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Abstract. We prove that a group Gσn,k := Fnoσ Fk, where Fn and Fk are respectively

rank n and rank k free groups, and σ : Fk ↪→ Aut(Fn) is a monomorphism such that σ(Fk)
is a subgroup consisting entirely of polynomially growing automorphisms of Fn, acts
properly isometrically on a finite dimensional CAT(0) cube complex if some finite-index
unipotent subgroup of σ(Fk) admits a Bestvina-Feighn-Handel representative satisfying
two additional combinatorial properties. This is achieved by exhibiting a proper space-
with-walls structure in the sense of Haglund-Paulin. In particular any such group Gσn,k
is a-T-menable in the sense of Gromov (equivalently satisfies the Haagerup property).

Introduction

The Haagerup property is an analytical property on groups introduced in [11], about
the existence of a proper conditionally negative definite function:

Definition 1. A conditionally negative definite function on a topological group G is a
function f : G → R such that for any positive integer n, for any λ1, · · · , λn ∈ R with
n∑
i=1

λi = 0, for any g1, · · · , gn in G one has∑
i,j

λiλjf(g−1
i gj) ≤ 0.

A function f : G→ R on a topological group G is proper if lim
gi→∞

f(gi) =∞.

In a topological group G a sequence of elements (gi)i∈N ⊂ G tends to infinity with i
if and only if for any compact K ⊂ G there is N ≥ 0 such that for any i ≥ N , gi does
not belong to K. In this paper we will work with discrete groups, that is groups with the
discrete topology, equipped with a word-length: if G is a group with generating set S, the
word-length of γ ∈ G with respect to S, denoted by |γ|S, is the minimum of the lengths
of the words in S ∪ S−1 which define the element γ. Saying that a sequence (gi)i∈N ⊂ G
tends to infinity with i then amounts to saying that the word-lengths of the gi’s tend to
infinity with i.

In [11] Haagerup property was proved to hold for free groups. It has later been renewed
by the work of Gromov, where it appeared under the term of a-T-menability. The origin
of this terminology is that on the one hand any amenable group satisfies this property
and on the other hand it is a weak converse to Kazhdan’s property T: any group which
satisfies both properties is a compact group (a finite group in the discrete case).

Definition 2 ([11, 7, 1]). The group G satisfies the Haagerup property, or is an a-T-
menable group, if and only if there exists a proper conditionally negative definite function
on G.

Date: March 8, 2023.
2000 Mathematics Subject Classification. 20E22, 20F65, 20E05.
Key words and phrases. Haagerup property, a-T-menability, free groups, semidirect products, im-

proved relative train-track maps.
1



We refer the reader to [7] for a detailed background and history of this property. Let us
notice that very few is known about the preservation of a-T-menability under extensions:
whereas any semi-direct product (a-T-menable) o (amenable) is a-T-menable [13], this
is not the case for semi-direct products (a-T-menable) o (a-T-menable). For instance
Z2 o SL(2,Z), which has the form (amenable) o (a-T-menable) since SL(2,Z) admits
a free subgroup of finite index (a-T-menabilty passes from a finite index subgroup of
a group to the group itself), has relative property (T) and so is not a-T-menable (any
conditionally negative definite function is bounded on Z2, see [8] - in fact for any free
subgroup Fk of SL(2,Z), Z2 o Fk is not a-T-menable - see [5]). In particular it is not
known whether any free-by-free group is a-T-menable.

In [9] we exhibit a first non-linear family of groups of the form (free non abelian)-
by-(free non abelian), termed Formanek-Procesi groups, which are a-T-menable. More
precisely, a Formanek-Procesi group is a semi-direct product Fn oσ Fn−1 where:

• Fn = 〈x1, · · · , xn〉 and Fn−1 = 〈t1, · · · , tn−1〉 are the free non-abelian groups
respectively of ranks n and n− 1,

• letting Aut(Fn) denote the group of automorphisms of Fn then σ : Fn−1 ↪→ Aut(Fn)
is the monomorphism defined by: σ(tj)(xi) = xi for any i = 1, · · · , n − 1 and
j = 1, · · · , n− 1 whereas σ(tj)(xn) = xnxj for j = 1, · · · , n− 1.

The automorphisms in σ(Fn−1) have linear growth: this is a particular case of polyno-
mial growth, where the polynomial function has degree one:

Definition 3. Let G be a group with finite generating set S. An automorphism α of G
has polynomial growth if and only if there is a polynomial function P such that, for any
γ in G, for any m ∈ Z, |αm(γ)|S ≤ P (m)|γ|S.

The nature of the growth of α ∈ Aut(Fn) only depends on its class α in the group
of outer automorphisms of Fn, denoted by Out(Fn). Let us recall that Out(Fn) =
Aut(Fn)/Inn(Fn), where Inn(Fn) is the group of inner automorphisms αw (w ∈ Fn):
αw(x) = w−1xw for any x ∈ Fn.

Definition 4. Let G be a group with finite generating set S. An outer automorphism of
G has polynomial growth if and only if some (and hence any) automorphism in the class
has.

The purpose of this paper is to prove that the result of [9] is a particular case of a
little bit more general phenomenon. Before the statement, let us recall that a semi-direct
product FnoσFk only depends, up to isomorphism, on the class of σ(Fk) in Out(Fn). Our
construction relies upon the profound structure theorem of Bestvina-Feighn-Handel [3]
about subgroups of polynomially growing automorphisms, even if we only appeal to the
most elementary results of this theory. The important feature for us is that σ(Fk) admits
a finite-index unipotent subgroup, represented by a pair (F ,Γ) where Γ is a filtered graph
and F a set of filtered homotopy equivalences (BFH-representative (F ,Γ)): see subsection
1.2. We introduce a particular (unfortunately quite restrictive) class of such unipotent
subgroups of polynomially growing automorphisms (see Definition 1.12) and prove the
following theorem:

Theorem 1. Let k, n be two positive integers and let Fn,Fk respectively denote the rank
n and rank k free groups. Let Out(Fn) denote the group of outer automorphisms of Fn =
〈x1, · · · , xn〉. If σ : Fk ↪→ Out(Fn) is a monomorphism such that σ(Fk) admits a tied,
one-sided unipotent subgroup of outer automorphisms of Fn then the group Fnoσ Fk acts
properly isometrically on some finite dimensional CAT(0) cube complex. In particular it
is a-T-menable in the sense of Gromov.
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Let us immediately emphasize that the above action on the cube complex is not neces-
sarily cocompact. We give a sharp minimal bound for the dimension of the cube complex
in Lemma 6.15. A cube complex is a metric polyhedral complex in which each cell is
isomorphic to the Euclidean cube [0, 1]n and the gluing maps are isometries. A cube
complex is called CAT(0) if the metric induced by the Euclidean metric on the cubes
turns it into a CAT(0) metric space (see [4]). In order to get the above statement, we
prove the existence of a space with walls structure as introduced by Haglund and Paulin
[12]. A theorem of Chatterji-Niblo [6] or Nica [15] (for similar constructions in other
settings, see also [14], [16] or [10]) gives the announced action on a CAT(0) cube com-
plex: all this is quickly recalled in Section 3. A key-point of our structure consists in the
introduction, in Section 5, of the so-called “diagonal walls”, where we need the existence
of particular BFH-representative.

1. Graphs and free group automorphisms

1.1. Graphs and free groups: generalities. A graph Γ is a 1-dimensional CW-
complex. A graph is finite if the number of cells is finite. The 0-cells are termed
vertices. Each 1-cell admits two distinct orientations: we denote by E+(Γ) the set of
1-cells equipped with some chosen orientation, termed positively oriented edges whereas
an (oriented) edge denotes a 1-cell equipped with whatever of its two orientations. If e
denotes an edge then e−1 denotes the edge with the opposite orientation. We denote by
i(e) (resp. t(e)) the initial (resp. terminal) vertex of an edge e. Any set of edges naturally
defines a unique set of 1-cells by forgetting the orientations and any set of 1-cells is in
bijection with the set of p.o. edges so that any terminology for 1-cells will be used for
edges and vice-versa. The valency of a vertex v in a graph Γ is the number of edges which
admit v as initial vertex. Our graphs have no valency 2-vertices. A subgraph U of a graph
Γ is any 1-dimensional CW-complex contained in Γ (this implies in particular that, if U
contains a 1-cell e then it contains the two 0-cells to which e is attached).

A path (resp. loop) in a topological space X is the image of a continuous map from
the interval (resp. circle) to X. A path is reduced if the map is locally injective. A loop
is simple if the map is an embedding. An edge-path in a graph is a path between two
vertices of the graph which does not backtrack in the interior of the edges, i.e. the map
is locally injective at the points whose images lie in the interior of the edges. It uniquely
defines, and is uniquely defined by, the ordered sequence of oriented edges that it crosses.
A graph-map is a continuous map on a graph, which sends vertices to vertices and edges
to edge-paths, it is reduced if the images of the edges are.

A tree is a contractible graph, its ends are its valency 1-vertices. In a tree T , there is a
unique locally injective path between any two points, termed a geodesic. This implies in
particular that any 1-cell E cuts the tree in two connected components: the left-side of E
(resp. right-side of E) is the connected component containing the initial (resp. terminal)
vertex of the associated p.o. edge. More generally:

Definition 1.1. Let T be a tree, let E be a 1-cell in T and let E be a set of 1-cells of T .
The left-side of E w.r.t. E (resp. right-side of E w.r.t. E) is the union of all the cells in
T which are connected to the initial vertex of the p.o. edge associated to E by a geodesic
crossing an even (resp. odd) number of cells in E . An edge-path p in T spans E (w.r.t.
E) if its initial and terminal vertices lie in distinct sides of E (w.r.t. E).

The universal covering of a finite graph Γ is an infinite tree T with covering map
πΓ : T → Γ. We will always assume that the covering-maps preserve the orientations,
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that is choosing an orientation on the edges of a lift T of a graph Γ amounts to choosing
an orientation on the edges of Γ.

We will denote

• by T q the q-od, that is the tree with exactly one valency q-vertex v0, exactly q ends
v1, · · · , vq, and q edges ei in E+(T q) oriented from v0 to vi (T q is homeomorphic
to the cone over {v1, · · · , vq}),
• by Rq the rose with q petals, that is the graph with exactly one 2q-valency vertex
v0 and q edges in E+(Rq) with v0 as both initial and terminal vertex,

• by T∞q the universal covering of Rq, that is the infinite 2q-valent tree.

The fundamental group of a finite graph is a finite rank free group Fn so that the
universal covering of Γ comes equipped with a free, cocompact, left-action of Fn, the
free group being the group of deck-transformations of this covering. More precisely, let
us term maximal tree T in Γ a tree containing all the vertices of Γ. We then have the
following

Definition 1.2. A Fn-tree T is the universal covering of a finite graph Γ together with

the choice of a lift T̃e of a maximal tree T in Γ, and a homotopy-equivalence from Γ to
Rn which collapses T , and carries the positively oriented edges not in T , termed essential
p.o. edges, to the positively oriented edges of Rn. The essential 1-cells of T are the lifts

of the essential 1-cells of Γ and the maximal trees T̃w in T are the lifts of the maximal
tree T in Γ. A 1-cell in T is exceptional if it is the lift of a 1-cell which separates Γ
in two connected components. An EoE-cell of T is a 1-cell which is either essential or
exceptional. We denote by EoE(Γ) the number of EoE-cells in Γ.

We so get an identification of a subset of the vertices of T with Fn by looking at any

orbit {g.v}g∈Fn , v ∈ V (T̃e), we set g.T̃e = T̃g. The number of distinct Fn-orbits of vertices
is equal to the number of vertices in Γ. Each vertex in T so inherits a Fn-label, all the

vertices in a same lift T̃g carrying the same label g.
Observe that an edge-path p = Eε1

j1
Eε2
j2
· · ·Eεr

jr
(εi = ±1, Eji ∈ E+(T )) in the universal

covering T of a finite graph Γ also admits a description by the edges of Γ by considering
the edge-path πΓ(p) = eε1j1e

ε2
j2
· · · eεrjr in Γ; beware however that p is only defined up to a left

Fn-translation when considering this description by πΓ(p). The edges of Γ are Γ-labels for
the edge-path p in T . An edge-path p is incident to g ∈ Fn if p begins (one says that p is
outgoing) or ends (one says that p is incoming) at g. An edge-path p uniquely defines an
element of Fn by considering the ordered sequence of essential edges that it crosses since
each essential edge is Fn-labelled by a generator {x±1

1 , · · · , x±1
n } of Fn. We will sometimes

call Fn-generator a reduced edge-path in T which projects to a simple loop in Γ and
contains only one essential edge, whose label is then the label of the Fn-generator. The
label, in Γ or Fn, of a 1-cell in T is the union of the labels of the two corresponding edges.

Definition 1.3. Let πΓ : T → Γ be some Fn-tree.

(1) An essential 1-cell is incident (resp. incoming, resp. outgoing) to (resp. at) a
subgraph U of T if it is incident (resp. incoming, resp. outgoing) to (resp. at)
g ∈ Fn which is the label of some v ∈ V (U), and is not contained in U . The set
of all the essential cells incident to U is the crown of U , denoted by Cr(U). The
completion of a subgraph U of T , denoted by U , is the smallest tree containing U
whose union with the crown of U is also a tree.
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(2) Two essential cells in the crown of U are coherent if one is incoming, the other
is outgoing and they have same Fn-label. They are twins if in addition the Fn-
label of the edge-path from the initial vertex of the incoming essential cell to the
terminal vertex of the outgoing one is a power of their Fn-label.

(3) The shift hγ,γ′ at a coherent pair {γ, γ′} is the left-translation which sends γ to
γ′.

Lemma 1.4. Let T be some Fn-tree and let U be a subtree of T . Then each γ ∈ Cr(U)
admits exactly one twin, denoted by γtw. The collection of all the pairs of essential cells
{γ, γtw} ⊂ Cr(U) is unique (up to orientation) and defines a partition of Cr(U).

Corollary 1.5. With the notations and assumptions of Lemma 1.4, let Fn = 〈x1, · · · , xn〉.
For any γ ∈ Cr(U) the shift hγ,γtw : γ 7→ γtw is uniquely defined and is conjugate to a
power of some xi, 1 ≤ i ≤ n.

1.2. An invariant tree for unipotent subgroups of Out(Fn).
We recall the notions and results we need from Bestvina-Feighn-Handel theory.

Definition 1.6 ([3]). An outer automorphism of Fn is unipotent if the automorphism
that it induces on H1(Fn;Z) = Zn is unipotent.

Lemma 1.7 ([2],Corollary 5.7.6). Any subgroup of polynomially growing outer automor-
phisms of Out(Fn) admits a unipotent subgroup of finite index.

Definition 1.8 ([3]).

(1) A filtered graph of Fn is a graph Γ with fundamental group isomorphic to Fn
equipped with a filtration ∅ = Γ0 ( Γ1 ( · · · ( Γi ( Γi+1 ( · · · ( Γr = Γ where
for each i = 0, · · · , r − 1, Γi+1 is the union of Γi with a 1-cell ei.

(2) A homotopy equivalence f of a filtered graph Γ is filtered if it is a graph-map
and for any edge ei of Γ, i = 1, · · · r, f(ei) = vi−1eiui−1 where vi−1, ui−1 are loops
contained in Γi−1.

Obviously, the filtration given by Definition 1.8 induces an order on the 1-cells of Γ,
and thus a partial ordering on the 1-cells in the universal covering. These order and
partial ordering will be referred to as the height of the 1-cells. The height of a set of
1-cells is the maximal height of these cells. If {f1, · · · , fk} is a set of k filtered homotopy
equivalences of Γ, a 1-cell ej of Γ (or any of its lifts in the universal covering) is i-topmost
if it appears only in fi(ej) and in the image under fi of no other 1-cell and is topmost if
it is i-topmost for each i ∈ {1, · · · , k}.
Definition 1.9. A filtered graph of Fn is well-built if, for a chosen identification of its
fundamental group with Fn as given in Definition 1.2, each essential cell is higher than
any 1-cell in the unique simple loop with same Fn-label.

Lemma 1.10. Any filtered graph admits a maximal tree, and set of essential cells, so
that it is well-built.

Proof. Assume the edges are indexed from the lowest to the highest. Starting with e1,
consider the maximal sequence of edges e1 < e2 < · · · < el whose union forms a forest,
put them in the maximal tree and define the first following edge el+1 as an essential edge.
Then iterate by substituting e1 with el+2. �

Observe that a filtered homotopy equivalence of a filtered graph Γ of Fn fixes each
vertex of Γ. We assume fixed the choice of a Fn-tree over Γ. A filtered homotopy
equivalence naturally defines in this way an outer automorphism of Fn. The set of all
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filtered homotopy equivalences up to homotopy relative to the vertices of Γ, equipped with
the composition, defines a group ([3][Lemma 6.1]) that we denote by F . Any choice of k
filtered homotopy equivalences of a filtered graph Γ of Fn defines a subgroup 〈f1, · · · , fr〉
of F and thus a subgroup U of Out(Fn).

Theorem 1.11 ([3]). For any integers n ≥ 2 and k ≥ 1, for any rank k unipotent free
subgroup U of Out(Fn), there exists a a BFH-representative (F ,Γ) of U composed of a
filtered graph Γ of Fn and a family F of k reduced filtered homotopy equivalences of Γ
defining U .

This concludes the reminders about Bestvina-Feighn-Handel theory. We now give the
definition of the particular free subgroups of polynomially growing automorphisms we
will be interested in:

Definition 1.12. Let (F ,Γ) be a well-built BFH-representative. Let {Fi}i=1,··· ,k be
reduced lifts of the filtered homotopy equivalences in F to the universal covering T of Γ.

For any 1-cell E in T we denote by Ei
top the unique 1-cell with same label in Fi(E).

Let Bti (resp. Bt) be the map on T which to an EoE-cell E (see Definition 1.2) assigns
all the 1-cells E ′ such that Fi(E

′) contains Ei
top (resp. the set of all 1-cells E ′ such that

for some i ∈ {1, · · · , k}, Fi(E ′) contains Ei
top).

(1) The BFH-representative (F ,Γ) is one-sided if, for any EoE-cell E, Bt(E) is con-
tained in a single side of E.

(2) The BFH-representative (F ,Γ) is tied if for any EoE-cell E there exists the E-
tied-set IE ⊂ {1, · · · , k} such that

• E is j-topmost for any j /∈ IE,

• if R denotes a geodesic from E to ∂Bt(E) either no Fi(R) contains Ei
top or

for each i ∈ IE Fi(R) contains Ei
top.

(3) A unipotent free subgroup of Out(Fn) is tied (resp. one-sided) if it admits a tied
(resp. one-sided) BFH-representative.

Lemma 1.13. With the assumptions and notations of Definition 1.12, assume that (F ,Γ)
is one-sided. If E,X are two 1-cells in T such that Fi(X) contains Ei

top then X i
top is on

the other side of Ei
top than X w.r.t. E if and only if the geodesic between E and X crosses

an even number of cells in Bti(E).

Proof. Let R be the unique geodesic between E and X and assume that it crosses no cell
in Bti(E). Since Fi(X) contains Ei

top and is reduced, Fi(X) contains Fi(R). It follows

that X is higher than any cell in R so that X i
top does not belong to Fi(R). It does not

belong to Fi(E) for the same reason. Since R crosses no cell in Bti(E) and Fi is reduced,
Fi(X) ends on the other side of Ei

top. We so get that X i
top lies on the other side of Ei

top.
The generalization to the case where R crosses an even number of cells in Bti(E) is
straightforward. �

This gives the following

Corollary 1.14. Let (F ,Γ) be a one-sided BFH-representative and let {Fi}i=1,··· ,k be
reduced lifts of the filtered homotopy equivalences in F to the universal covering T of Γ.
For t ∈ Fk, let Ft ∈ 〈F1, · · · , Fk〉 denote the map representing σ(t) and for any 1-cell E
let Et

top the unique 1-cell with same label as E in Ft(E).

Let E be any EoE-cell in T and let R be a geodesic segment from E to ∂Bt(E) crossing
at least one cell in Bt(E). Then no subgeodesic of Ft(R) in the opposite side of Et

top than
R w.r.t. E contains an element of Bt(Et

top).
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Of course, if the properties required in Definition 1.12 are satisfied for the EoE-cell E
in a fundamental region for the action of Fn then they are satisfied for all the left Fn-
translates of E. Farther in the paper, we introduce the maps Boti and Bot very similar
to Bti and Bt, in another, equivalent, way.

2. Free by free groups, suspensions

The aim of this section is to describe the universal covering of the suspension (see 2.2
below) of a BFH-representative (F ,Γ) and its universal covering termed mapping-cylinder
of (F ,Γ).

Definition 2.1. Let Fn,Fk be the rank n and rank k free groups and let σ : Fk ↪→ Out(Fn)
be a monomorphism.

The suspension of Fn by Fk over σ, denoted Gσ
n,k, is the group

Gσ
n,k := Fn oσ Fk.

The normal subgroup Fn is called the horizontal subgroup of Gσ
n,k whereas the subgroup

Fk is the vertical subgroup.

Definition 2.2. Let Γ be a graph and let F = {f1, · · · , fk} be a family of continuous
maps of Γ.

The suspension of Γ by F , denoted by K(F ,Γ), is the 2-complex

K(F ,Γ) := (Γ× T k)/((x, vj) ∼ (fj(x), v0)),

The mapping-cylinder of Γ under F is the universal covering πK : K(F ,Γ) → K(F ,Γ) of
the suspension of Γ by F .

The j-cylinder over a subgraph U of Γ is the 2-complex

((U × [0, 1]) t fj(U))/ ∼ with (x, 1) ∈ (U × [0, 1]) ∼ fj(x) ∈ fj(U)

Assume that the maps fi in Definition 2.2 are homotopy equivalences, and thus induce
outer automorphisms αi on the fundamental group of Γ. If the latter is Fn, then the
fundamental group of the suspension is the semi-direct product FnoσFk where the image
of the morphism σ : Fk ↪→ Out(Fn) is the subgroup generated by the αi. In particular:

Lemma 2.3. Let σ : Fk ↪→ Out(Fn) be a monomorphism such that σ(Fk) is a unipotent
subgroup. Let (F ,Γ) be a BFH-representative of σ(Fk). Then the suspension of Fn by Fk
over σ is the fundamental group of the suspension of Γ by F :

Gσ
n,k = π1(K(F ,Γ)).

In the following lemma, we describe the cells of the suspension complex. This lemma is
stated under the assumptions of Lemma 2.3; what we only really need is the assumption
that the maps fi with which we build the suspension send vertices to vertices. This
assumption is satisfied since the filtered homotopy equivalences fix each vertex.

Lemma 2.4. With the notations and assumptions of Lemma 2.3, set F = {fi}i=1,··· ,k:

• The 1-skeleton of K(F ,Γ) is the union of Γ×{v0} with the union, over the vertices
v of Γ, of the {v} ×Rk.

• If Γ has l 1-cells then there are exactly k.l 2-cells (ci,j)
j=1,··· ,k
i=1,··· ,l in K(F ,Γ). The

boundary ∂ci,j of the p.o. 2-cell ci,j reads the edge-path eitjfj(ei)
−1t−1

j in the
labels of E+(Rk) ∪ E+(Γ). In particular, ∂ci,j contains exactly two 1-cells in the
union, over the vertices v of Γ, of the {v}×Rk, and one 1-cell in Γ×{v0} which
connects the initial vertices of the associated edges in the copies of E+(Rk).
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Lemma 2.4 allows us to establish the following definitions:

Definition 2.5. With the notations and assumptions of Lemma 2.4:

• The 1-cells in Γ ↪→ K(F ,Γ) are termed horizontal 1-cells. The 1-cells in the copies
of Rk in K(F ,Γ) are termed vertical 1-cells. The 2-cells are called squares.

Let c be a p.o. square whose boundary reads eitjfj(ei)
−1t−1

j in the labels of
E+(Rk) ∪ E+(Γ).

• The edge ei is the bottom of c. The union of the edges in fj(ei)
−1 is the top of c.

• The edges tj and t−1
j in ∂c, termed tj-cells, form the vertical boundary of c, c has

vertical j-boundary and c is a j-square.

All the above terminology lifts to the mapping-cylinder πK : K(F ,Γ) → K(F ,Γ) of (F ,Γ).

The following lemma is a straightforward consequence of Theorem 1.11 and item (3)
of Lemma 2.8:

Lemma 2.6. Let σ : Fk ↪→ Out(Fn) be a monomorphism such that σ(Fk) is a unipotent
subgroup. Let (F ,Γ) be a BFH-representative of σ(Fk) and set F = {fi}i=1,··· ,k. Let E be
any horizontal 1-cell of K(F ,Γ).

(1) Any square C of K(F ,Γ) which admits E as bottom contains exactly one 1-cell in
its top which has same Γ-label as E.

(2) For any i ∈ {1, · · · , k} there is a unique i-square C of K(F ,Γ) whose bottom is a
1-cell with same Γ-label as E.

(3) The number of i-squares which contain E in their top is equal to the number of
times the label of E appears in the union of the images of the edges of Γ under
fi ∈ F . Two distinct such i-squares may share a same label for their bottom.

Definition 2.7. With the notations and assumptions of Lemma 2.6:

(1) The 1-cell given by Item (1) of Lemma 2.6 will be denoted by Ei
top if C is a i-

square. The 1-cell given by Item (2) of Lemma 2.6 will be denoted by Ei
bot if C is

a i-square.

(2) We denote by Boti the map which to a given 1-cell E assigns the union of all the
bottoms of the i-squares given by Item (3) of Lemma 2.6, and by Bot∗i the map
defined by Bot∗i (E) = Boti(E) \ {E}.

(3) The (i, E)-lift is the left-translation Li,E : E 7→ Ei
top by the Gσ

n,k-element which

sends E to Ei
top.

By Lemma 2.3, the suspension group Gσ
n,k is the group of deck-transformations of the

universal covering πK : K(F ,Γ) → K(F ,Γ): there is a bijective correspondance between Gσ
n,k

and each orbit of i-cells. As for graphs, we fix a lift T̃e of a maximal tree T in Γ to get

an identification of Gσ
n,k with each Gσ

n,k.v, v ∈ V (T̃e).

Lemma 2.8. With the notations and assumptions of Lemmas 2.3 and 2.4, we denote by

Fj the lift of fj to T (the universal covering of Γ) that is Fj ◦ πΓ = πΓ ◦ fj and by T̃e the
chosen lift of the maximal tree in Γ.

Then there is a surjective continuous map π∞k : K(F ,Γ) → T∞k , called the orbit-map, of
K(F ,Γ), onto the Cayley graph T∞k of the vertical subgroup Fk which satisfies the following
properties:

• The pre-image of each vertex w ∈ Fk is a copy Tw of T with, by convention, Te
the lift containing T̃e (which corresponds to e ∈ Gσ

n,k). Its 1-cells are horizontal
1-cells.

8



• The pre-image Kw,wtj of any closed edge from w to wtj is homeomorphic to the
j-cylinder over T . The 1-cells in the interior of Kw,wtj , which project under πk
to the 1-cells of T∞k are vertical 1-cells of K(F ,Γ). The closure of K(F ,Γ) \ Kw,wtj
consists of exactly two connected components, whose union contains all the vertices
of K(F ,Γ).

• The boundary of any p.o. square Ci,j ∈ π−1
K (ci,j) (see Lemma 2.4) in Kw,wtj ⊂

K(F ,Γ) reads an edge-path of the form EitjFj(E
−1
i )t−1

j in the labels of E+(T ) ∪
E+(Rk).

Moreover:

(1) The orbit of a vertex under the right-action of the vertical subgroup Fk of Gσ
n,k is

the lift of T∞k under the orbit-map, passing through this vertex.

(2) For any w,w′ ∈ Fk, w.Tw′ = Tww′ and Tw′ .w = Tw′w are free left- and right-actions.

(3) For any w ∈ Fk and cylinder Kw′,w′tj : w.Kw′,w′tj = Kww′,ww′tj is a free left-action.

(4) The stabilizer, for the left and right actions, of both Tw and Kw′,w′tj is the hori-
zontal subgroup.

3. Space with walls structure

Spaces with walls were introduced in [12] in order to check the Haagerup property.
When given a set X, a wall of X is a partition w of X in two non-empty classes, also
called sides of w. Let x, y be any two points in the set X. A wall w of X separates x
from y if and only if x and y belong to distinct sides of w. When given a family of walls
W , the number of walls in W separating two points x and y is denoted by µW(x, y) and
called the wall distance between x and y (it might a priori be infinite). If X is contained
in an arc-connected topological space Y , a path p in Y between two points in X spans
a wall w if w separates the endpoints of p. A space with walls is a pair (X,W) where
X is a set and W is a family of walls such that for any two distinct points x, y in X,
µW(x, y) <∞. We say that a discrete group acts properly on a space with walls (X,W)
if it leaves invariant W and for some (and hence any) x ∈ X the function g 7→ µW(x, gx)
is proper on G.

Theorem 3.1 ([12]). A discrete group G which acts properly on a space with walls is
a-T-menable.

Remark 3.2. Let Fk be the rank k-free group, and let T∞k be its Cayley graph for a free
basis. If E is any 1-cell of T∞k , if w− and w+ denote the left and right sides of of E then
(w−, w+) is a classical j-wall for Fk. The tree T∞k together with the collection of all the
classical walls is a space with walls upon which Fk acts properly.

In order to get Theorem 1 we will need the (stronger) result below (we refer to [15] for
a similar statement).

Definition 3.3. Let (X,W) be a space with walls. Two walls (u, uc) ∈ W and (v, vc) ∈
W cross if all four intersections u ∩ v, u ∩ vc, uc ∩ v and uc ∩ vc are non-empty.

Theorem 3.4 ([6]). Let G be a discrete group which acts properly on a space with walls
(X,W). Then G acts properly isometrically on some CAT(0) cube complex Cb(W) whose
dimension is equal to the (possibly infinite) supremum of the cardinalities of finite collec-
tions of walls which pairwise cross. In particular G is a-T-menable.
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Notations for Sections from 4 to 7 (included):

σ : Fk ↪→ Out(Fn) is a monomorphism such that σ(Fk) is a tied, one-sided
unipotent subgroup (see Definition 1.12).

(F ,Γ) is a tied, one-sided BFH-representative of σ(Fk) (see Theorem 1.11
and Definition 1.12)) where F = {fi}i=1,··· ,k, set of reduced filtered homotopy
equivalences of Γ (see Definition 1.8), lifts to {Fi}i=1,··· ,k, set of reduced
graph-maps of T with πΓ : T → Γ the universal covering of Γ. We assume that
Γ is well-built (see Definition 1.9 and Lemma 1.10).

Gσ
n,k = Fn oσ Fk is the suspension of Fn by Fk over σ.

K(F ,Γ) is the mapping-cylinder of Γ under F (see Definition 2.2).

π∞k : K(F ,Γ) → T∞k is the orbit-map (see Lemma 2.8).

4. Vertical walls

4.1. Definition and stabilizers.
By Lemma 2.8, for any 1-cell E of T∞k (π∞k )−1(E) is a cylinder over T which cuts K(F ,Γ)

in two connected components, whose union contains all the vertices of K(F ,Γ). This allows
us to give the following

Definition 4.1. A vertical j-wall (j ∈ {1, · · · , k}) is any pair ((π∞k )−1(w−), (π∞k )−1(w+))
where (w−, w+) is a classical j-wall for the vertical subgroup Fk (see Remark 3.2). The
collection of vertical walls is the collection composed of all the vertical j-walls.

Remark 4.2. By definition and Lemma 2.8, for any j = 1, · · · , k the vertical j-walls are
in bijection with the j-cylinders over T .

Lemma 4.3. The collection of all the vertical j-walls is invariant for the left-action of
Gσ
n,k on K(F ,Γ). The horizontal subgroup is the left- and right-stabilizer of any vertical

j-wall.

Proof. Any element g of Gσ
n,k uniquely decomposes as hv with h (resp. v) in the hori-

zontal (resp. vertical) subgroup. If W = ((π∞k )−1(w−), (π∞k )−1(w+)) is a vertical j-wall,

g.W = (hv.(π∞k )−1(w−), hv.(π∞k )−1(w+)). By Lemma 2.8, items (3) and (4), g.W =

((π∞k )−1(v.w−), (π∞k )−1(v.w+)). Since (w−, w+) is a classical j-wall for Fk, v.(w−, w+) =

(v.w−, v.w+) = (w′−, w
′
+) is a classical j-wall for Fk. Thus gW = ((π∞k )−1(w′−), (π∞k )−1(w′+))

is a vertical j-wall for Gσ
n,k, hence the Gσ

n,k-invariance of the collection of vertical walls.
Item (4) of Lemma 2.8 gives the horizontal subgroup as left- and -right stabilizer of any
vertical j-wall. �

4.2. Finiteness.

Lemma 4.4. For any two elements g = hv and g′ = h′v′ of Gσ
n,k, the orbit-map induces

a bijection between the vertical walls separating g from g′ and the classical walls of Fk
between v and v′.

Proof. By definition, the classical walls of Fk between v and v′ are in bijection with the
1-cells which separate v from v′. By Remark 4.2, the vertical walls are in bijection with
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the cylinders over T . For any horizontal elements h, h′ and vertical elements v, v′ in Gσ
n,k,

a cylinder over T separates hv from h′v′ if and only if it is the pre-image of a 1-cell
separating v from v′. Since the horizontal subgroup stabilizes the cylinders over T , this
implies that the vertical walls separating hv from h′v′ are in bijection with the classical
walls of the vertical subgroup Fk separating v from v′ and the lemma is proved. �

As a straightforward consequence of this lemma, we get the following

Proposition 4.5. Any two elements of Gσ
n,k are separated by a finite number of vertical

walls.

5. Diagonal walls

Let us recall that an identification of Gσ
n,k with the orbit of the vertices in some fixed

lift, in K(F ,Γ), of a maximal tree in Γ has been chosen. We also recall that the BFH-
representative we work with is well-built. This implies in particular that the image of a
Fn-generator contains only once an essential cell of the same label. Since the definition
of these diagonal walls involves some tedious definitions, let us begin by giving a sketch
of the whole construction:

5.1. Sketch of the construction of diagonal walls. Of course, the vertical walls
previously defined do not separate the horizontal subgroup FnCGσ

n,k so that we now aim to
get a proper space with walls structure for the horizontal subgroup. The discussion below
gives an idea of the construction in the case where the graph of the BFH-representative
is the rose.

The classical walls of Fn are cut by the (exceptional) 1-cells. Let us consider such a
1-cell E. If it is topmost, then by taking all its images under the subgroup generated
by the various lifts one easily gets a system of cuts which defines a wall for Gσ

n,k. Let
us consider then the case where E is not topmost. This implies the existence of at least
one square C in K(F ,Γ) which contains E in its top and whose bottom has a different,
higher, label. Such a square allows to connect the two vertices of E without passing
through E. Thus taking all the images of E under the subgroup generated by the lifts,
as preceedingly, does not disconnect K(F ,Γ). One has to “complete” this first set of cuts.
The strategy to deal with these non-topmost cells (the “generic” case) is to add vertical
cuts in such a way that the boundary of each square contains an even number of cuts.
Once this property satisfied, it then makes sense to define the two sides of the E-wall
depending on the parity of cuts contained in an edge-path from g ∈ Gσ

n,k to the initial
element of the associated p.o. edge.

Observe that, if one wishes the left-translates of E under the subgroup generated by
the lifts to be cuts, then one does not have the choice of which vertical boundary to be a
cut in order to get no more than two cuts in the boundary of our squares. We now refer
the reader to Figure 1.

Once defined this vertical boundary in ∂C as a cut, one then has to propagate the cuts
by left-translations by horizontal elements, which will at the end lie in the stabilizer of
the wall. There is an obstruction: a vertical cut in the left (resp. right) boundary of C is
a vertical cut in the right (resp. left) boundary of the adjacent square C ′ whose bottom
has same label. It is thus impossible to translate along the bottom of C. The trick is
to declare the copy E ′ of E in the top of C ′ as a second horizontal cut. However it is
impossible to add the lifts of E ′ without creating squares with odd number of cuts in the
boundary: this leads to the definition of the stairs in Definition 5.5. These elements are
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Figure 1. A model for the construction

defined to carry the vertical cut on the opposite side of E with respect to E ′ (see Figure
1).

In the general case where the graph of the BFH-representative is not the rose, a little
bit more care is needed in order to define what it means for an image of a horizontal
generator spanning a given one (like above the image of the bottom of C spans E):
this is the purpose of the definitions of Top(E), Bot(E) and B(E) and the notion of
E-spanning twins in 5.1. The color of a vertex is introduced in Definition 5.4, the cuts
being later defined in 5.15 as the vertical p.o. edges whose initial vertex have a positive
color. The c-bottoms, c-tops and blocks in Definition 5.5 are the colored version of the
tops and bottoms of 5.1. The biblock in Definition 5.8 is the generalization of the passage
above from the square C to the union of C with C ′ above.

The properness of the action comes easily as soon as, at the beginning of the construc-
tion, we chose to define as cuts all the 1-cells in the orbit of our initial horizontal cut
under the subgroup generated by the lifts. However, since the bottom of a square con-
taining an essential 1-cell in its top might be an exceptional 1-cell, one has to artificially
add, to the horizontal cuts, the exceptional 1-cells. Let us observe that this constraint
of putting the whole lift of the initial horizontal cut in the set of cuts is one of the main
reasons why we have to restrict to tied one-sided subgroups.

5.2. Tops, bottoms and colors.

Definition 5.1. Let E be an horizontal EoE-cell (see Definition 1.2) of K(F ,Γ).

(1) We denote by Bot(E) the union over i ∈ {1, · · · , k} of the Boti(E
i
top). The tree

Topi(E) is the top of the i-cylinder over the smallest tree containing Bot(E) and
we set

Top(i, E) =
k⋃
j=1

(Li,E ◦ L−1
j,E)(Topj(E))

. The E-top Top(E) then denotes L−1
i,E(Top(i, E)). The E-bottom B(E) is the

completion of the union over i ∈ {1, · · · , k} of the sets V (Top(i, E)t−1
i ).

(2) Let I be a subset of {1, · · · , k}. A pair of twins in Cr(B(E)) is E-spanning if it
spans Bot∗i (E

i
top) for some i ∈ {1, · · · , k}, and it is (I, E)-spanning if this holds

for any i ∈ I and no other one.
12



Remark 5.2. By definition, the E-bottem B(E) constructed above contains the pre-
images of all the vertices in all the Top(i, E), i ∈ {1, · · · , k}. This has, as a consequence,
that farther in the paper the left-translates of our “blocks” (Definition 5.5 farther) are
disjoint. This is however not an absolute requisite: what we really need here is only that
the left-translates of our “elementary cuts” (Definition 5.15) do not belong to the same
biblock (Definition 5.8).

Lemma 5.3. Let E be an horizontal EoE-cell of K(F ,Γ). Assume given a pair of twins
{X, Y } for B(E) and denote by pE,X , pE,Y the unique geodesics from E (so not crossing
E) respectively to X and Y . Then:

(1) The set {1, · · · , k} decomposes into disjoint subsets IX , IY , IX,Y , NX,Y respectively
defined as the sets of indices such that only pE,X , resp. only pE,Y , resp. both pE,X
and pE,Y , resp. neither pE,X nor pE,Y span Boti(E

i
top) for each i ∈ IX , resp. for

each i ∈ IY , resp. for each i ∈ IX,Y , resp. for each i ∈ NX,Y .

(2) With the notations of Item (1), the pair {X, Y } is (IX ∪ IY , E)-spanning.

(3) The pair {X, Y } spans both the cell in Bot∗i (E
i
top) which is highest in pE,X for

i ∈ IX and the cell in Bot∗i (E
i
top) which is highest in pE,Y for i ∈ IY . In particular,

X and Y are. higher than any cell of Bot∗i (E
i
top) in pE,X ∪ pE,Y .

Proof. Item (1) is a tautology and Item (2) a straightforward consequence of the defini-
tions. Let us prove Item (3). Since E is an EoE-cell, X and Y lie in a same side of E,
without loss of generality we thus assume that pE,X and pE,Y both lie in the right-side of
E. If IX is non-empty then for any i in IX , Fi(pE,X) ends in the left-side of Ei

top whereas
Fi(pE,Y ) ends in the right-side. This implies that the geodesic q from X to Y contains
an odd number of cells in Bot∗i (E

i
top). By definition of a filtered homotopy equivalence,

any one is higher than any other one in the geodesic from E to q. The assertion about
X and Y comes from the fact that (F ,Γ) is well-built. �

Definition 5.4. Let T be a horizontal subtree of K(F ,Γ).

(1) A E-color on T w.r.t. some subset E of 1-cells in T is a map χ : V (T )→ Z/2Z such
that, for any two distinct v, w in V (T ) which belong a same 1-cell E ′, χ(v)+χ(w) =
1 mod 2 if and only if E ′ ∈ E .

(2) A k-color on T is a map χ : V (T ) → (Z/2Z)k whose each i-coordinate χi is a
Ei-color map for some set of 1-cells Ei in T .

(3) A k-color on a union of disjoint horizontal trees Ti in K(F ,Γ) is a map χ : V (
⋃
i Ti)→

(Z/2Z)k which restricts to a k-color on each Ti and satisfies that, if h is a hor-
izontal geodesic between two disjoint Ti’s then the colors on the endpoints of h
agree.

5.3. Blocks.

Definition 5.5. Let E be an horizontal EoE-cell of K(F ,Γ). Let I = ∅ or I = IE (the
E-tied-set) and let ε ∈ ±.

(1) The (ε, I, E)-c-top, with E as (ε, I)-nucleus, denotes Top(E) equipped with the
k-color map defined as follows:

• For any i ∈ I, the i-coordinate is the E-color which is positive on the left
(resp. right) vertex of E if ε = + (resp. ε = −).

• For any l /∈ I, the l-coordinate is the Bot∗l (E
l
top)-color which vanishes on both

vertices of E.

(2) The (ε, I, E)-c-bottom, with E as (ε, I)-center, denotes B(E) equipped with the
k-color map defined as follows:
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• If I = ∅, for any l ∈ {1, · · · , k} the l-coordinate is the Bot∗l (E
l
top)-color which

vanishes on both vertices of E.
If I 6= ∅:
• For any i ∈ I, the i-coordinate is the Boti(E

i
top)-color which is strictly positive

on the left (resp. right) vertex of E if ε = + (resp. ε = −).

• For any l /∈ I, the l-coordinate is the vanishing color.

(3) The (ε, I, E)-block M(ε, I, E) is the union of the (ε, I, E)-c-bottom with:

• If I = IE, for each i ∈ I the (−ε, I, Ei
top)-c-top,

• If I = ∅, for each l ∈ {1, · · · , k} the (ε, ∅, El
top)-c-top.

The (ε, ∅, E)-c-top (resp. (ε, ∅, E)-block) is termed white E-c-top (resp. white
E-block).

A k-color map coming with a c-top, c-bottom or block will be termed admissible
color. More generally, a k-color map defined on an union of disjoint bottoms B(.)
or tops Top() will be termed an admissible color if its restriction to each such
subset makes it into a c-top or c-bottom.

(4) A block-lift of M(ε, I, E) is any (l, El
bot)-lift Ll,El

bot
for l /∈ I.

(5) Given a pair of (incoming,outgoing)-twins (X−, X+) of the (ε, I, E)-c-bottom
which spans E and the pair (X−i , X

+
i ) which spans Ei

top for i ∈ I in the crowns
of the corresponding c-tops, we term left (i, E)-stair (resp. right (i, E)-stair) the
left-translation by the element S+,i,E (resp. S−,i,E) which sends X+

i to X− (resp.
X−i to X+). The term of block-stair will denote any of these stairs. The integers
l, i are the indices of the lifts or stairs considered.

Lemma 5.6. With the assumptions and notations of Definition 5.5:

(1) Block-lifts preserve the admissible color.

(2) For each i ∈ I, the image of the (−ε, I, Ei
top)-c-top under the block-stair Sε,i,E is

separated from the (ε, I, E)-c-bottom by exactly 1-essential cell.

(3) Assume I = IE 6= ∅. If one considers the images, for i ∈ IE of each (−ε, I, Ei
top)-

c-tops under the block-stair Sε,i,E, the admissible colors of the endpoints of this
cell agree so that an admissible color is defined on the union of the block with its
images under these block-stairs.

Proof. This is just a careful reading of Definition 5.5. �

Definition 5.7. Let E be an horizontal EoE-cell of K(F ,Γ) and let M be the white E-
block. Let Z = hγ,γtw .E where {γ, γtw} is a E-spanning pair and the set of E-spanning
indices of γtw, termed the Z-bridge, is non-empty. The Z-companion of M is the block
M(ε, IE, , Z

i
top), where ε is chosen so that for i ∈ IE the i-coordinate of the admissible

color is positive on the vertex of Z in the same side of Z as the Z-bridge.

5.4. Biblocks.

Definition 5.8. Let E be an horizontal EoE-cell of K(F ,Γ) and let M(E) denote the
white E-block. The E-biblock P(E) denotes:

(1) If some Bot∗i (E
i
top) contains at least one non-exceptional cell, the completion of

the union of M(E) with a Z-companion whose bridge has greatest height.

(2) Otherwise, the block M(E).

The bridge between the two blocks of the E-biblock is termed the main bridge. The
intersection of the E-biblock with a horizontal tree is a E-cluster.
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Lemma 5.9. Let E be an horizontal EoE-cell of K(F ,Γ). The admissible colors of the two
blocks composing the E-biblock P(E) define an admissible color of P(E).

Proof. This is just a matter of checking that the admissible colors of M and of its compan-
ions agree at the endpoints of the main bridge and at the endpoint of any other horizontal
geodesic between the two. By definition of the white block and of the admissible color,
since (F ,Γ) is tied IE is the set of positive coordinates of the admissible color of M on
the main bridge whereas the other coordinates vanish. Hence the admissible colors agree
at the endpoints of the main bridge. Since (F ,Γ) is one-sided Corollary 1.14 gives us
that the admissible colors of the endpoints of any other horizontal geodesic connecting
one block to the other agree. �

Lemma 5.9 gives sense to the following definition.

Definition 5.10. Let E be an horizontal EoE-cell of K(F ,Γ). Let (X+, X−) be an
(incoming,outgoing)-coherent pair in the crown of a c-top or c-bottom in P(E). We say
that (X+, X−) or the shift hX+,X− , is enabled if the admissible color on i(X−) is equal to
the admissible color on t(X+). In this case, this admissible color is the admissible color
of (X+, X−) or of hX+,X− . Otherwise (X+, X−), or hX+,X− is disabled.

Lemma 5.11. With the assumptions and notations of Definition 5.10:

(1) At the exception of the pairs of twins which span the nuclei of the companion block
in P(E), or a center of a c-bottom, or which contain a bridge distinct from the
main bridge of the E-biblock, any pair of twins is enabled.

(2) There is a label-preserving bijection between the set of all (incoming,outgoing)-
pairs of twins (X+, X−) containing a bridge in the companion in P(E) and the
set of all (incoming,outgoing)-pairs of twins (Y +, Y −) containing a bridge in the
white block in P(E) which satisfies the following property:

• The admissible color at t(X+) (resp. i(X−)) agrees with the admissible color
at i(Y −) (resp. t(Y +)).

• The admissible color of exactly one coherent pair among (t(X+), i(Y −)) and
(i(X−), t(Y +)) does not vanish.

Proof. This is a consequence of the admissible coloring and of the fact that (F ,Γ) is tied
and one-sided. �

Definition 5.12. With the assumptions and notations of Item (2) in Lemma 5.11: we
term mirror the shift associated to a coherent pair (t(X+), i(Y −)) or (i(X−), t(Y +)).

5.5. Diagonal Subgroup and Cuts.

Definition 5.13. Let E be an horizontal EoE-cell of K(F ,Γ).

(1) The E-horizontal subgroup H(E) is the subgroup generated by all the enabled
shifts of the E-biblock with non-vanishing admissible color: they are termed E-
horizontal generators. If C is some E-cluster of P(E), we denote by HC(E) the
subgroup of H(E) generated by the shifts of C in the E-horizontal generators.

(2) The E-diagonal subgroup D(E) is the subgroup generated by all the E-horizontal
generators and block-stairs: they are termed E-diagonal generators.

(3) The E-replicative subgroup R(E) is the subgroup generated by all the block-lifts
and all the E-diagonal generators.

The following, straightforward, lemma characterizes the subgroup of R(E) which sta-
bilizes the horizontal tree Tπ∞k (E) in K(F ,Γ):
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Lemma 5.14. With the assumptions and notations of Definition 5.13: the stabilizer of
Tπ∞k (E) in R(E), termed horizontal E-stabilizer, is the subgroup Shor(E) of the horizontal

subgroup Fn generated by the elements L−l1 hL
l
2, for any horizontal E-generator h of H(E),

and for any pair of block-stairs or lifts L1, L2 with same index.

Definition 5.15. Let E be an horizontal EoE-cell of K(F ,Γ).
The elementary E-cuts consist of:

(1) all the nuclei of the E-biblock,

(2) all the p.o. ti-cells starting at a vertex whose admissible color is positive.

The (horizontal, vertical) E-cuts are the left R(E)-translates of the (horizontal, verti-
cal) elementary E-cuts.

Proposition 5.16. Let E be an horizontal EoE-cell of K(F ,Γ). There are an even number
of E-cuts in the boundary of each square in K(F ,Γ).

Proof.

Lemma 5.17. Let E be an horizontal EoE-cell of K(F ,Γ) and let C be some E-cluster in
P(E) (see Definition 5.8):

(1) Any two left HC(E)-translates of C are disjoint. For h ∈ HC(E), h.C is separated
from each closest cluster in HC(E).C by exactly one horizontal essential cell be-
longing to both crowns. Two adjacent left HC(E)-translates of C, i.e. which are
separated by exactly one horizontal essential cell satisfy one of the following two
assertions:

• either they are the image one from the other by a conjugate of a E-horizontal
generator in HC(E), in which case the essential cell between the two is termed
a link,

• or they are separated by the image of a bridge of the white E-block, in which
case the essential cell between the two is termed a bridge.

(2) Tπ∞k (C) \ HC(E).C consists of:

• The left HC(E)-translates of the trees based at the vertices in ∂C where the
admissible color vanishes.

• For any disabled pair of twins, the left HC(E)-translates of the ray contained
in their Fn-axis starting at the vertex in ∂C with non-vanishing admissible
color.

Proof. Any E-horizontal generator in HC(E) is a shift so that it carries an incoming cell in
Cr(C) to an outgoing one, or the converse. Hence, hγ,γ′ .C is disjoint from C and connected
to it by the essential cell γ′. Moreover, if we denote by hγ−j ,γ

+
j

, j = 1, 2, . . ., the horizontal

generators then all the γ−j and γ+
j are distinct since their pairs belong to the partition of

Cr(C) given by Lemma 1.4. Item (1) follows. Item (2) is a straightforward consequence
of the definitions. �

Lemma 5.18. With the assumptions and notations of Proposition 5.16: let m(F ,Γ)
denote the maximal number of consecutive occurrences of a Fn-generator with same label
in the reduced images of the Fn-generators under the Fi’s. Then the essential nucleus
of any c-top in P(E) is surrounded on each side in the c-top by at least m(F ,Γ) − 1
essential cells with same label.

Proof. This is an immediate consequence of the definition of Top(E). �

Lemma 5.19. With the assumptions and notations of Proposition 5.16:
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(1) For any link or bridge X (see Lemma 5.17) and any vertical element t ∈ Fk,
neither t−1Xt nor tXt−1 contains the image of a nucleus in an orbit of a block-
stair or lift.

(2) For any shift h of a c-top in P(E) and any shift h′ of a c-bottom of the same
block M, h.M and h′.M are disjoint.

(3) The same assertion is true for a shift of a c-bottom or c-top and a mirror of P(E)
or two distinct mirrors of P(E).

(4) The admissible coloring of P(E) extends to a left H(E)-invariant admissible col-

oring of H(E).P(E) (the completion of H(E).P(E)).

Proof. Let us prove the first item. For the bridges, this is just a consequence of Corollary
1.14. Let us consider the links coming from the shift at twins of the white block or its
companion in P(E). For the nuclei in the orbit of a lift, this comes from the fact that
these shifts are always separated from such an orbit by a bridge and since (F ,Γ) is one-
sided Corollary 1.14 applies. For the nuclei in the orbit of a stair, observe that they are
essential. Hence, from Lemma 5.18, if one considers the orbit of a vertex g spanned by
the shift, t−1gt and tgt−1 will both be separated, in the corresponding horizontal tree,
from the closest nucleus in the stair by at least m(F ,Γ) essential cells with same label.
By definition of m(F ,Γ) this forbids t−1Xt and tXt−1 to contain a nucleus. Item (1) is
proved.

Item (2) comes from Item (1) and the fact that both shifts lie in distinct sides of the
nucleus or center. Item (3) comes from the fact that they are separated by at least one
bridge and, since (F ,Γ) is one-sided, Corollary 1.14 applies. Item (4) comes from the fact
that the considered shifts are enabled and there is exactly one mirror with non-vanishing
color for each bridge (see Lemma 1.4). �

Lemma 5.20. With the assumptions and notations of Proposition 5.16:

(1) All the left translates of P(E) under the elements of the subgroups generated by
all the E-stairs are disjoint and are disjoint from H(E).P(E).

(2) There is a left D(E)-invariant admissible color on D(E).P(E).

Proof. This is a consequence of the definitions and of Lemma 5.18. Just observe that
D(E) is the subgroup generated by H(E) and St(E). �

Lemma 5.21. With the assumptions and notations of Proposition 5.16, let us consider
the white E-block M in P(E). Let h be a horizontal geodesic from the nucleus in a block-
lift of M to a closest nucleus of R(E).P(E), coming from a nucleus in the companion
in P(E). If one colors the endpoints of h as the endpoints of the initial nuclei in P(E),
then these admissible colors agree.

Proof. This is a consequence of the fact that (F ,Γ) is tied, one-sided and Corollary
1.14. �

Let us now state a lemma which describes the “fundamental” E-biblock in terms of
cuts:

Lemma 5.22. With the assumptions and notations of Proposition 5.16 and Definition
5.15: at the exception of the i-squares with bottom the nuclei of the c-tops of the white
block M, any i-square in the cylinder over the E-biblock has one of the following types:

(1) It has two vertical elementary cuts in its boundary and none in its horizontal
boundary.
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(2) It has exactly one horizontal elementary cut and exactly one elementary vertical
cut in its boundary.

(3) It has no elementary cut in its boundary.

The following lemma is straightforward from Lemma 5.22, 5.6 and the definition of the
various lifts and stairs:

Lemma 5.23. With the assumptions and notations of Proposition 5.16 and Definition
5.15:

(1) The i-squares with bottom the nuclei El
top, l ∈ {1, · · · , k} of the c-tops of the white

block have in their top the image of El
top under the block-lift Li,El

top
, which is a

cut, and no vertical elementary cut in their boundary. The l-squares with bottom
the center E of the c-bottom in the white block have in their top the nuclei El

top,

their bottom is the image of El
top under the inverse of the block-lift Li,E, hence a

cut and they have no vertical cut in their boundary.

(2) If one consider the images of P(E) under the block-stairs as in Lemma 5.6 any
i-square with i ∈ IE whose bottom in the crown of P(E) belongs to an enabled pair
of twins with non-vanishing color admits exactly two vertical cuts in its boundary
and none in its horizontal one. Any 2-cell whose bottom in the crown of P(E)
belongs to a pair of twins spanning a center or nucleus either satisfies the same
property or admits no vertical cut in its boundary.

(3) If one considers a i-square with bottom a bridge of the E-biblock and i ∈ IE,
it inherits from the corresponding mirror or its inverse two vertical cuts in its
boundary.

We now complete the proof of Proposition 5.16. Lemma 5.20 gives a left D(E)-invariant

admissible color on D(E).P(E). Moreover, Lemma 5.21 allows us to extend this admis-

sible color, in an equivariant way, to the lifts of D(E).P(E). This does not mean at this

point that one has a left-invariant admissible color on R(E).P(E) since adding the lifts
to the generators of the previous subgroups adds elements in the horizontal E-stabilizer
Shor(E) (see Lemma 5.14).

Let us consider the nuclei of the companion block of P(E). Since (F ,Γ) is one-sided,
the image in the corresponding c-top, under a block-lift of this block, of a horizontal
geodesic h as in Lemma 5.21 leaves the c-top by the side where the admissible color
vanishes. If one considers the nuclei of the white block, the image in the c-bottom under
a block-lift of this block of a horizontal geodesic h as in Lemma 5.21 leaves the c-bottom
by the side where there is no element of Bot(El

top) (l ∈ {1, · · · , k}) hence also where the
admissible color vanishes.

We now have to check that, considering any two of these horizontal geodesics h0, h1

from (the image of) a nucleus in a block-lift-orbit to a block-stair-orbit, none of the two
contains the (image of the) nucleus at the end of the other. The horizontal geodesic
between a nucleus of the white block M and its companion or an adjacent mirror image
of this companion M′ has the following form: let us consider the bridge X between the
two and without loss of generality assume that it is oriented from M to M′, and that it
lies in the right-side of the center of the c-bottom of M. The geodesic from the c-bottom
of the white block M to the c-bottom of M′ reads RXR′ where R′ = R−1 as an edge-
path.Then, the reduction of Fi(RXR

′) is the geodesic h between the nucleus Ei
top of M

and the corresponding nucleus of M′. It decomposes in the following way:

• h starts with the subgeodesic h1 of Fi(R) after Ei
top: this subpath contains some

Y i
top with Y ∈ Bot∗i (E) hence strictly higher than E.
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• h1 is followed by Fi(X) which contains exactly once the highest 1-cell X i
top of h

since, by Lemma 5.3, X is the highest 1-cell of RXR′.

• Fi(X) is followed by h2 and, again by Lemma 5.3, either h1 or h2 contains the
highest cell in Bot∗i (E) of the edge-path read by R (this might be a 1-cell with
same label as X).

Finally, considering the reduced images or pre-images ht of RXR′ under Ft for t ∈ Fk
of length greater than 1, one has to add to the image (or pre-image) of the following
description the reduction of m(F ,Γ) times the image of E, which in particular contains
m(F ,Γ) times a cell with the same label as E, for each increment of the length of t by 1.

It follows from this description that, considering the images of such two distinct hori-
zontal geodesics ht, ht′ under a block-lift in a same c-top, or in the c-bottom of the white
block, either ht and ht′ diverge at some point or one is equal to the other, in which case
the two nuclei at the end are identified, but none of the two might contain the nucleus at
the end of the other. Thus there is no obstruction to extend equivariantly the admissible
color and we so got the following

Lemma 5.24. With the assumptions and notations of Proposition 5.16:

(1) There is a left R(E)-invariant admissible color on R(E).P(E).

(2) There are no other cut in P(E) than the elementary cuts.

Lemmas 5.22 and 5.23 give us that each 2-cell of the cylinder over the union of the
E-biblock with its crow inherit zero or two cuts in their boundary when applying once
each lift and applying the stair generators as in Lemma 5.6. Item (1) of Lemma 5.24
gives the preservation of the number of vertical cuts in each 2-cell. Item (2) of the same
lemma gives the preservation of the number of horizontal cuts. �

.
The following corollary is a straightforward consequence of Proposition 5.16:

Corollary 5.25. Let E be an horizontal EoE-cell of K(F ,Γ). If V HR(E) (resp. V HL(E))
denotes the set of all the vertices of K(F ,Γ) which are connected to the right vertex of E by
an edge-path passing through an even (resp. odd) number of cuts then (V HL(E), V HR(E))
is a partition of the vertices of K(F ,Γ), and of the elements of Gσ

n,k in two disjoint, non-
empty, components.

5.6. Definition and stabilizer.

Lemma 5.26. The partition given by Corollary 5.25 is left Gσ
n,k-invariant.

Proof. The construction of the white E-block only depends on the sets Boti(E), and
we obviously have Boti(g.E) = g.Boti(E). The only choice in the construction of the
E-biblock is the choice of a highest bridge which amounts to a choice of a mirror. Since
there are all the other mirrors with positive admissible color in the replicative subgroup,
this choice does not modify R(E).P(E). �

Definition 5.27. Let E be an horizontal EoE-cell of K(F ,Γ). The diagonal E-wall W (E)
is the partition (V HL(E), V HR(E)) given by Corollary 5.25. The collection of all the
diagonal walls denotes the union, over all the EoE-cells in K(F ,Γ), of all the diagonal
E-walls. The label of W (E) is the label of E.

Lemma 5.28. With the assumptions and notations of Definition 5.27: the left-stabilizer
of W (E) is the E-replicative subgroup R(E).

Proof. The two sides of W (E) are separated by the set of E-cuts which is left R(E)-
invariant. �
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5.7. Finiteness.

Proposition 5.29. Any two elements of Gσ
n,k are separated by a finite number of diagonal

walls.

Proof. Since any g ∈ Gσ
n,k is connected to e by a finite edge-path, it is sufficient to prove

that any EoE-cell spans only a finite number of diagonal walls. Since the collection of
walls is Gσ

n,k-invariant, any EoE-cell is the left Gσ
n,k-translate of an EoE-cell in a given

fundamental region for the action of Gσ
n,k: there are a finite number of such 1-cells.

Moreover, a 1-cell E ′ spans a diagonal E-wall if and only if E ′ is the left g-translate of
some elementary E-cut with g ∈ R(E) and there are a finite number of such elementary
E-cuts. Assume that E ′ spans an infinite number of diagonal walls. We so get an infinite
sequence of elements gij ∈ Gσ

n,k and of cells Eij such that E ′ = gijEij where the Eij
are in the set S formed by the union over the EoE-cells E in the fundamental region
of all the elementary E-cuts. But this set S is finite. Thus, since the sequence (gij) is
assumed to be infinite, we get two distinct elements gil , gim and an elementary cut E0

with gil .E0 = gim .E0 = E ′. This implies g−1
im
.gil .E0 = E0. This is impossible since the

1-cells in K(F ,Γ) have trivial stabilizer for the left Gσ
n,k-action. �

6. Conclusion for suspensions of unipotent free subgroups of Out(Fn)

Definition 6.1. A collection of vertizontal walls for K(F ,Γ) is the union of the collection
of vertical walls given by Definition 4.1 with the collection of diagonal walls given by
Definition 5.27.

Lemmas 4.3, 5.28 on one hand, Propositions 4.5 and 5.29 on the other one give the
following

Proposition 6.2. If W is a collection of vertizontal walls for K(F ,Γ), (K(F ,Γ),W) is a
space with walls structure for the left-action of Gσ

n,k on K(F ,Γ).

We now prove the following result:

Proposition 6.3. If W is a collection of vertizontal walls for K(F ,Γ), the left Gσ
n,k-action

on the space with walls structure (K(F ,Γ),W) is proper.

Proof. Any g ∈ Gσ
n,k is uniquely written as h.v where h ∈ Fn is a horizontal element and

v ∈ Fk a vertical one.

Lemma 6.4. Let hivi ∈ Gσ
n,k be an infinite sequence of elements such that the lengths of

the vi tends toward infinity with i. Then the number of vertizontal walls which separate
e from hivi also tends toward infinity with i.

Proof. The vertical walls, which form a subset of the vertizontal walls, are the classical
walls for the vertical free group Fk, hence the conclusion. �

It is thus sufficient to prove that for any infinite sequence of horizontal elements hi in
Gσ
n,k whose lengths tend toward infinity with i, the number of vertizontal walls separating

e from hi also tends toward infinity with i. Any horizontal element hi is represented in
the 1-skeleton of K(F ,Γ) by a horizontal geodesic starting at e reading hi.

Lemma 6.5. Let (hl) be any infinite sequence of horizontal elements and let (ωl) be the
associated sequence of horizontal geodesics starting at e. The number of vertizontal walls
spanned by (hl) tends toward infinity with the number of vertizontal walls spanned by (ωl).
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Proof. If C is the diameter of a fundamental region, any geodesic of length C crosses at
least once an EoE-cell. Moreover, by Proposition 5.16, the parity of the number of E-cuts
crossed by a horizontal geodesic only depends on the element it defines since any relator
contains two cuts in its boundary. Hence the conclusion. �

We are now going to prove that the number of diagonal walls spanned by a horizontal
geodesic is bounded below by a constant times the length of the geodesic. The easy case
is the case of the topmost diagonal walls:

Lemma 6.6. Let E be an EoE-cell. If E is topmost then there are no other cut of the
diagonal wall W (E) in the same horizontal tree. In particular, any horizontal geodesic
which contains a topmost EoE-cell E spans the diagonal wall W (E) and so a vertizontal
wall.

Proof. If E is topmost, the only horizontal elementary cut forW (E) is E and the stabilizer
of W (E) is the replicative subgroup R(E) which is generated by the (i, E)-lifts, exactly
one for each i ∈ {1, · · · , k}. Since each one has the form hiti, the lemma follows. �

Lemma 6.7. Let E be an EoE-cell which is not i-topmost for some i ∈ {1, · · · , k}. Then
E is separated from any other horizontal E-cut of W (E) by an EoE-cell strictly higher
than E.

Proof. This is a consequence of the fact that all the E-horizontal generators are separated
from E by a bridge which has greater height than E. For the other generators of Shor(E)
this is clear. �

Lemma 6.8. There exists a constant C ≥ 1 such that, if ω is a horizontal geodesic of
length greater than C with first EoE-cell E, then if the geodesic subsegment of length C
starting with E in ω does not contain a EoE-cell strictly higher than E then ω spans the
diagonal wall W (E).

Proof. Let C be the maximum of the diameters of all the E-blocks, for the EoE-cells E
in a fundamental region for the action of Gσ

n,k. Assume that the initial segment of length
C in ω does not contain an EoE-cell strictly higher than E. Then Lemma 6.8 is a direct
consequence of Lemma 6.7. �

We now complete the proof of Proposition 6.3. Let C be the constant given by Lemma
6.8. Let ω be a horizontal geodesic with first EoE-cell E. By Lemma 6.8, either at
distance at most EoE(Γ).C in ω we find some topmost cut E ′ or at distance at most
(EoE(Γ)− 1).C we find a EoE-cell E ′ for which there is no higher EoE-cell further in ω
at distance less than C. In the first case, Lemma 6.6 gives that ω spans W (E ′), in the
second case, Lemma 6.8 gives the same conclusion. We then iterate by considering the
first EoE-cell after E ′ which is not a cut for the walls crossed between E and E ′. We find
such a cut at distance at most EoE(Γ).C from E ′ in ω. We so eventually get that the total
number of diagonal walls spanned by ω, and so the vertizontal wall distance between its
endpoints, is at least 1/(2EoE(Γ).C) times the length of ω, that is the distance between
its endpoints. Proposition 6.3 follows from Lemma 6.5 and from Lemma 6.4 which gives
the analogous statement for the vertizontal wall distance with respect to the vertical
Fk-distance. �

Propositions 6.2 and 6.3 together give the following

Theorem 6.9. The suspension of a finite rank free group by a tied, one-sided unipotent
finite rank free subgroup of outer automorphisms is a-T-menable in the sense of Gromov.
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Proposition 6.10. Let (K(F ,Γ),W) be the space with walls structure for Gσ
n,k as given by

Proposition 6.2. Then dim(Cb(W)) <∞ (see Theorem 3.4).

Proof.

Lemma 6.11. A collection of vertizontal walls which pairwise cross contains at most one
vertical wall and at most one topmost diagonal wall.

Proof. Vertical walls have only one cut in each vertical tree, and topmost diagonal walls
have only one cut in each horizontal tree, hence the conclusion. �

We can thus deal only with collections of diagonal walls defined by non topmost EoE-
cells.

Lemma 6.12. Assume that two non-topmost diagonal walls W1,W2 with same label cross
but that their intersections Wi ∩ Tw with some horizontal tree Tw do not cross in Tw.
Then, any third distinct wall W3 with same label such that {W1,W2,W3} is a collection
of pairwise-crossing walls satisfies that W3 and Wi, i = 1, 2, cross in any horizontal tree.

Proof. Up to permutation of the indices, since W1 ∩ Tw and W2 ∩ Tw do not cross in
Tw, there exists a cut E1 of W1 such that all the cuts of W2 in Tw lie in a same side
of E1. Since the diagonal walls W1 and W2 share a same label and since they cross in
K(F ,Γ), this implies that the stair-orbit of one cut intersects the lift-orbit of the other. If
E denotes this cut, there is only one wall for which the lift-orbit of E is a set of cuts (the
wall W (E)) and one wall for which the stair-orbit of E is a set of cuts. Therefore, if a
third distinct wall W3 crosses both W1 and W2 then W3 and Wi (i = 1, 2) cross in any
horizontal tree. �

Lemma 6.13. The maximal number of non-topmost diagonal walls with same Γ-label
which pairwise cross in a same horizontal tree is finite.

.

Proof. Let us consider two non-topmost EoE-cells E0 and E1 with same Γ-label in Tw.
Assume that the walls Wi = W (Ei), i = 0, 1, cross in Tw. Then there exits cuts
c1
i , c

2
i of Wi in some horizontal geodesic u such that, up to permuting W0 and W1,

u = c1
0 · · · c1

1 · · · c2
0 · · · c2

1. Assume that neither c2
0 is a left Shor(E0)-translate of c1

0 nor
c2

1 is a left Shor(E1)-translate of c1
1. This implies that the geodesics connecting them

lie over some bridges: such geodesics contain exactly 2-cells of the height of the bridge
which is the height of the geodesic. This implies that the maximal number of walls for
which one might have such overlapping of geodesics is finite. We now assume that there
is i ∈ {0, 1} such that c2

i is a left Shor(Ei)-translate of c1
i . Then, since Shor(Ei) is finitely

generated and so quasi-convex, a left-translation by an element of Shor(Ei) carries c2
i to a

bounded neighborhood of the c2
i+1-biblock, where the indices are written modulo 2. Since

biblocks are finite, there are only a finite number of walls possible. �

Since the number of distinct Γ-labels of walls is equal to EoE(Γ), and so finite, Lemma
6.12 and Lemma 6.13 give that there is a finite number of non-topmost diagonal walls in
a family of vertizontal walls which pairwise cross. Together with Lemma 6.11, this gives
Proposition 6.10. �

Propositions 6.2, 6.3 and 6.10, together with Theorem 3.4 give the following

Theorem 6.14. The suspension of a finite rank free group by a tied, one-sided unipo-
tent finite rank free subgroup of outer automorphisms Gσ

n,k acts properly on some finite-
dimensional cube complex Cb(W) where (K(F ,Γ),W) is the space with walls structure given
by Proposition 6.2.
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Let us conclude with a lemma about the minimal dimension of the above cube complex:

Lemma 6.15. Let (K(F ,Γ),W) be the space with walls structure for Gσ
n,k as given by

Proposition 6.2. If M is the maximal number of EoE-cells sharing a same bridge, in the
same side of this bridge, then dim(Cb(W)) ≥ 2M + 2. This lower-bound is sharp.

Proof. By Theorem 3.4, dim(Cb(W)) is the supremum of the cardinalities of family of
walls which pairwise cross. By construction, there are two walls crossed by a same non-
topmost EoE-cell E: the wall W (E) and the wall W (E ′) where E ′ is the nucleus of the
companion of the white E-block. These two walls cross: this is easily checked as it is easily
checked that all the walls associated to cuts incident to a same bridge pairwise cross. Now
add a vertical wall defined by a vertical cell incident to the horizontal tree containing all
the preceding horizontal cells, and the wall defined by the bridge and you get a collection
of walls which pairwise cross, hence the lemma. It is impossible to increase this number
since it is attained for instance when considering the automorphism α : F2 → F2 defined
by α(x1) = x1 and α(x2) = x2x1. �

7. Conclusion for suspensions of free subgroups of outer automorphisms
of Fn admitting a tied, one-sided finite-index unipotent subgroup

Lemma 7.1. Given any two groups G and H together with a monomorphism σ : G ↪→
Out(H), if G0 is a finite index subgroup of G then H oσ G0 is a finite index subgroup of
H oG.

Proof. Any element of H oσ G is uniquely written as gh, g ∈ G and h ∈ H. Since G0

has finite index in G, there exists a finite number of elements g1, · · · , gr such that any
g ∈ G is in some left-class giG0. Then for any element gh of HoσG, there is some i such
that gh ∈ giG0h. Any element in G0h is in the semi-direct product H oσ G0 hence the
conclusion. �

Lemma 7.2. If G is a group admitting a finite-index subgroup G0 which acts properly
isometrically on some finite dimensional CAT(0) cube complex then so does G, on a cube
complex of the same dimension.

Proof. A finite covering of a j-dimensionnal CAT(0) cube complex is a j-dimensionnal
CAT(0) cube complex. By lifting the given action of G0, one gets the lemma. �

Proof of Theorem 1. We consider the group Gσ
n,k := Fn oσ Fk with σ(Fk) a subgroup of

Out(Fn) admitting a tied, one-sided finite-index unipotent subgroup U . By Lemma 7.1,
since U has finite-index in Fk, Fn o U is of finite-index in Gσ

n,k. By Theorem 6.9, since
a-T-menability is preserved up to finite index, Gσ

n,k is a-T-menable. By Theorem 6.14,
Fn o U acts properly isometrically on some finite-dimensional cube complex. Lemmas
7.1 and 7.2 then give the action of Gσ

n,k on a cube complex of the same dimension (and
Lemma 6.15 gives a sharp minimal bound for the dimension of this cube complex). �

8. Examples

8.1. The Formanek-Procesi group with n = 3. The definition has been recalled in
the introduction. A BFH-representative is the rose with 3 petals R3, where each petal
is identified to a different generator xi. The filtration is given by {x1} ⊂ {x1, x2} ⊂
{x1, x2, x3} (we only list the edges of each graph of the filtration, every one contains the
unique vertex of R3). The filtered homotopy equivalences are obtained by setting fj(xi)
to be the edge-path reading σ(tj)(xi).
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Figure 2. Cuts defining a diagonal wall with label x3 for the FP-group

There is exactly one topmost edge: the edge x3. Figure 2 shows the cuts for a piece of
a diagonal wall with label x3. The thick edges are the cuts.

There is in addition x2 as 1-topmost edge and x1 as 2-topmost edge. We refer the
reader to Figure 3 for an illustration of the cuts for a wall with label x1.

 
I X

ts ts ts ts ts
1

1 3 3
3 ta 1f ts ts ts
ts

1

3 1 3 3

1

Figure 3. Cuts defining a diagonal wall with label x1 for the FP-group

We do not represent in the first picture the left-translates of the cuts by (conjugates
of) t2, nor the left-translates of the cuts in the companion of the white block (the cuts
which are found at the left-side of this picture) by (conjugates of) x2. The reader will
find these other left-translates in Figures 5 (translates of the white block by conjugates
of t2) and 4 (translates of the companion block by conjugates of t2 and x2).
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Figure 4. Translates of the cuts of the companion block
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Figure 5. Translates of the cuts of the white block

8.2. An extension of F4. Here G = F4 oσ F2 with F4 = 〈x1, x2, x3, x4〉, F2 = 〈t1, t2〉
and αi := σ(ti) defined by:

α1 : x4 7→ x4x1

x3 7→ x3x1

x2 7→ x2

x1 7→ x1

α2 : x4 7→ x4x3x2x1

x3 7→ x3x2x1

x2 7→ x2

x1 7→ x1

As in the previous example, the BFH-representative is the rose, whose petals are iden-
tified to the generators xi. This is a one-sided, tied subgroup of polynomially growing
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automorphisms. The 1-topmost edges are x2, x3, x4 whereas the only 2-topmost edge is
x4. Figure 6 illustrates what looks like (a piece of) the white block and the companion.

 

4 Xz Xr y

ta tt
ta ta ta ta

i
I

I
is

Xt Xr y

La
ta a té

en ta ta
Es I

trei
Figure 6. White block and companion with label x1 for the F4-example
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