[11] which, by an approach similar to the one presented here, gives a new proof of [3] in
the case of mapping-tori of free group endomorphisms.

First combination theorems in some particular (essentially acylindrical) cases have
been given in the setting of relative hyperbolicity: [1], [8] or [28, 30]. One result [15]
treats a particular non-acylindrical case, namely the relative hyperbolicity of one-ended
hyperbolic by cyclic groups. In [27] the authors give a combination theorem dealing with
more general non-acylindrical cases than [15]. This last paper heavily relies upon [3],
which is used as a “black-box”. The current paper is a sequel to [13] where we proved
a dynamical and geometric combination theorem for trees of hyperbolic and relatively
hyperbolic spaces. The paper [13] is independent of [3] and in fact presents a new proof
of the geometric combination theorem of [3]. Our work here is to derive from [13] the
algebraic consequences. We only prove here the sufficiency of the conditions we intro-
duce (algebraic exponential-separation property and its strengthening) for the relative
hyperbolicity of a graph of relatively hyperbolic groups. However they are also necessary
conditions: in the absolute hyperbolicity case, Gersten was the first to give the converse
to the combination theorem, using cohomological arguments [17] and we adapt his ar-
guments in [14]. Bowditch exposed a more direct proof in [6] that [27] adapts in his
setting.
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2. Main result

We start by recalling the definitions of weak and strong relative hyperbolicity. Both
notions were defined in [10]. However the approach of strong relative hyperbolicity is
taken from [5].

Definition 2.1. [10, 5] Let G be a group with finite generating set S and Cayley graph
ΓS(G). Let Λ be a set and let H = {Hi}i∈Λ be a a family of subgroups Hi of G.

The H-coned graph ΓHS (G) is the graph obtained from ΓS(G) by:

• adding an exceptional vertex v(gHi) for each left Hi-coset,

• putting an exceptional edge of length 1
2

between v(gHi) and each vertex of ΓS(G)
associated to an element in the coset gHi,

for each Hi ∈ H.

Definition 2.2. [10, 5] With the notations of Definition 2.1:
The group G is weakly hyperbolic relative to H if and only if ΓHS (G) is Gromov hyper-

bolic.
The group G is strongly hyperbolic relative to H if and only if:

(a) The graph ΓHS (G) is Gromov hyperbolic;

(b) For any positive integer n, any edge in ΓHS (G) is contained in only finitely many
embedded loops of length n.

The subgroups Hi in the family H are the parabolic subgroups of (G,H).

There is a new “word-metric” on the group G which is naturally associated to the
metric on a H-coned graph.

Definition 2.3. Let G be a group with finite generating set S. Let Λ be a set and let
H = {Hi}i∈Λ be a family of subgroups of G.

The H-word metric |.|H is the word-metric for G equipped with the generating set

SH = S ∪
⋃
i∈Λ

Hi.

As the subgroups Hi are usually infinite, so will be SH. It was observed in [10] that in
the setting of strong relative hyperbolicity the family of parabolic subgroups is necessarily
almost malnormal:

Definition 2.4. Let G be a group, let Λ be a set and let H = {Hi}i∈Λ be a a family of
subgroups of G. The family H is almost malnormal if and only if:

(a) any subgroup Hi is almost malnormal in G, i.e. g−1Hig ∩ Hi is finite for any
g /∈ Hi.

(b) for any two Hi, Hj ∈ H with i 6= j, g−1Hig ∩Hj is finite for any g ∈ G.
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Since the ultimate goal is a theorem about graphs of relatively hyperbolic groups, we
introduce some notations for graphs and graphs of groups. If Γ is a graph, V (Γ) (resp.
E(Γ)) denotes its set of vertices (resp. of oriented edges). For e ∈ E(Γ) we denote by
e−1 the same edge with opposite orientation. The map e 7→ e−1 is a fixed-point free
involution of E(Γ). If p is an edge-path in Γ, in particular if p is an edge, i(p) (resp. t(p))
denotes the initial (resp. terminal) vertex of p. An edge-path p is reduced if no edge e in
p is followed by its opposite e−1. In a tree, given any two vertices x, y, we denote by [x, y]
the unique reduced edge-path from x to y. In a metric graph Γ (i.e. a graph equipped
with a positive length le on each edge e and an isometry from e to the real interval (0, le)
- for instance a Cayley graph or a H-coned graph), dΓ(x, y) denotes the geodesic distance
between two vertices x, y, [x, y] any geodesic, i.e. length-minimizing, edge-path between
x and y and |p|Γ the length of an edge-path p in Γ.

Let us now consider a graph of groups G = (Γ, {Ge}, {Gv}, {ıe}) where

• Γ is a graph,

• for each oriented edge e, Ge denotes the group associated to the edge e (an edge-
group) and Ge = Ge−1 ,

• for each vertex v, Gv denotes the group associated to the vertex v (a vertex-group),

• for each oriented edge e, ıe : Ge → Gt(e) is a monomorphism.

Definition 2.5. Let G and G′ be two groups and let H (resp. H′) denote a family of
subgroups of G (resp. of G′). A morphism α : G→ G′ is a relative morphism from (G,H)
to (G′,H′) if and only if for each subgroup H ∈ H there is a subgroup H ′ ∈ H′ such that
α(H) is conjugated to a subgroup of H ′.

Definition 2.6. A graph of weakly relatively hyperbolic groups (resp. of strongly rela-
tively hyperbolic groups) G = (Γ, {(Gv,Hv)}, {(Ge,He)}, {ıe}) is a finite graph of finitely
generated groups (Γ, {Ge}, {Gv}, {ıe}) satisfying the following properties:

(a) Each edge-group Ge and each vertex-group Gv is weakly hyperbolic (resp. strongly
hyperbolic) relative to a specified, possibly empty, finite family of infinite sub-
groups He = He−1 and Hv.

(b) There are a ≥ 1, b ≥ 0 such that for any oriented edge e of Γ, ıe is a (a, b)-quasi
isometric embedding from (Ge, |.|He) to (Gt(e), |.|Ht(e)

).

(c) For each oriented edge e, ıe is a relative endomorphism from (Ge,He) to (Gt(e),Ht(e)).

When considering a finite graph of groups G = (Γ, {Ge}, {Gv}, {ıe}), the group we are
interested in is its fundamental group π(G), that we are now going to define. We borrow
the following presentation from [32] (see also [25]). We refer the interested reader to
[34] for a nice and quite complete introduction to Bass-Serre theory (another point of
view is developed in [9]). A (finite) G-path p from v ∈ V (Γ) to v′ ∈ V (Γ) is a sequence
g0, e1, g1, · · · , ek, gk where k ≥ 0 is an integer, e1 · · · ek is and edge-path in Γ from v to
v′, g0 ∈ Gv, gk ∈ Gv′ and gj ∈ Gt(ej) = Gi(ej+1) for j = 1, · · · , k − 1. The integer k is
the length of the G-path, denoted by |p|G. If l ≥ 0 is any integer smaller than the length
of p, we denote by pl the initial subpath g0, e1, g1, · · · , el, gl of p. The concatenation of
G-paths is defined in the obvious way. We write p ∼ q if and only if p and q are two
G-paths which are equivalent for the equivalence relation generated by the elementary
equivalences g, e, g′ ∼ gıe−1(h), e, ıe(h

−1)g′ and g, e, 1, e−1, g′ ∼ gg′. We then denote by
[p] the ∼-equivalence class of a G-path p. Once a base-vertex v0 ∈ V (Γ) has been chosen,
the fundamental group π(G, v0) is the group of ∼-equivalence classes of G-paths from v0

to v0. The group operation is the concatenation: [p][q] := [pq].
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A reduction of a finite G-path p consists of the substitution of a subsequence in p of the
form g, e, ıe(h), e−1, g′ by the sequence gıe−1(h)g′. Observe that, if q is the resulting G-
path, then p ∼ q. A G-path is reduced if no reduction is possible. Any G-path is equivalent
to a reduced one. More precisely, if p = g0, e1, g1, · · · , ek, gk and q = g′0, e

′
1, g
′
1, · · · , e′k′ , g′k′

are two equivalent reduced G-paths then k = k′, e′j = ej for j = 1, · · · , k and p−1
j qj

defines an element in Gt(ej) which belongs to ıe−1
j+1

(Gej+1
) for j = 0, · · · , k − 1. Finally,

if p is a reduced G-path, we denote by p the set of all G-paths equivalent to p modulo a
right-multiplication by g ∈ Gt(p).

In order to state the combination theorem for graphs of weakly relatively hyperbolic
groups we are now going to introduce a new property termed algebraic exponential-
separation property.

Definition 2.7. The graph of (weakly or strongly) relatively hyperbolic groups G =
(Γ, {(Gv,Hv)}, {(Ge,He)}, {ıe}) satisfies the algebraic exponential-separation property (al-
gebraic ESP in short) if and only if there exist λ > 1 and integers M,N ≥ 1 such that for
any reduced G-paths p = g0e1g1 · · · eNgN and q = h0f1h1 · · · fNhN with i(e1) = i(f1) := v
and satisfying that p−1q is a reduced edge-path, for any element g ∈ Gv with p−1gp ∈
Gt(eN ), q

−1gq ∈ Gt(fN ) and |g|Hv ≥M we have

λ|g|Hv ≤ max(|p−1gp|Ht(eN )
, |q−1gq|Ht(fN )

).

The combination theorem for graphs of weakly relatively hyperbolic groups is then
stated as follows (we recall that a parabolic subgroup in a relatively hyperbolic group
(G,H) is a subgroup in the family H):

Theorem 2.8. If a graph of weakly relatively hyperbolic groups satisfies the algebraic
ESP then its fundamental group is weakly hyperbolic relative to the family composed of
all the parabolic subgroups of the vertex-groups.

Definition 2.9 below gives the strengthening of the algebraic ESP which is needed to
deal with strong relative hyperbolicity. We adopt the convention that, given a graph
of relatively hyperbolic groups G = (Γ, {(Gv,Hv)}, {(Ge,He)}, {ıe}) and h ∈ π(G), the
length |h|Hv of h measured with respect to the relative Hv-metric of the vertex-group Gv

is infinite if h does not belong to Gv.

Definition 2.9. A graph of relatively hyperbolic groups G = (Γ, {(Gv,Hv)}, {(Ge,He)}, {ıe})
satisfies the strong algebraic exponential-separation property (strong algebraic ESP in
short) if and only if there exist λ > 1 and integers M,N ≥ 1 such that:

(a) For any reduced G-paths p = g0e1g1 · · · eNgN and q = h0f1h1 · · · fNhN with i(e1) =
i(f1) := v and satisfying that p−1q is a reduced edge-path, for any element g ∈ Gv

with p−1gp ∈ Gt(eN ), q
−1gq ∈ Gt(fN ) and |g|Hv ≥M we have

λ|g|Hv ≤ max(|p−1gp|Ht(eN )
, |q−1gq|Ht(fN )

).

(b) For any element g in some vertex-group Gv with |g|Hv < M , for any parabolic
subgroup H ∈ Hv with g /∈ H which admits some length N reduced G-path p such
that [pH] ∩ [Hp] is infinite, we have |p−1gp|Hv ≥M .

Roughly speaking, item (b) of Definition 2.9 amounts to asking that any two distinct
orbits of left Hi-cosets such that Hi admits a length N reduced G-path p such that [pHi]∩
[Hpi] is infinite separate exponentially. Indeed, by item (a) and with the notations of
Definition 2.9, the length of p−1gp is necessarily exponentially dilated in all the directions
with the exception of the one given by p.
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Definition 2.10. Let G = (Γ, {(Gv,Hv)}, {(Ge,He)}, {ıe}) be a graph of strongly rela-
tively hyperbolic groups. The induced graph of parabolic subgroups is the graph of groups
GP = (ΓP , {Jv}, {Je}, ie) defined by:

(a) There is a bijection σV (resp. σE) from the set of vertices (resp. edges) of ΓP to
the set of all the parabolic subgroups of the vertex-groups (resp. edge-groups) of
G, which are the vertex-groups Jv (resp. edge-groups Je) of GP .

(b) There is an oriented edge e with terminal vertex v in ΓP if and only if ıσE(e)(Je) ⊂
Jv. In this case ie is the restriction of ıσE(e) to Je.

An induced elementary graph of parabolic subgroups is any connected component of the
induced graph of parabolic subgroups.

Our main result in the setting of srong relative hyperbolicity is now stated as follows:

Theorem 2.11. If a graph of strongly relatively hyperbolic groups satisfies the strong
algebraic ESP, then its fundamental group is strongly hyperbolic relatively to the family
composed of the fundamental groups of all the induced elementary graphs of parabolic
spaces.

3. The geometric combination theorems

This section is borrowed from [13].

3.1. Relatively hyperbolic spaces. If S is a set, the cone with base S is the space
S× [0, 1

2
] with S×{0} collapsed to a point, termed the vertex of the cone or cone-vertex.

This cone is considered as a metric space, with distance function dS((x, t), (y, t′)) = t+ t′.
Let (X, d) be a geodesic space. Putting a cone over a subset S of X consists of pasting
to X a cone with base S by identifying S × {1/2} with S ⊂ X. The resulting metric

space is denoted by X̂ and its subspace consisting of the cone over S by Ŝ. The space

X̂ is such that all the points in S are now at distance 1
2

from the cone-vertex and so at
distance 1 one from each other.

Definition 3.1.
A geodesic pair (X,P) is a geodesic space X equipped with a family of disjoint sub-

spaces P = {Pi}i∈Λ, termed parabolic subspaces.

Definition 3.2. [10]
Let (X,P) be a geodesic pair.

(a) The coned-space (X̂P , dP) is the metric space obtained from (X,P) by putting a
cone over each parabolic subspace in P and dP is the coned, or relative distance.

(b) The space X is weakly hyperbolic relative to P if and only if the coned-space

(X̂, dP) is Gromov hyperbolic.

Let (X̂P , dP) be a coned-space. We say that a path ĝ in X̂ backtracks if for the arc-

length parametrization of g : [0, l] → X̂ there exists a parabolic subspace Pi and times
0 ≤ t0 < t1 < t2 ≤ l such that g(t) /∈ Pi if t0 − ε < t < t0 and t1 < t < t1 + ε for ε > 0
sufficiently small, g([t0, t1]) ⊂ Pi and g(t2) ∈ Pi. In other words a path backtracks if and
only if it reenters a parabolic subspace that it left before. Let ĝ be a (u, v)-quasi geodesic

path in (X̂S , dS) which does not backtrack. A trace g of ĝ is a subpath of X obtained
by substituting each subpath of ĝ not in X by a subpath in some parabolic subspace Pi,
which is a geodesic for the path-metric induced by X on Pi.
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Definition 3.3. [10] Let (X,P) be a geodesic pair.

The coned-space (X̂P , dP) satisfies the Bounded-Parabolic Penetration property (BPP)
if and only if there exists C(u, v) ≥ 0 such that, for any two (u, v)-quasi geodesics ĝ0, ĝ1

of (X̂S , dS) with traces g0, g1 in (X, d), which have the same initial point, which have
terminal points at most 1-apart and which do not backtrack, the following two properties
are satisfied:

(a) if both g0 and g1 intersects a parabolic subspace Pi then their first intersection
points with Si are C(u, v)-close in (X, d),

(b) if g0 intersects a parabolic subspace Pi that g1 does not, then the length in (X, d)
of g0 ∩ Pi is smaller than C(u, v).

Definition 3.4. [10] Let (X,P) be a geodesic pair.

The space X is strongly hyperbolic relative to P if and only if the coned-space (X̂P , dP)
is Gromov hyperbolic and satisfies the BPP.

3.2. Trees of spaces.

Definition 3.5. (compare [3])

(a) A tree of metric spaces T = (T , {Xe}, {Xv}, {e}) is a metric tree T with length
1 edges, together with two collections of geodesic spaces, the collection of edge-
spaces {Xe}e∈E(Γ) indexed over the oriented edges e of T which satisfy Xe = Xe−1

and the collection of vertex-spaces {Xv}v∈V (Γ) indexed over the vertices v of T ,
and a collection of maps e : Xe → Xt(e) from the edge-spaces to the vertex-spaces.

(b) A tree of qi-embedded metric spaces is a tree of metric spaces (T , {Xe}, {Xv}, {e})
such that there exist two fixed real constants a ≥ 1 and b ≥ 0 such that the maps
e : Xe → Xt(e) from the edge-spaces Xe to the vertex-spaces Xv are (a, b)-quasi
isometric embeddings.

(c) A tree of hyperbolic spaces is a tree of qi-embedded metric spaces such that there
is δ ≥ 0 for which each edge- and vertex-space is a δ-hyperbolic space.

Before defining trees of relatively hyperbolic spaces we need to introduce the notion of
the coned-extension of a map between geodesic pairs.

Definition 3.6. Let (X,P) and (Y,Q) be two geodesic pairs.

(a) A map f : X → Y is a pair-map from (X,P) to (Y,Q) if and only if for every
parabolic subspace P ∈ P there is a parabolic subspace Q ∈ Q such that f(P ) ⊂
Q.

(b) Let f : (X,P)→ (Y,Q) be a pair-map and let X̂, Ŷ be the coned-spaces associated

respectively to (X,P) and (Y,Q). A map f̂ : X̂ → Ŷ is a coned-extension of f if
and only if it satisfies the following properties:

• Its restriction to X is equal to f .

• For any parabolic subspace P ∈ P with f(P ) ⊂ Q ∈ Q̂, f̂ is a pair-map from

(X̂, P̂ \P ) to (Ŷ , Q̂ \Q) which sends the cone-vertex of P̂ to the cone-vertex

of Q̂.

Definition 3.7.

(a) A tree of geodesic pairs (T , {(Xe,Pe)}, {(Xv,Pv)}, {e}) is a tree of metric spaces
(T , {Xe}, {Xv}, {e}) such that for each edge e and each vertex v, (Xe,Pe) and
(Xv,Pv) are geodesic pairs, for each edge e, Pe = Pe−1 and e : (Xe,Pe) →
(Xt(e),Pt(e)) is a pair-map.

6



(b) A tree of weakly (resp. strongly) relatively hyperbolic spaces is a tree of geodesic
pairs T = (T , {(Xe,Pe)}, {(Xv,Pv)}, {e}) such that:

• For each edge e, the edge-space Xe is weakly (resp. strongly) hyperbolic
relatively to the family of parabolic subspaces Pe. For each vertex v the
vertex-space Xv is weakly (resp. strongly) hyperbolic relative to the family
of parabolic subspaces Pv.
• If X̂e and X̂v denote the coned-spaces equipped with the relative metrics

associated to the geodesic pairs (Xe,Pe) and (Xv,Pv) and ̂e is a coned-

extension of e then T̂ = (T , {X̂e}, {X̂v}, {̂e}) is a tree of qi-embedded metric
spaces.

Definition 3.8. Let T = (T , {Xe}, {Xv}, {e}) be a tree of metric spaces.
If E+(T ) denotes the subset of E(T ) composed of exactly one representative in each

pair (e, e−1) then the space X̃ obtained from⊔
e∈E+(T )

(Xe × [0, 1]) t
⊔

v∈V (T )

Xv

by identifying (x, 1) ∈ Xe× [0, 1] with e(x) ∈ Xt(e) and (x, 0) ∈ Xe× [0, 1] with e−1(x) ∈
Xi(e) for each e ∈ E+(T ) is called the geometric realization of T.

Definition 3.9. Let (X̃, π, T ) be the geometric realization of a tree of qi-embedded

metric spaces. For any two points x, y in X̃, let P(x, y) be the set of all the continuous
paths from x to y which are the concatenation of horizontal paths and of non-trivial
intervals.

The tree of spaces-distance between any two points x, y in X̃, denoted by d eX(x, y), is
the infimum of the lengths of the paths in P(x, y), measured as the sum of the horizontal
and interval-lengths of their subpaths.

The following lemma is obvious:

Lemma 3.10. With the notations of Definition 3.9, the space X̃ equipped with the tree
of spaces-distance d eX is a quasi geodesic metric space.

Remark 3.11. Since the geometric realization of a tree of metric spaces actually is the
space we will work on and is well-defined once given the tree, with a slight abuse of

terminology we will often denote by (X̃, π, T ) a tree of qi-embedded metric spaces and
write “a tree of metric spaces . . . ” for “the geometric realization of a tree of metric spaces
. . . ”.

3.3. The theorems.

Definition 3.12. Let (X̃, T , π) be the geometric realization of a tree of qi-embedded
metric spaces.

For v ≥ 0, a v-vertical segment in X̃ is a section σω of π over a geodesic ω of T which

is a (v + 1, v)-quasi isometric embedding of ω in (X̃, d( eX).

Definition 3.13. (compare [3])
A tree of qi-embedded spaces satisfies the geometric exponential-separation property

(geometric ESP in short) if and only if for any v ≥ 0 there exist λ > 1 and positive
integers t0,M such that, for any geodesic segment [β, γ] ⊂ T of length 2t0 and midpoint
α, any two v-vertical segments s0, s1 over [β, γ] with dhor(s0 ∩Xα, s1 ∩Xα) ≥M satisfy:

max(dhor(s0 ∩Xβ, s1 ∩Xβ), dhor(s0 ∩Xγ, s1 ∩Xγ)) ≥ λdhor(s0 ∩Xα, s1 ∩Xα)
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We will sometimes say that the v-vertical segments are exponentially separated.

Theorem 3.14. Let T = (T , {(Xe,Pe)}, {(Xv,Pv)}, {e}) be a tree of weakly relatively

hyperbolic spaces. If T̂ satisfies the geometric ESP then T is weakly hyperbolic relative to
the family composed of all the parabolic subspaces of the vertex-spaces.

Definition 3.15. Let (T , {(Xe,Pe)}, {(Xv,Pv)}, {e}) be a tree of geodesic pairs.
The induced forest of parabolic spaces is the tree of spaces (FP , {Pe}, {Pv}, {ıe}) defined

as follows:

(a) There is a bijection σE (resp. σV ) from the set of edges (resp. vertices) of FP to
the set of all the parabolic subspaces of the edge-spaces (resp. vertex-spaces) of
T which are the edge-spaces Pe (resp. vertex-spaces Pv) of FP .

(b) There is an oriented edge e with terminal vertex v in FP if and only if σE(e)(Pe) ⊂
Pv. In this case ıe is the restriction of σE(e) to Pe.

An induced tree of parabolic spaces is any connected component of the induced forest
of parabolic spaces.

Remark 3.16. The geometric realization of the induced forest of parabolic spaces of a
tree of geodesic pairs is naturally embedded in the geometric realization of the latter.
So, assimilating this forest and the tree to their geometric realizations, it makes sense to
speak about the “horizontal distance between two induced trees of parabolic spaces” or
about the vertical diameter of some of their subsets.

Definition 3.17. A tree of strongly relatively hyperbolic spaces satisfies the strong geo-
metric ESP if and only if it satisfies the geometric ESP and for any l ≥ 0 there is t ≥ 0
such that for any two distinct induced trees of parabolic spaces, the region where they
are at horizontal distance smaller than l has vertical diameter smaller than t.

Theorem 3.18. Let T = (T , {(Xe,Pe)}, {(Xv,Pv)}, {e}) be a tree of strongly relatively

hyperbolic spaces. If T̂ satisfies the strong geometric ESP then T is strongly hyperbolic
relatively to the family composed of all the induced trees of parabolic spaces.

3.4. Technical lemma. We will need the following two basic, technical lemma proven
in [13].

Lemma 3.19. Let δ ≥ 0 and let (T , {Xe}, {Xv}, {e}) be a tree of δ-hyperbolic spaces.
There exists C ≥ 0 such that if v ≥ C, if e is an edge of T and if h is a horizontal
geodesic in Xt(e), then:

• If no v-vertical segment starting at h can be defined over e, then

diamXt(e)
(P hor

h (e(Xe))) ≤ 2δ

• If v-vertical segments can be defined over e starting at the initial and terminal
points of h, then v-vertical segments can be defined over e starting at any point in
h.

The constants λ,M, t0 appearing in Definition 3.13 will be referred to as the constants
of hyperbolicity.

Lemma 3.20. Let (X̃, T , π) be a tree of hyperbolic spaces.

If v ≥ C3.19 is such that the v-vertical segments of X̃ are exponentially separated with
constants of hyperbolicity λv > 1, Mv, t0 ≥ 0 then for any w ≥ 0, the w-vertical segments
are exponentially separated, with constants of hyperbolicity λw > 1, Mw ≥ 0 and t0.
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4. From Geometry to Algebra

The goal of this section is to derive the algebraic combination theorems of Section
2 (Theorem 2.8 - weak relative hyperbolicity case - and Theorem 2.11 - strong relative
hyperbolicity case) from the geometric combination theorems of Section 3 (Theorems 3.14
and 3.18).

4.1. A geometric model for a tree of relatively hyperbolic groups. Let G be a
group with generating set S, let H be a finite family of subgroups of G and let ΓHS (G)
be the H-coned graph. We subdivide each exceptional edge at its middle point. The
augmented Cayley graph ΓaugS (G) is the closure of the unique connected component of
ΓHS (G)\{ middle points of exceptional edges } which contains no exceptional vertex. The
edges in ΓaugS (G) \ ΓS(G) are the auxiliary edges. We denote by Mi each maximal set of
non-exceptional vertices of auxiliary edges which are all connected to a same exceptional

vertex, and by M the family composed of all the sets Mi. Observe that Γ̂augS (G), the
coned-space obtained from ΓaugS (G) by putting a cone over each set Mi ∈ M, is equiva-
lently defined as the metric space obtained by putting a length of 1 on each edge in the
complement of ΓaugS (G) in ΓHS (G).

Let α : (G,H)→ (G′,H′) be a relative endomorphism (see Definition 2.5), where G and
G′ are two groups with respective generating sets S and S ′. An α-map is a continuous
PL-map fα : ΓaugS (G)→ ΓaugS′ (G′) which satisfies the following properties:

• For each edge (g, gxi) (xi ∈ S) of ΓS(G), fα(xi) is the edge-path reading α(xi)
between the vertex α(g) and the vertex α(gxi).

• For each auxiliary edge e from g ∈ ΓS(G) to the midpoint of the edge (g, v(gH)) in
ΓHS (G) (H is a parabolic subgroup in H), fα(e) starts at α(g), reads a conjugacy-
element h such that α(H) = h−1H0h with H0 a subgroup of some parabolic sub-
group H ′ in H′ and ends with the auxiliary edge of Γ′augS′ (G′) contained in the

exceptional edge (α(g)h, v(α(g)hH ′)) of Γ′H
′

S′ (G
′).

If (G,H) and (G′,H′) are strongly relatively hyperbolic groups, the conjugacy element
h above is well-defined up to a right-multiplication by an element in H so that the map
fα is uniquely defined. Otherwise there is a choice of the conjugacy element.

Let G = (Γ, {(Gv,Hv)}, {(Ge,He)}, {ıe}) be a graph of (weakly or strongly) relatively
hyperbolic groups. For each edge- or vertex-group we consider the augmented Cayley
graph defined above (we assume a generating set has been chosen for each one of these
groups, but for simplifying the notations we will not indicate them). For each oriented
edge e, we consider an ıe-map fıe as defined above. Let T be the universal covering of G,
in other words the Bass-Serre tree of G, we denote by T the corresponding combinatorial
tree. To each vertex v of T corresponds a left-class xGv of some vertex-group Gv of G, to
each edge e of T an edge-group Ge of G. The attaching-maps ıe are left-translates xıe of
the attaching-morphisms of G, where at a given vertex Gt(e) all the x ∈ Gt(e) belong to

distinct left ı(Ge)-classes. We denote by f ıe the corresponding attaching-maps between
the associated augmented Cayley graphs. The following lemma - definition is obvious:

Lemma 4.1. With the notations above: if G = (Γ, {(Gv,Hv)}, {(Ge,He)}, {ıe}) is a
graph of weakly (resp. strongly) relatively hyperbolic groups then

Ggeom = (T, {(Γaug(Gv),Mv)}, {(Γaug(Ge),Me)}, {f ıe})

is a tree of weakly (resp. strongly) relatively hyperbolic spaces, termed a model-space of
G.

9



4.2. From the algebraic ESP to the geometric ESP. We prove here the following
results:

Lemma 4.2. With the notations above: if G satisfies the algebraic ESP (resp. strong

algebraic ESP) then Ĝgeom satisfies the geometric ESP (resp. strong geometric ESP).

Proof. We first observe that the left-cosets of the parabolic subgroups of the vertex- and
edge-groups of G exactly correspond to the parabolic subspaces of the vertex- and edge-

spaces of the model-space Ggeom. Hence the metrics on the vertex- and edge-groups of Ĝ
and on the vertex- and edge-spaces of Ĝgeom are quasi isometric. The algebraic ESP then
gives the exponential separation of any two v-vertical segments s, t which start at two
distinct points x, y in a same stratum and read a same reduced edge-path in the geometric

realization X̂ of Ĝgeom. We have to check that the exponential separation holds if this
last property is not satisfied. Observe however that of course s and t project, under

π : X̂ → T , to a same reduced edge-path ω in T : otherwise the horizontal distance
between their endpoints is infinite since they lie in two distinct strata and they are
exponentially separated. If ω = eε1i1 · · · e

εk
ik

then any v-vertical segment over ω can be
approximated by a sequence of intervals xi × (0, 1) over the ei’s, the Hausdorff distance
between the v-vertical segment and these intervals only depending on v. Thus we can
assume that the only differences between s and t are horizontal geodesics, denoted by
h1 ∈ Xα1 , · · · , hr ∈ Xαr for s and l1 ∈ Xα1 , · · · , lr ∈ Xαr for t, which have horizontal
length bounded above by a constant C(v) only depending on v. These horizontal geodesics
read words of the form w1Hi1w2 · · ·Hijwj+1 (where wj stands for a passage of the geodesic
in the Cayley graph of a vertex-group whereas Hij stands for a passage of the geodesic in
a left-coset for Hij ). In each stratum Xαk we consider a horizontal geodesic gk between
the initial points i(hk) and i(lk) of hk and lk and a horizontal geodesic g′k between the
terminal points t(hk) and t(lk) of hk and lk. Assuming that the geometric ESP does not
hold, by Lemma 3.20 we can fix v as large as we wish. Moreover, once v has been fixed, we
can assume that the horizontal geodesics gk and g′k are as large as we wish. Let δ ≥ 0 be
such that the strata are δ-hyperbolic. The geodesic rectangles with sides gk, g

′
k, hk, lk are

2δ-thin. Let [xk, yk] ⊂ gk and [uk, vk] ⊂ g′k be the largest subpaths with dhor(xk, uk) ≤ 2δ
and dhor(yk, vk) ≤ 2δ, where dhor(., .) denotes the horizontal distance. The finiteness of
each family of parabolic subgroups and the finite generation of the vertex-groups imply
together that there are only finitely many geodesic words of a given form which have
relative length smaller than a given constant: let X be the number of edge-paths of
length less than 2δ reading distinct words. At bounded distance from [xk, uk] on the one
hand, [yk, vk] on the other hand, the bound only depending on the data, there are two
edge-paths reading the same words: we substitute xk, uk on the one hand and yk, vk on
the other hand by the endpoints of these edge-paths. Thus, as soon as v has been chosen
sufficiently large, there exist v-vertical segments s′, t′ over ω passing through xk and uk
for s′ and through yk, vk for t′. The horizontal lengths of [xk, yk] ⊂ gk and [uk, vk] ⊂ g′k
tend toward infinity with the horizontal lengths of gk and g′k since the horizontal lengths
of hk and lk are bounded above by C(v) and the geodesic rectangles with sides gk, g

′
k, hk, lk

are 2δ-thin. Once chosen sufficiently large, the exponential separation of s′ and t′ would
imply the exponential separation of s and t. Since we assumed on the contrary that s
and t are not exponentially separated, neither are s′ and t′. We so get a contradiction
with the fact that the algebraic ESP is satisfied.

For the strong version of the ESP, just observe that the additional properties in one
case as in the other are exactly equivalent with the construction given for Ggeom. �

10



4.3. Conclusions. By Lemma 4.2, Theorem 3.14 implies Theorem 2.8 and Theorem 3.18
implies Theorem 2.11.

5. Nice graphs of strongly relatively hyperbolic groups

The restriction we put for a graph G of strongly relatively hyperbolic groups to be nice
allows one to get a clearer description of the parabolic subgroups ofπ(G). We hope that
this restriction is a not too bad compromise between clarity and generality.

Definition 5.1. A graph of strongly relatively hyperbolic groups (G,Hv,He) is fine if
and only if (recall that G = (Γ, {Ge}, {Gv}, {ıe})):

(a) If a parabolic subgroup H of a vertex-group admits a non-trivial reduced G-path
p such that [Hp] ∩ [pH] is infinite then [Hp] = [pH].

Such a parabolic subgroup H is termed periodic.

(b) If H is a periodic parabolic subgroup and H ′ is any other parabolic subgroup of a
vertex-group such that [qH ′]∩ [Hq] is infinite for some non-trivial reduced G-path
q then [qH ′] = [Hq] and H ′ is a periodic parabolic subgroup.

The normalizer NG(H) of a subgroup H in a group G is the set of all elements g ∈ G
which satisfy g−1Hg = H. This is the largest subgroup of G which contains H as a
normal subgroup.

Theorem 5.2. Let G be a fine graph of strongly relatively hyperbolic groups. Let {Nπ(G)(Hi)}Hi∈Hv
v∈V (G)

be the family of all the normalizers of the parabolic subgroups of the vertex groups of G.
Let N ⊂ {Nπ(G)(Hi)}Hi∈Hv

v∈V (G)
be the subfamily, unique up to conjugacy in π(G), composed

of exactly one representative of each conjugacy-class. If G satisfies the strong algebraic
ESP then its fundamental group π(G) is strongly hyperbolic relative to N .

Remark 5.3. There is another way of describing “the” family of parabolic subgroups
for π(G), in a more explicit but less concise way. If H, H ′ are two parabolic subgroups of
some vertex-groups, we write H ' H ′ if and only if there is a reduced G-path p such that
[pH]∩ [H ′p] is infinite. The '-equivalence class of a parabolic subgroup is called its orbit.
An orbit is periodic if and only if it contains a periodic parabolic subgroup. Theorem
5.2 then tells us that, if G satisfies the strong algebraic ESP, π(G) is strongly hyperbolic
relative to “the” family composed of exactly one parabolic subgroup in each orbit which
is not periodic, and for exactly one periodic parabolic subgroup H in each periodic orbit,
the subgroup composed of H and all the elements associated to the non-trivial reduced
G-paths p such that [pH] = [Hp].

6. About extensions over relatively hyperbolic automorphisms

We begin with a result about free extensions of relatively hyperbolic groups. The rela-
tively hyperbolic automorphims we define below first appeared in [12] where we announced
a (weak) version of the results of the present paper. They generalize Gromov hyperbolic
automorphisms [3].

Definition 6.1. Let G be a group and let H = {Hi}i∈Λ be a finite family of subgroups
of G. A relative automorphism of (G,H) is an automorphism α of G such that there is
a permutation σ(α) ∈ Sym(Λ) and gi ∈ G for all i ∈ Λ such that α(Hi) = g−1

i Hσ(α)(i)gi.
A relative automorphism α of (G,H) fixes H, or fixes each Hi, up to conjugacy if and

only if σ(α) is the identity.
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We denote by Aut(G,H) the set of all relative automorphisms of (G,H): this is a
subgroup of Aut(G), the group of automorphisms of G. The map

σ : Aut(G,H) → Sym(Λ)
α 7→ σ(α)

is clearly a homomorphism.

Observe that the definition of a relative automorphism is not a simple rewriting of the
similar definition for endomorphisms (Definition 2.5) but is much more restrictive.

Definition 6.2. With the notations of Definitions 2.3 and 6.1: A relatively hyperbolic au-
tomorphism of (G,H) is a relative automorphism α ∈ Aut(G,H) satisfying the following
property:

There exist λ > 1 and M,N ≥ 1 such that for any w ∈ G with |w|H ≥M :

λ|w|H ≤ max(|αN(w)|H, |α−N(w)|H).

We also say in this case that α is hyperbolic relative to H.

This definition is slightly more general than the definition given in [12].

Lemma 6.3. Definition 6.2 is invariant:

(a) Under conjugacy of α in Aut(G,H).
More generally, if β ∈ Aut(G) and α ∈ Aut(G,H) is relatively hyperbolic then

β−1 ◦ α ◦ β ∈ Aut(G, β−1(H)) is relatively hyperbolic.

(b) Under the substitution of any subgroup Hi in H by a conjugate g−1Hig with g ∈ G.

Proof. Let us prove item (a). Any β ∈ Aut(G,H) acts as a bi-lipschitz map on (G,H),
i.e. there is a ≥ 1 such that for any w ∈ G

1

a
|w|H ≤ |β(w)|H ≤ a|w|H.

Hence by choosing M ′ ≥ aM we get for any w ∈ G with |w|H ≥ M ′ either |(β−1 ◦ α ◦
β)jN(w)|H ≥ λj|w|H for any j ≥ 1 or |(β−1 ◦ α ◦ β)−jN(w)|H ≥ λj|w|H for any j ≥ 1. By
choosing j such that λj ≥ a2λ we get N ′ = jN such that for any w ∈ G with |w|H ≥M ′

we have

λ|w|H ≤ max(|αN ′(w)|H, |α−N
′
(w)|H).

For the generalization, just observe that β acts as a bi-lipschitz map from (G, β−1(H))
to (G,H) and applies the same computation as above.

For item (b), if H′ denotes the new family of subgroups, the metric spaces (G,H)
and (G,H′) are bi-lipschitz equivalent with Lipschitz constant a = 2 max(|g|H, |g|H′) + 1.
Then choose M ′ and N ′ as above. �

Definition 6.4. Let G be a finitely generated group and let H be a finite family of
subgroups of G. Let ı : A ↪→ Aut(G) be a monomorphism from a finitely generated group
A into the group of automorphisms of G.

The pair (ı,A) defines a group of uniformly relatively hyperbolic automorphisms of
(G,H) if and only if ı(A) < Aut(G,H) and for any finite generating set A of A there
exist λ > 1 and M,N ≥ 1 such that for any element w ∈ G with |w|H ≥ M , for any
a1, a2 ∈ A with |a1|A = |a2|A = N and dA(a1, a2) = 2N :

λ|w|H ≤ max(|ı(a1)(w)|H, |ı(a2)(w)|H).
12



In Definition 6.4 the existence of the constants λ,M,N holds for any finite generating
set A if and only if it holds for some such generating set. However λ,M,N depend on
the choice of A.

With the notations of Definitions 2.3 and 6.1, let r be a positive integer, let Fr be the
free group of rank r and let ı : Fr ↪→ Aut(G,H) be a monomorphism. For each i ∈ Λ let
Ki := (σ◦ı)−1(StabSym(Λ)(i)). Since a subgroup of a free group is free (Schreier’s theorem)
each Ki admits a free basis Bi = {ui,j}j=1,2,···. Since the subgroups StabSym(Λ)(i) are finite,
each Ki is of finite index in Fr and so is a finitely generated free group, the rank of which
is denoted by ri.

Definition 6.5. With the notations of Definitions 2.3 and 6.1, assume that H is a finite
family of almost malnormal, infinite subgroups of G. Let r be a positive integer, let Fr
be the free group of rank r and let ı : Fr ↪→ Aut(G,H) be a monomorphism. For each
i ∈ Λ let Ki := (σ ◦ ı)−1(StabSym(Λ)(i)) and let Bi = {ui,1, · · · , ui,ri} be a free basis of Ki.
For each ui,j ∈ Bi let gi,j ∈ G such that ı(ui,j)(Hi) = g−1

i,j Higi,j.

Then the subgroup of G oı Fr generated by Hi and by the elements ui,jg
−1
i,j for j ∈

{1, · · · , ri} is the (Fr, ı)-extension of Hi. It is denoted by H ı
i (see Remark 6.6 below).

Let K ⊂ {Ki}i∈Λ be a subfamily whose associated set of indices in Λ contains exactly
one representative of each (σ◦ı)(Fr)-orbit. Then the family {H ı

i}Ki∈K is a (Fr, ı)-extension
of H over K and is denoted by Hı,K.

When r = 1 in Definition 6.5, i.e. when Fr = 〈t〉, a Fr-extension of H is preferably
called mapping-torus of H under α ∈ Aut(G,H), where α = ı(t). Lemma 6.6 below is a
straightforward consequence of the fact that the subgroups in H are almost malnormal
and infinite.

Lemma 6.6. With the assumptions and notations of Definition 6.5: the element gi,j
such that ı(ui,j)(Hi) = g−1

i,j Higi,j is unique up to left-multiplication by an element in Hi.
Moreover Hı,K is unique up to substitution of some of its subgroups by conjugates in
Goı Fr.

The first assertion of Lemma 6.6 allows one to speak of the (Fr, ı)-extension of Hi.
The second assertion allows one to make a slight abuse of language and write the (Fr, ı)-
extension of H.

Theorem 6.7. Let G be a finitely generated group and let H be a finite family of in-
finite subgroups of G. Let (Fr, ı) define a free group of uniformly relatively hyperbolic
automorphisms of (G,H). If G is weakly hyperbolic relative to H, then Goı Fr is weakly
hyperbolic relative to H. If G is strongly hyperbolic relative to H, then Goı Fr is strongly
hyperbolic relative to the (Fr, ı)-extension of H.

When r = 1 in the above theorem, that is when the considered free group is just Z,
we get the classical “mapping-torus” case, that is the case of semi-direct products Go Z
with G a relatively hyperbolic group.

Proof. With a slight abuse of terminology, we consider Fr as a subgroup of Aut(G,H)
generated by the automorphisms αi’s. The group G o Fr is the fundamental group of
the graph of groups which has G as unique vertex group Gv and G as the r edge-groups
Gei

(the ei’s are loops with initial and terminal vertex v). The attaching endomorphisms
ıei

: Gei
↪→ Gv are the automorphisms αi whereas the ıe−1

i
: Gei

↪→ Gv, are the identity.

Since the αi’s are relative automorphisms of (G,H), each one induces a quasi isometry
from (Gei

,H) to (Gv,H). We so got a graph of relatively hyperbolic groups. Since Fr is a
uniform free group of relatively hyperbolic automorphisms, it satisfies the algebraic ESP.
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Hence the weak relative hyperbolicity case of Theorem 6.7 is then a corollary of Theorem
2.8.

For the strong relative hyperbolicity case, it suffices to check that the definition of a
uniform free group of relatively hyperbolic automorphisms implies the strong algebraic
ESP. It suffices to prove that any two induced trees of parabolic groups separate expo-
nentially one from each other. Assume that this is not satisfied. Then, there is M ≥ 0
such that for any N ≥ 1, there is αw ∈ Fr with |w| ≥ N , s.t. there is a geodesic word u
in (G, |.|H) of the form h1Hi1h2 · · ·Hikhk+1 (where hj stands for a passage of the geodesic
in the Cayley graph of G whereas Hij stands for a passage of the geodesic in a left-coset
for Hij ) satisfying the following properties:

(a) |u|H ≤M ,

(b) the image under αw of any element with geodesic word HuH ′ has the form
rHuH ′s, where H,H ′ stand for passages through left-cosets for the corresponding
parabolic subgroups, and where the relative lengths of r and s only depend on the
length of w.

Here H and H ′ are the parabolic subgroups of G corresponding to the left-cosets asso-
ciated to the two induced trees of parabolic subgroups which violate, for the considered
w, the strong algebraic ESP. The existence of u above comes from the finiteness of the
family H and from the finite generation of G: they imply together that there are only
finitely many geodesic words of a given form which have relative length smaller than M .

Since G is strongly hyperbolic relative to H, H is almost malnormal in G. This readily
implies, by choosing elements in H and H ′ which are sufficiently long in (G, |.|S), that
there is an element g of the form HuH ′.H ′u−1H = HuH ′u−1H which is not conjugate
to an element of a parabolic subgroup. Furthermore g can be chosen not to be a torsion
element. From Corollary 4.20 of [29], lim

n→+∞
|gn|H = +∞. However αw(g) has the form

rHuH ′ss−1H ′u−1Hr−1 = rHuH ′u−1Hr−1. Thus |αw(gn)|H ≤ |gn|H+2|r|H. Since |r|H is
a constant only depending on |w|H, by choosing n sufficiently large we get a contradiction
with the uniform hyperbolicity of Fr. �

We now give a corollary for this case. From [18], a hyperbolic group is weakly hyperbolic
relative to any finite family of quasi convex subgroups. From [5] or [31], a hyperbolic
group G is strongly hyperbolic relative to any almost malnormal finite family of quasi
convex subgroups. We so get:

Corollary 6.8. Let G be a hyperbolic group, let H be a finite family of infinite subgroups
of G and let α ∈ Aut(G,H) be hyperbolic relative to H. If H is quasi convex in G then
the mapping-torus group Gα = G oα Z is weakly hyperbolic relative to H. If H is quasi
convex and almost malnormal in G then the mapping-torus group Gα = GoαZ is strongly
hyperbolic relative to the mapping-torus of H.

This corollary may be specialized to torsion free one-ended hyperbolic groups, and so
in particular to fundamental groups of surfaces. We so re-prove the result of [15]. Since
there we gave only an idea for the statement and the proof in the Gromov’s (i.e. strong)
relative hyperbolicity case, we include here the full statement of this result:

Corollary 6.9. Let G be a torsion free one-ended hyperbolic group and let α be an
automorphism of G. Let H be a family of maximal subgroups of G which consist entirely
of elements on which α acts up to conjugacy periodically or with linear growth and such
that each infinite-order element on which α acts up to conjugacy periodically or with
linear growth is conjugate to an element in a subgroup in H. Then Gα = G oα Z is
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weakly hyperbolic relative to H, and strongly hyperbolic relative to the mapping-torus of
H.

If G is the fundamental group of a compact surface S (possibly with boundary) with
negative Euler characteristic and if h is a homeomorphism of S inducing α on π1(S) (up
to inner automorphism), then the subgroups in H are:

(i) the cyclic subgroups generated by the boundary curves,

(ii) the subgroups associated to the maximal subsurfaces which are unions of components
on which h acts periodically, pasted together along reduction curves of the Nielsen-
Thurston decomposition,

(iii) the cyclic subgroups generated by the reduction curves not contained in the previous
subsurfaces.

Proof. From Theorem 6.7 and Corollary 6.8, we only have to prove that the considered
automorphism α of G is hyperbolic relative to the given family of subgroups (indeed these
families are quasi convex and almost malnormal - see [15] and [16]). The passage from
the surface case to the torsion free one-ended hyperbolic group case is done thanks to the
JSJ-decomposition theorems of [4]. We refer the reader to [15] for more precisions and
concentrate on the surface case. The fundamental group of S is the fundamental group
of a graph of groups G such that:

• the edge groups are cyclic subgroups associated to the reduction curves and bound-
ary components,

• the vertex groups are the subgroups associated to the pseudo-Anosov components
(type I vertices) and to the maximal subsurfaces with no pseudo-Anosov compo-
nents (type II vertices),

• the (outer) automorphism α induced by the homeomorphism preserves the graph
of groups structure.

We consider the universal covering of G and the associated tree of spaces. We measure
the length of a geodesic in this tree of spaces as follows:

• we count zero for the passages through the edge-spaces and through the type II
vertex-spaces,

• we measure the length of the pieces through the type I vertex-spaces by inte-
grating against the stable and unstable measures of the invariant foliations (a
boundary-component is considered to belong to both invariant foliations and so
the contribution of a path in such a leaf amounts to zero).

There is N ≥ 1 such that, when the total stable (resp. unstable) length of a geodesic
in a type I-vertex space is two times its unstable (resp. stable) length, then it is dilated
by a factor λ > 1 under N iterations of α−1 (resp. of α). In the other cases, we find
N ≥ 1 such that the total length is dilated under N iterations of both α and α−1. Similar
computations have been presented in [15]. The conclusion of the relative hyperbolicity
of α now comes easily since pieces with positive length, dilated either under αN or under
α−N , and pieces with zero length alternate. �

7. Ascending HNN-extensions and 3-manifold groups

The corollaries of Theorems 2.8 and 5.2 given up to now treat the case of the semi-direct
product of a finite rank free group Fr with a finite type relatively hyperbolic group (G,H).
However a semi-direct product is only a particular case of HNN-extension. Alibegovic
in [1], Dahmani in [8] or Osin in [30] treat acylindrical HNN-extensions and amalgated
products. Let us now give a corollary about non-acylindrical HNN-extensions. Corollary
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7.3 below deals with injective, not necessarily surjective, endomorphisms of relatively
hyperbolic groups.

Definition 7.1. Let G be a group and let H = {H1, · · · , Hk} be a finite family of
subgroups of G. A subgroup H ′ of G is almost malnormal relative to H if and only if
there is an upper-bound on the H-word length of the elements in the set {w ∈ H ′ ; ∃g ∈
G \H ′ with w ∈ g−1H ′g}.

If H is empty in the definition above, we get the usual notion of almost malnormality
of a subgroup. If in addition there is no torsion, we get the notion of malnormality.

Whereas the definitions of a relative automorphism and of a mapping-torus of a family
of subgroups given in Definition 2.3 remain valid for injective endomorphisms, the defi-
nition of relative hyperbolicity for automorphisms is easily adapted to the more general
case of injective endomorphisms:

Definition 7.2. Let G be a finitely generated group and let H be a finite family of
infinite subgroups of G. An injective endomorphism α of G is hyperbolic relative to H if
and only if α is a relative endomorphism of (G,H) and there exist λ > 1 and M,N ≥ 1
such that, for any w ∈ Im(αN) with |w|H ≥M , if |αN(w)|H ≥ λ|w|H does not hold then
w = αN(w′) with |w′|H ≥ λ|w|H.

Corollary 7.3. Let G be a finitely generated group, let α be an injective endomorphism
of G and let Gα be the associated mapping-torus group, i.e. the associated ascending
HNN-extension. Let H be a finite family of infinite subgroups of G such that α is hy-
perbolic relative to H. Assume that Im(α) is almost malnormal relative to H. Then, if
G is strongly hyperbolic relative to H, Gα is weakly hyperbolic relative to H and strongly
hyperbolic relative to the mapping-torus of H.

The reader will notice at once that the above theorem does not treat the extension of
weakly relatively hyperbolic groups. The reason is that the condition of relative almost
malnormality does not imply in this case the strong algebraic ESP.

Proof of Corollary 7.3. Before stating a first lemma let us recall that if h is a geodesic in
a Gromov hyperbolic space then Ph(.) denotes a quasi projection on h.

Lemma 7.4. Let G = 〈S〉 be a finitely generated group which is strongly hyperbolic
relative to a finite family of subgroups H. There exists C > 0 such that if K is a finitely
generated subgroup of G satisfying the following properties:

• it is almost malnormal relative to H,

• it is strongly hyperbolic relative to a (possibly empty) finite family H′ the subgroups
of which are conjugated to subgroups in H,

• (K, |.|H′) is quasi isometrically embedded in (G, |.|H),

and if x, y (resp. z, t) are any two vertices in a same left-coset gK (resp. hK) with g 6= h
then dΓHS (G)(P[z,t](x), P[z,t](y)) ≤ C.

Proof. In order to simplify the notations we write dH(., .) for dΓHS (G)(., .). Since ΓHS (G)
is hyperbolic, there is a constant δ ≥ 0 such that the geodesic triangles of are δ-thin,
and geodesic rectangles are 2δ-thin. This implies the existence of a quadruple of ver-
tices x0, y0, z0, t0 with x0, y0 ∈ [x, y], z0, t0 ∈ [z, t] and dH(x0, z0) ≤ 2δ + 1, dH(y0, t0) ≤
2δ+1. Since (K, |.|H′) is (λ, µ)-quasi isometrically embedded in (G, |.|H), and ΓHS (G) is δ-
hyperbolic, there exist c0(λ, µ, δ) and x1, y1, z1, t1 such that g−1x1, g

−1y1 ∈ K, h−1z1, h
−1t1 ∈

K and dH(x0, x1) ≤ c0(λ, µ, δ), dH(y0, y1) ≤ c0(λ, µ, δ), dH(z0, z1) ≤ c0(λ, µ, δ), dH(t0, t1) ≤
c0(λ, µ, δ). We choose x1, y1, z1, t1 to minimize the distance in ΓS(G) (that is the distance
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associated to the given finite set of generators S of G) respectively to x0, y0, z0, t0. We de-
note by [x1, y1]K (resp. [z1, t1]K) the images, under the embedding of K in G, of geodesics
between the pre-images of x1, y1 (resp. z1, t1) in K. Both [x1, y1]K and [z1, t1]K are (λ, µ)-
quasi geodesics. Moreover [x1, z1][z1, t1]K [t1, y1] is a (λ, 4δ + 2 + 4c0(λ, µ, δ) + µ)-quasi
geodesic between x1 and y1. Since G is strongly hyperbolic relative to H, ΓHS (G) satisfies
the BCP property with respect to H. This gives a constant c1(λ, µ, δ) such that the H-
cosets [x1, z1] and [t1, y1] go through correspond to geodesics in ΓS(G) with length smaller
than c1(λ, µ, δ): indeed, since x1, y1, z1, t1 were chosen to minimize the distances in ΓS(G)
with respect to x0, y0, z0, t0, the H-cosets crossed by [x1, z1] and [t1, y1] are not crossed
by [x1, y1]K . Therefore the distance in (G,S) between x1 and z1 on the one hand, and
between y1 and t1 on the other hand is less or equal to (2δ + 1 + 2c0(λ, µ, δ))c1(λ, µ, δ).
There are a finite number of elements in G with such an upper-bound on the length,
measured with a word-metric associated to a finite set of generators. Whence, by the
almost normality of K relative to H, an upper-bound on the length between x1 and y1,
and so also between x0 and y0. Lemma 7.4 is proved. �

From Lemma 7.4, the overlapping of two distinct left Im(α)-cosets is bounded above
by a constant. Together with the fact that α is a relatively hyperbolic endomorphism,
this implies the algebraic ESP. Getting the strong version of this property is done as in
the proof of the strong relative hyperbolicity case of Theorem 6.7. Corollary 7.3 now
follows from Theorem 2.11. �

The next result is about fundamental groups of 3-manifolds, which generalizes the case
of 3-manifolds fibering over S1 treated by Corollary 6.9. We refer the reader to [21] or
[22] for the basis about Seifert fibered spaces, graph-manifolds and the decomposition of
3-manifolds, and to [33] for a nice review about the geometries of 3-manifolds.

Corollary 7.5. Let M3 be a closed (i.e. compact, without boundary), irreducible, ori-
entable 3-manifold. Then the fundamental group of M3 is strongly hyperbolic relative to
the family composed of

(a) the subgroups Gi corresponding to conjugates of the fundamental groups of the
maximal graph-submanifolds GM1, · · · ,GMr in M3,

(b) the Z⊕ Z-subgroups corresponding to the incompressible tori in M3 \
⋃r
i=1 GMi.

Proof. The fundamental group of M3 is the fundamental group of a graph of groups G
satisfying the following properties:

• the vertex groups are of two kinds: there are the subgroups associated to the
maximal graph-submanifolds, denoted by Gi, and the subgroups associated to the
finite volume hyperbolic 3-submanifolds with cusps, denoted by Hj;

• the edge groups are Z⊕ Z-subgroups;

• two vertex groups of the first kind, Gi and Gj with i 6= j, are not adjacent.

The graph G becomes a graph of strongly relatively hyperbolic groups when considering
each edge-group and each vertex-group Gi strongly hyperbolic relative to itself, whereas
each vertex-group Hj is considered as a group strongly hyperbolic relative to the Z⊕ Z-
subgroups of the cusps [10] (i.e. boundary components). Since the cusp subgroups are
malnormal we have the following assertion: if T is the universal covering of G then there
is a uniform bound M on the length of the G-paths which conjugate a horizontal element
to another one. It follows from Theorem 2.11 that the fundamental group of G is strongly
hyperbolic relative to a family of subgroups as given by Corollary 7.5 since the strong
algebraic ESP is vacuously satisfied. �
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Since this case is an acylindrical case, an alternative to the proof proposed here is
obtained by combining [10] (any hyperbolic 3-manifold with boundary tori is strongly
hyperbolic relative to the boundary subgroups) and the combination theorem of [8].
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