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Abstract. We give a characterization of the geometric automorphisms in a certain
class of (not necessarily irreducible) free group automorphisms. When the automorphism
is geometric, then it is induced by a pseudo-Anosov homeomorphism without interior
singularities. An outer free group automorphism is given by a 1-cocycle of a 2-complex (a
standard dynamical branched surface, see [7] and [9]) the fundamental group of which is
the mapping-torus group of the automorphism. A combinatorial construction elucidates
the link between this new representation (first introduced in [16]) and the classical
representation of a free group automorphism by a graph-map [2].

Introduction

Let S be a compact surface, with fundamental group π. Any homeomorphism h of
S induces an outer automorphism h# of π, which only depends on the isotopy-class
of h. A classical question is to know to what extent we can go back from an outer
automorphism of a surface group π, i.e. a group isomorphic to the fundamental group
of a compact surface, to an isotopy-class of surface homeomorphisms. More precisely, let
π be a surface group and let α ∈ Out(π) = Aut(π)/Inn(π); does there exist a compact
surface S with fundamental group π and a homeomorphism h of S such that h# = α ?
If so, then we say that α (or any automorphism in the class) is geometric.

If π is isomorphic to the fundamental group of a compact surface with empty boundary,
then this surface is unique up to homeomorphism and an old result of Nielsen tells us
that any α ∈ Out(π) is geometric. Assume now that π is isomorphic to the fundamental
group of a compact surface with boundary, i.e. π is a rank-n free group, denoted by Fn.
Up to homeomorphism, there are a finite number of distinct surfaces with fundamental
group Fn. Is any element of Out(Fn) geometric ? Nielsen again (see for instance [11, 10])
provides an answer: “the automorphism α is geometric if and only if there exists a free
basis B of Fn such that α preserves, up to reduction and change of orientation, a set of
reduced words in B whose union contains exactly twice each element of B”. A reduced
word in an alphabet {e±1

i }i=1,··· ,n is a word with no cancellation eie
−1
i or e−1

i ei. For n = 2,
this condition is always satisfied (any α ∈ Out(F2) is induced by a homeomorphism of
the torus deprived of an open disc) but for n ≥ 3, geometric automorphisms of Fn are
“rare” [18].

The above answer is however not completely satisfactory. Because of the words “there
exists” emphasized above, given α ∈ Out(Fn), it does not provide a way to detect whether
α is geometric. The problem of finding other characterizations of these geometric free
group automorphisms was already addressed, for different classes, in [12], [27], [23], [20],
[19] and [2]. The paper [1] provides an “implicit algorithm” to detect the geometricity.
It seems reasonable to think that the work of M. Lustig [24] could also lead to such an
algorithm, with some non-trivial additional technical work (from the same author see
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also [15], §6). Our approach here is quite different. We are not primarily interested in
giving an algorithm which would be a kind of black-box, but rather in providing easy and
effective characterizations of the geometric automorphisms in the class considered. In this
sense, we are closer in spirit to [20]. Our work only recognizes free group automorphisms
induced by pseudo-Anosov homeomorphisms without interior singularities [13]. As a
counterpart to this restriction, we do not introduce highly sophisticated graph-maps, as
the “improved relative train-track maps” of [1], or the “partial train-tracks with Nielsen
faces” of [24]. In spite of this, let us observe that the automorphisms we deal with are
not necessarily irreducible. We remind that α ∈ Aut(Fn) is reducible if α permutes,
up to conjugation, the factors Fλ of a free product decomposition of Fn of the form
Fn = ∗

λ∈Λ
Fλ ∗ G, and α is irreducible if it is not reducible. Obviously α is irreducible if

and only if α−1 is, and this notion only depends on the class of α in Out(Fn). We often
blur the distinction between Aut(Fn) and Out(Fn).

In order to give a flavor of the results of this paper without entering in the details of the
class of automorphisms considered, we just call them “nice”, let us recall the definition
of the growth-rate λ(α) of α ∈ Out(Fn):

λ(α) = sup
C∈Fn

lim sup
j→+∞

ln(||αj(C)||)
j

Here ||w|| is the length of the cyclically reduced representative of w. We then have the
following tentative statement:

Theorem 1. A nice outer free group automorphism α is geometric if and only if λ(α) =
λ(α−1). If α is geometric, then it is induced by a pseudo-Anosov homeomorphism without
interior singularities.

We give examples of nice, non-geometric automorphisms and also of nice reducible
automorphisms in Appendix D. In [20], there appears a non-geometric β ∈ Out(F3) with
λ(β) = λ(β−1). We explain in Appendix D why this is not a nice automorphism (this is
the first one considered in Example 0).

In all the papers cited above, α ∈ Out(Fn) is represented by a pair (ψ, Γ), Γ being a
graph with fundamental group Fn and ψ a certain kind of graph-map, inducing α on the
fundamental group of Γ. A feature of the work presented here is to partly use another
type of representation: α ∈ Out(Fn) is represented by a pair (K, u), K being a particular
kind of 2-complex with fundamental group Fα

n = FnoαZ (the mapping-torus group of α)
and u ∈ C1(K;Z) is a cocycle whose cohomology-class is associated to this semi-direct
product structure after identifying H1(K;Z) with H1(Fα

n;Z). Such a representation was
introduced in [16]. Its interest relies on the fact that the 2-complexes K that we consider
have a particularly simple combinatorial description. They are not just mapping-tori
Γ × [0, 1]/(x, 1) ∼ (ψ(x), 0) of graph-maps (ψ, Γ) but have been “desingularized” in
some sense. In particular, they are standard 2-complexes as defined in [7] (see also
[25] and more recently [4]) and they are also branched surfaces (i.e. are equipped with a
smooth structure) as introduced in [29] (closer in spirit, see [5]). More precisely they are
“dynamical branched surfaces” as defined in [9].

The plan of the paper goes as follows: In Sections 1 and 2 we introduce the notions
necessary to the statement of Theorem 2.3. In Sections 3 and 4 we recall the basic notions
about train-tracks and free group automorphisms so that we can state the “train-track
version” of Theorem 2.3, this is Theorem 4.7. In Sections 5 and 6, we shed some light
on the link between the above theorems. In particular, in Section 6, there appears the
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process of combinatorial suspension already evoked. Sections 7 and 8 present the techni-
cal work needed to prove Theorem 2.3. The two important results are the (rather easy)
Proposition 7.1 and the (harder) Proposition 8.1. In Section 9, we gather all the pieces
and prove Theorems 2.3 and 4.7. Appendix A elucidates the passage from “train-tracks
with circuits” to “nice train-tracks” (both were defined in Section 4). Appendix B is
a brief informal discussion about the algorithmic detection of train-track with circuits
among the representatives of a free group automorphism. Appendix C gives a character-
ization of the mapping-tori of pseudo-Anosov surface homeomorphisms without interior
singularities. It is also proved there (Proposition C.1) that any pseudo-Anosov without
interior singularities admits a train-track with circuits, and even a nice train-track when
the surface is orientable and the pseudo-Anosov is orientation-preserving. Appendix D
presents a bunch of examples.

1. Standard dynamical branched surfaces

The set of singular points in a 2-complex K, denoted by S(K), is the set of points with
no neighborhood in the complex homeomorphic to a disc. A region of K is a connected
component of K − S(K).

Definition 1.1. [7, 4] A standard 2-complex is a compact 2-complex satisfying the fol-
lowing three properties:

(a) the set of singular points is a connected 4-valent graph with at least one vertex;

(b) each point admits a neighborhood homeomorphic to the neighborhood of some
point in the interior of the cone over the 1-skeleton of the tetrahedron, see Figure
1;

(c) each region is a 2-cell.

Figure 1. Non-singular and singular points in a standard 2-complex

Smoothing a cellular complex K consists of defining at each point of K a tangent plane
TxK, which depends continuously on x. See Figure 2.

Definition 1.2. A standard branched surface is a smooth standard 2-complex.

Definition 1.3. Let K be a standard 2-complex. Two oriented germs of edges at a vertex
v of K form a source (resp. a sink) for the germ of region at v that they bound if they
both point away from (resp. toward) v.

The notion of k-sheeted side, k ≥ 1, in a standard branched surface is intuitively
obvious. We leave the reader elaborate the precise definition and refer him to Figure 2.

Definition 1.4. A standard dynamical branched surface is a standard branched surface
W which admits an orientation on the edges of S(W) satisfying the following properties:

(a) at each vertex v of W , the germ of region of W at v which is 1-sheeted (resp. in
the middle of the 3-sheeted portion) is a source (resp. a sink);
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2-sheeted side

1-sheeted side

middle of the
3-sheeted portion

1-sheeted germ

Smoothing a standard complex

Figure 2. Neighborhood of the singular set in a standard (dynamical)
branched surface

(b) the boundary of every region contains exactly one sink and one source.

Remark 1.5. The boundary of a region decomposes into two maximal positive edge-
paths in the singular graph. Each one connects the source of the region to its sink.

2. Statement of first main theorem

Definition 2.1. Let W be a standard dynamical branched surface. A positive cocycle of
W is a cocycle in C1(W ;Z) which is non-negative on the edges of S(W), and which is
positive on all the positive embedded loops of S(W).

The definition below motivates the introduction of these positive cocycles.

Definition 2.2. An outer automorphism α of Fn is represented by a positive cocycle u of
a standard dynamical branched surface W if, after identifying the first cohomology-groups
of W and of its fundamental group G, we have Ker(u) = Fn, G/Ker(u) = Z and α is the
outer automorphism of Fn associated to the short exact sequence 1 → Ker(u) → G →
G/Ker(u) → 1.

The subset of all the elements of Out(Fn) which can be represented by positive cocycles
of standard dynamical branched surfaces is denoted by SDBS(Fn).

We recall further in the paper the connection between positive cocycles of standard
dynamical branched surfaces and outer free group automorphisms (see [16]). We now
state the first main result of this paper:

Theorem 2.3. Let α ∈ SDBS(Fn). The following properties are equivalent:

(a) α is geometric.

(b) If W is a standard dynamical branched surface which admits a positive cocycle
representing α, then W can be embedded in some compact 3-manifold.

(c) λ(α) = λ(α−1).

(d) α−1 ∈ SDBS(Fn).

3. Train-tracks

A graph-map is a continuous map from a graph Γ to a graph Γ′. We do not require that
the image of a vertex by a graph-map be a vertex. We also do not require that the map
be locally injective when restricted to the edges. Substituting a path in a graph by the
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unique locally injective path with same endpoints in the same relative homotopy-class
will be called pulling-tight or reducing the path. A representative of α ∈ Out(Fn) is a pair
(ψ, Γ), Γ and ψ being respectively a graph with fundamental group Fn, and a graph-map
from Γ to itself with ψ# = α.

A train-track (see [26] for instance) is a graph with a smooth structure, see Figure 3.

2-sheeted side1-sheeted and

legal

illegal

Figure 3. From a graph to a train-track

If τ is a train-track, we distinguish two sides at each point of τ and, in particular, if τ is
trivalent, a 2-sheeted side and a 1-sheeted side at each vertex. A legal path in a train-track
τ is a non-trivial locally injective path which never crosses consecutively two germs of
edges in a same side of a vertex. A map ψ on a trivalent τ preserves the smoothing if, for
each vertex v of τ , ψ sends both germs of edges in the 2-sheeted side of v to a same side
of ψ(v), and sends the germ of edge in the 1-sheeted side of v to the other side of ψ(v).

Definition 3.1. A standard invariant train-track of α ∈ Out(Fn) is a representative
(ψ, τ) of α such that τ is a trivalent train-track, and ψ preserves the smoothing of τ and
maps any edge to a legal path.

Example: See Figure 4.
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f(x) = x y x

f(y) = z

f(z) = z x z

vw
vw

Figure 4. Two invariant train-tracks

A classical consequence of the above definition is that any iterate of ψ is locally injective
when restricted to the edges.

4. Train-tracks with circuits and nice train-tracks

We begin by recalling a topological version of Stallings folds [28]:

Definition 4.1. Let (ψ, τ) be an invariant train-track.
A cancellation-pair (p, q) for (ψ, τ) is a pair p, q : [0, 1] → τ of (parametrized) legal

paths in τ with p(0) = q(0) a vertex of Γ and such that ψ(p(t)) = ψ(q(t)) for any
t ∈ [0, 1].

ψ : τ → τ is obtained by folding (ψ, τ) at (p, q), or along ψ(p) = ψ(q), if:

• τ = τ/ ∼ where x ∼ y if and only if ∃ t ∈ [0, 1] s.t. x = p(t) and y = q(t);

• ψ ◦ π = ψ with π : τ → τ the quotient-map.
5



Example: In this example and the following ones of this section (which all refer to Fig-
ure 4), when e is an oriented edge we denote by ei the subpath of e which is mapped
to the ith edge in the image of e under the map considered. Two cancellation-pairs for
(f, τ) respectively at v and w are (yx1, z1z2) and (z−1

3 z−1
2 , y−1x−1

3 ). For (g, τ ′) we have
(y−1

9 y−1
8 , x−1z) and (y1 · · · y6, zx−1zx−1zx−1).

We denote by χ(τ) = 1 − rank(π1(τ)) the Euler characteristic of τ . If τ is trivalent,
then −2 ∗ χ(τ) = 2 ∗ rank(π1(τ))− 2 is the number of vertices in τ .

Definition 4.2. Let (ψ, τ) be a standard invariant train-track. A set of cancellation-paths
for (ψ, τ) is a set of −2χ(τ) oriented legal paths in τ such that:

(a) It is possible to fold (ψ, τ) along the cancellation-paths and get an automorphism
of τ .

(b) Each vertex of τ is the terminal vertex of exactly one cancellation-path.

Example: (f, τ) (resp. (g, τ ′)) admits a set of 2 cancellation-paths: zx along which one
folds z1z2 with yx1 (resp. zx−1zx−1zx−1 along which one folds y1 · · · y6 with zx−1zx−1zx−1)
and z−1x−1 along which one folds z−1

3 z−1
2 with y−1x−1

3 (resp. x−1z along which one folds
y−1

9 y−1
8 with x−1z).

Definition 4.3. A train-track with circuits is a standard invariant train-track (ψ, τ) for
which there exists an integer j ≥ 1 such that (ψj, τ) admits a set C of cancellation-paths
satisfying the following property:

For any oriented edge e from τ , there is an oriented subpath s of e and two legal paths
p+, p− such that:

(a) either s (resp. s−1) is an oriented subpath of p+ (resp. of p−), i.e. p+ = · · · s · · ·
whereas p− = · · · s−1 · · · , or sp− is a proper oriented subpath of p+ (i.e. p+ =
· · · sp− · · · );

(b) ψ(p+) and ψ(p−) are two distinct cancellation-paths in C.

Example: The pair (f, τ) is a train-track with circuits. Indeed z2 ⊂ z and y appear in the
cancellation-pair (z1z2, yx1) whereas z−1

2 and y−1 appear in (z−1
3 z−1

2 , y−1x−1
3 ). It remains

to check that some subpath of x also appears with its both orientations in the cancellation-
pairs for some (f j, τ). By looking at f 2, we get as cancellation-pairs (z1 · · · z8, yx1 · · · x5)
and (z−1

9 · · · z−1
2 , y−1x−1

7 · · · x−1
3 ). Hence x3x4x5 ⊂ x appears with both orientations. The

pair (g, τ ′) is not a train-track with circuits because, whatever iterate (gj, τ ′) is considered,
neither y nor y−1 appears as a subpath in the cancellation-pairs of (gj, τ ′).

Definition 4.4. Let (ψ, τ) be a standard invariant train-track. Two cancellation-pairs
(pi, qi), (pj, qj) of (ψ, τ) are in bad position if either pi or qi contains pj or qj as an oriented
subpath (i.e. for instance pi = · · · pj · · · ).
Example: The two cancellation-pairs in (g, τ ′) are in bad position. Indeed, x−1z which
is a maximal legal path in the first one is strictly contained in zx−1zx−1zx−1 which is a
maximal legal path of the second one.

Definition 4.5. A nice train-track is a train-track with circuits (ψ, τ) such that, whatever
set of cancellation-paths is considered, the associated set of cancellation-pairs does not
contain cancellation-pairs in bad position.

The subset of all the elements of Out(Fn) which admit nice train-tracks is denoted by
NTT (Fn).
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Remark 4.6. Let (ψ, τ) be a nice train-track. Whatever set of cancellation-paths is
considered, the first condition of Item (a), Definition 4.3 is always satisfied.

Example: The pair (f, τ) is a nice train-track. This is in fact a representative of the
pseudo-Anosov homeomorphism induced on the torus deprived of an open disc by the

classical Thom automorphism

(
2 1
1 1

)
of Z2.

We can now state the “train-track” version of our theorem:

Theorem 4.7. Let α ∈ NTT(Fn). The following properties are equivalent:

(a) α is geometric.

(b) If (ψ, τ) is a nice train-track of α, then the map ψ preserves, up to homotopy, a
set of reduced, unoriented loops in τ the union of which crosses exactly twice each
edge of τ .

(c) λ(α) = λ(α−1).

(d) α−1 ∈ NTT(Fn).

5. From a positive cocycle to an outer free group automorphism

This section is a short summary of [16].

Definition 5.1. A graph Γ is r-embedded in a standard 2-complex K if Γ is embedded
in K transversely to S(K) and such that:

• The vertices of Γ belong to the interior of the edges of S(K). The edges of Γ are
disjointly embedded in the regions of K.

• Let v be a vertex of Γ in an edge e from S(K). There is exactly one germ of an
edge of Γ at v embedded in each germ of a region of K at e.

See Figure 5.

Figure 5. A r-embedding

The embedding is a 2-sided embedding if Γ admits a neighborhood in K homeomorphic
to the trivial I-bundle Γ× [−1, 1].

Remark 5.2. A näıve, but useful, observation is that a graph r-embedded in a standard
branched surface inherits a structure of train-track from the smooth structure of the
branched surface.

Lemma 5.3. Let K be a standard 2-complex. Any r-embedded, 2-sided graph in K defines
a cocycle in C1(K;Z). Let u ∈ C1(K;Z) be an integer cocycle of K. There is a unique, up
to isotopy, r-embedded, 2-sided graph Γu in K representing u and satisfying the following
property: (?) no edge of Γu connects two vertices in a same edge of S(K).

From now on all r-embedded graphs considered will satisfy property (?) above, even if
not mentioned.
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In the following proposition and its subsequent corollary, we describe with some de-
tails the topology of a standard dynamical branched surface with a positive cocycle. A
complete proof can be found in [16].

Proposition 5.4. [16] Let W be a standard dynamical branched surface. Then any
positive cocycle u ∈ C1(W ;Z) defines a foliation of W with compact graphs transversely
oriented by the edges of the singular graph and such that:

(a) all the graphs are homotopically equivalent; at the exception of n of them (n is the
number of vertices in W) all the graphs are r-embedded;

(b) the graphs which are not r-embedded contain exactly one 4-valent vertex at a vertex
of W and otherwise satisfy all the other properties required for a r-embedding.

Let W be a standard dynamical branched surface which admits a positive cocycle. By
Proposition 5.4, the points in W can be parametrized in coordinates (x, µ), such that
µ ∈ [0, 1) and x belongs to a graph Γµ of the foliation given by the proposition. For any
t ≥ 0 there is a continuous deformation in W from Γµ to Γµ+t−E[µ+t], where E[µ + t]
denotes the greatest integer smaller than or equal to µ + t. This continuous deformation
induces a map σt : Γµ → Γµ+t−E[µ+t] satisfying σt+t′ = σt ◦ σt′ . This is a non-singular
semi-flow. The passage from Γµ to Γµ+t−E[µ+t] will be called pushing Γµ along the singular
graph or along the semi-flow. Each graph Γµ of the foliation is a cross-section to such a
semi-flow, i.e. it intersects transversely, and always in the same direction, each orbit of the
semi-flow. The map σ1 : Γµ → Γµ is the return-map of the semi-flow on its cross-section.

Figure 6. A Whitehead-move through a vertex of a dynamical branched surface

Corollary 5.5. Let W be a standard dynamical branched surface, which admits a positive
cocycle u. With the notations above: let ti < tk in [0, 1] be such that Γti and Γtk are r-
embedded.

(a) If Γt is r-embedded for all t ∈ [ti, tk], then the map from Γti to Γtk induced by the
semi-flow is homotopic to a homeomorphism.

(b) If there is exactly one t ∈ [ti, tk] such that Γt is not r-embedded, then Γtk is obtained
from Γti by a Whitehead-move (see Figure 6) (and the map from Γti to Γtk induced
by the semi-flow is homotopic to a map induced by this move).

In particular, the return-map of the semi-flow on Γu is homotopic to a composition of
Whitehead-moves and of a homeomorphism and induces an outer automorphism on the
fundamental group of the graph. This is the outer automorphism represented by u.
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6. Standard Dynamical Branched Surfaces vs Nice Train-Tracks

The goal of this section is to prove Theorem 6.1 below. We decompose the proof in
the two propositions 6.2 and 6.7, each one treating an inclusion.

Theorem 6.1. For any n ≥ 1, SDBS(Fn) = NTT(Fn).

For n = 1 both sets are obviously empty. The proof of Proposition 6.2 below relies
on a process of “combinatorial suspension”, or rather of desingularization of the classical
mapping-torus construction, already evoked in the introduction.

Proposition 6.2. For any n ≥ 1, NTT(Fn) ⊂ SDBS(Fn).

Let ψi : τi → τ be a train-track map from a train-track τi to a train-track τ . Here, a
train-track map is a graph-map which satisfies the properties required for the map ψ of
an invariant train-track (ψ, τ).

Definition 6.3. With the notations above: a fine cancellation-pair for ψi : τi → τ is a
cancellation-pair (pi, qi) such that:

(a) the terminal point of neither pi nor qi is a vertex;

(b) p−1
i qi is an embedded path;

(c) there is no t0 in [0, 1] such that both pi(t0) and qi(t0) are vertices of τi.

We consider a fine cancellation-pair (pi, qi). Let Kτi
= τi × [0, 1]. We will make the

slight abuse of identifying τi with any τi × {r}. We define an equivalence relation Ri on
Kτi

as follows:
(x, t)Ri(x

′, t′) if and only if t = t′ and there is t0 ≤ t such that x = pi(t0) and x′ = qi(t0).

Definition 6.4. With the assumptions and notations above: we set Ki = Kτi
/Ri. The

image in Ki of the set {(pi(t), t) , t ∈ [0, 1]} is a suspended cancellation-path.

The suspended
cancellation-path

p(t)

q(t)

i

i

Figure 7. Combinatorial Suspension

The definition of a r-embedded graph in a standard 2-complex is extended in a straight-
forward way to the kind of 2-complex considered here.
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Lemma 6.5. With the assumptions and notations above, S(Ki) is a union of intervals
which can intersect each other only transversely. More precisely:

(1) Let v be any vertex of τi distinct from the vertex pi(0) = qi(0). The singular set
is formed by the suspended cancellation-path and the union of the images Iv in Ki

of the intervals {v} × [0, 1].

(2) All the intervals Iv are disjoint.

(3) The suspended cancellation-path intersects an interval Iv if and only if v belongs
to p−1

i qi.

Furthermore:

(4) The 2-complex Ki has two boundary components, the bottom one homeomorphic
to τi and the top one homeomorphic to the graph obtained by folding τi at (pi, qi).

(5) The neighborhood of any point in (the interior of) Ki is homeomorphic to the
neighborhood of some point in (the interior of) the cone over the 1-skeleton of the
tetrahedron.

(6) The image in Ki of τi × {t} ⊂ Kτi
either is a r-embedded graph, or is a graph

in the interior of Ki with one 4-valent vertex at a vertex of S(Ki) and which is
otherwise r-embedded in Ki.

The notion of an almost standard branched surface and of a dynamical branched surface
used in the proof below are obvious generalizations of the standard definitions introduced
before. “Almost standard” for a branched surface means that there is no restriction on
the topology of the regions. In a dynamical branched surface might exist regions which
are open annuli or Moebius-bands but these regions have neither sources nor sinks in
their boundaries. The reader will painlessly imagine the obvious adaptations to these
non-standard settings of the various objects defined in the standard ones.

Proof of Proposition 6.2: By definition, a nice train-track (ψ, τ) of α ∈ Out(Fn) admits
a collection of cancellation-pairs such that folding at these pairs eventually yields a dif-
feomorphism h of τ . We decompose these cancellation-pairs, by taking subpaths of the
paths involved in each pair, to get an ordered sequence of fine cancellation-pairs (pi, qi),
i = 0, · · · , r, in invariant train-tracks ψi : τi → τ , which satisfies the additional property:

(d) for any i, neither pi nor qi contains an oriented subpath of some pj or qj with
j > i.

Good intersection

Bad intersection

Figure 8. Good and bad intersections

The non-existence of pairs in bad position allows us to get property (d). The construc-
tion detailed before Lemma 6.5 gives a 2-complex Ki for each ψi : τi → τ such that the top
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of Ki can be identified via h with the bottom of Ki+1. We denote by K[0,1] the 2-complex
resulting from these identifications. It has two boundary components: the bottom one is
the bottom of K0 and the top one is the top of Kr. They are diffeomorphic one to the
other via the diffeomorphism h. We identify them by this diffeomorphism.

Any point in the resulting 2-complex W is homeomorphic to the neighborhood of some
point in the interior of the cone over the 1-skeleton of the tetrahedron. By definition,
a smoothing is defined on each τi, each ψi (and also h) preserves this smoothing and
the image of no edge crosses consecutively two germs of edges in the same side of a
vertex. Thus a smoothing is defined on each Ki and these smoothings assemble to define
a smoothing on W . Therefore W is an almost standard branched surface.

We equip S(W) with the orientation induced by the “from bottom to top” orientation of
each Ki. Thanks to property (d), the above smoothing is compatible with this orientation
(there are no “bad intersections”, see Figure 8). By construction, the only possible types
of regions in W are open annuli, Moebius-bands and discs. The orientation defined on
S(W) is such that there is no source nor sink in the boundaries of the annuli or Moebius-
bands, and exactly one source and one sink in the boundary of each disc. Thus W is a
dynamical branched surface.

The images in each Ki of the oriented intervals {x} × [0, 1], x ∈ τi, glue together to
define the orbits of a non-singular semi-flow which flows in a neighborhood of S(W) from
the 2-sheeted side to the 1-sheeted side, when it is transverse to it. By construction,
each r-embedded image of a τi ×{t} in Ki defines a positive cocycle of W . Furthermore,
there is a well-defined return-map of the semi-flow on this r-embedded train-track and, by
construction, this return-map induces α on the fundamental group. Thus α is represented
by a positive cocycle of W .

It only remains to check that W is standard, i.e. any region is a 2-cell. Assume the
contrary. Consider the 2-complex Wm obtained after gluing m ≥ 1 copies Ki

[0,1] of K[0,1]

by the identification, via h, of the top of Ki
[0,1] to the bottom of Ki+1

[0,1] for i = 1, · · · ,m and

with Km+1
[0,1] ≡ K1

[0,1]. Following the same arguments as above,Wm is a dynamical branched

surface one region of which is not a 2-cell. It obviously inherits this property from our
assumption on W . On the other hand, Wm is diffeomorphic to the dynamical branched
surface obtained from (ψm, τ) by applying the combinatorial suspension process with a
suitable choice of cancellation-paths. By Definition 4.3 and Remark 4.6, there is j ≥ 1
such that this set of cancellation-paths satisfies that any edge of τ has a subpath which is
a common subpath of two cancellation-pairs, where it appears with its two orientations.
By Lemma 6.5, this implies that the combinatorial suspension process applied to (ψj, τ)
yields a 2-complex Wj whose regions are 2-cells. We so get a contradiction for Wj. Hence
all regions of W are 2-cells. ¤
Remark 6.6. In the course of the proof of Proposition 6.2 above, we prove in fact a
slightly stronger result: if (ψ, τ) is a nice train-track representative of α, then there is a
standard dynamical branched surface W with positive cocycle representing α such that
τ appears as a cross-section to a semi-flow on W , the return-map of which is the map ψ.

The inclusion SDBS(Fn) ⊂ NTT(Fn) is easier than the first one:

Proposition 6.7. Let u be a positive cocycle of a standard dynamical branched surfaceW.
Then u defines a nice train-track (ψu, τu) of the outer automorphism that it represents:

• τu is the r-embedded graph Γu equipped with the smooth structure induced by W;

• ψu is the return-map of some semi-flow on W which is transverse to Γu (see
Section 5).
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Proof: Consider a semi-flow on W which is transverse to τu and also transverse to S(W),
flowing from the 2-sheeted side to the 1-sheeted side. Its return-map ψu on τu is such
that any vertex is the initial vertex of a cancellation-pair. Cut W along τu. We get a
branched surface W[0,1] with two boundary components, both diffeomorphic to τu, as in

Lemma 6.5. Consider the universal covering W̃[0,1]. This is a branched surface with two
boundary components, diffeomorphic to a same smooth tree. The singular set is oriented

from the bottom to the top. Consider any vertex v in the bottom of W̃[0,1]. There is an

interval in S(W̃[0,1]) from v to some vertex w in the top. There is also an orbit-segment
of the semi-flow from v to some point u in the top (u is not necessarily a vertex). There
is a unique reduced path in the top from u to v. Its image under the covering-map

π : W̃[0,1] → W[0,1] is a cancellation-path in τu for ψu. All the above assertions are true

for any vertex v in the bottom of W̃[0,1]. Moreover two different intervals in S(W[0,1])
which go from the bottom to the top end at two distinct vertices. Thus, we so get a set of
cancellation-paths for (ψu, τu). The associated cancellation-pairs are not in bad position
because the smoothing of W[0,1] is compatible with the orientation of the singular set.
Finally, the additional property required for a train-track with circuits is satisfied when
suitably gluing together, bottom-to-top, a sufficiently large number of copies of W[0,1]

because, otherwise, there would be an annular or Moebius-band region. ¤

7. A characterization for embedding a dynamical branched surface in a
3-manifold

The goal of this section is to prove Proposition 7.1 below. It will be a key ingredient in
the proof of Theorem 2.3. The mirror-edges appearing in the statement of this proposition
are defined in the next page (Definition 7.4). A standard dynamical branched surface
comes with an orientation of the edges of its singular graph. We say that this orientation
and the structure of dynamical branched surface, or the smoothing, are compatible.

Proposition 7.1. Let K be a standard 2-complex. Assume that some orientation of
S(K) is compatible with a structure of dynamical branched surface W. The following
three properties are equivalent:

(a) W admits an embedding in a compact 3-manifold.

(b) At each vertex of W, either both outgoing edges are mirror-edges or none of them
is.

(c) The reverse orientation on the edges of S(K) is compatible with a structure of
dynamical branched surface on K.

Let W be a standard branched surface. As was already illustrated by many figures,
like Figure 9, one can always choose the smooth embedding in R3 of a neighborhood of
a vertex in W so that there are four germs of regions contained in the horizontal plane
of R3 and two outside. Up to isotopy, these are two types of such smooth embedding, see
Figure 9, which differ by the cyclic ordering of the germs of regions around the edges.

Remark 7.2. When considering a standard dynamical branched surface W , it is always
possible to choose the above local R3-embeddings of W so that all have the same type.
This is a consequence of the fact that the singular set S(W) admits an orientation compat-
ible with the smoothing, but this is false when considering an arbitrary branched surface.
This observation is important to the understanding of the so-called “mirror-edges”. We
advise the reader to choose once and for all his preferred type.
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Figure 9. Two distinct ways to embed a neighborhood of a vertex

A smooth structure in a neighborhood of a vertex of the singular set of a standard
2-complex (in particular a structure of branched surface) defines a cyclic ordering on the
germs of edges at this vertex, unique up to reversal. We will sometimes say that these
cyclic orderings and the given local smooth structure are compatible.

Definition 7.3. A circuit in a standard branched surface W is an immersed loop C of
the singular graph such that if g, g′ are any two germs of edges at a vertex v in W which
are consecutive in C, then g, g′ are not consecutive with respect to the cyclic ordering on
the germs of edges at v defined by the structure of branched surface.

Definition 7.4. An edge e from the singular graph of a standard dynamical branched
surface W is a mirror-edge if, for any region R of W , for any maximal positive path p in
∂R, then either p does not contain e or p contains e in first, in second or in last position.

In Lemma 7.5 below, we gather some easy observations about mirror-edges. The point
(a) comes from [17]. For points (b) and (c), we refer the reader to Figures 10 and 11.





e

Figure 10. Mirror-edge

Lemma 7.5. Let W be a standard dynamical branched surface. Then:

(a) Any circuit of W contains at least one mirror-edge.

(b) If e1e2 · · · ek, k ≥ 2, is a maximal positive edge-path in the boundary of a region of
W, then either k = 2 and e2 is not a mirror-edge or both e2 and ek are mirror-edges
and these are the only one in e2 · · · ek.

(c) An edge e from S(W) is a mirror-edge if and only if no smooth R3-embedding
of a neighborhood of e in W defines two R3-embeddings of the same type when
restricted to neighborhoods of the vertices of e.

The point (c) of Lemma 7.5 together with the criterion for embedding a standard
2-complex in a 3-manifold given by [4] lead to:

Lemma 7.6. A standard dynamical branched surface W can be embedded in a 3-manifold
if and only if there is an even number of mirrors in the boundary of any region of W.
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For counting the number of “mirrors in the boundary of a region R”, we count the
number of times we pass over a mirror-edge when reading the closed edge-path ∂R,
starting at any vertex of ∂R.

Lemma 7.7. [17] With the notations and assumptions of Proposition 7.1, the reverse
orientation on the edges of S(K) is compatible with a structure of dynamical branched
surface if and only if any edge of S(W) appears exactly once in last-to-one position along
all the maximal positive paths in the boundaries of the regions of W.

Lemma 7.8. With the notations and assumptions of Proposition 7.1, the reverse orien-
tation on the edges of S(K) is compatible with a structure of dynamical branched surface
if and only if, at each vertex of W either both outgoing edges are mirror-edges or none of
them is.

Proof: Assume that some vertex v of W admits two outgoing edges of distinct types.
Let e be the non-mirror outgoing edge. Then the incoming edge at v which precedes e
along its circuit never appears in last-to-one position in a maximal positive path of the
boundary of a region. For the converse, let v be any vertex of W and let e be an incoming
edge at v. Let f (resp. g) be the outgoing edge at v which follows (resp. which does not
follow) e in its circuit. From Figure 11:

• if both f and g are mirror-edges, then e appears in last-to-one position in a max-
imal positive path of the boundary of the region which consecutively contains e
and f ;

• if neither f nor g are mirror-edges, then e appears in last-to-one position in a
maximal positive path of the boundary of the region which consecutively contains
e and g.





last-to-one positions

e

f

g

e

f

g

Figure 11. When the two outgoing edges share the same type

Lemma 7.8 follows. ¤

Proof of Proposition 7.1: The equivalence between (b) and (c) is the content of Lemma
7.8. Let us prove (a) ⇔ (b). By Lemma 7.6, W cannot be embedded in a 3-manifold if
and only if some region R admits an odd number of mirrors in its boundary. We denote
by f and g the outgoing edges at the source s of R. By item (b) of Lemma 7.5, there
is an even number of mirrors in the subpath of ∂R containing the sink of R and which
goes from the terminal vertex of f to the terminal vertex of g. Thus the total number

14



of mirrors in ∂R is odd if and only if there is an odd number of mirrors in g−1f , whence
the conclusion. ¤

8. From non-embeddability to non-geometricity

Here the goal is to prove the following result:

Proposition 8.1. Let α ∈ SDBS(Fn) be represented by a positive cocycle of a standard
dynamical branched surface W. If W cannot be embedded in a compact 3-manifold, then
λ(α−1) < λ(α).

The first step is to simplify the combinatorics of the branched surface. In each region,
there is a line connecting the source of the region to its sink. The union of these lines
form a union of disjoint loops embedded in W , termed cycles.

Lemma 8.2. Let α ∈ SDBS(Fn) be represented by a positive cocycle of a standard dy-
namical branched surface W which does not embed in a 3-manifold. There is k ≥ 1 and
a standard dynamical branched surface V admitting a positive cocycle u representing αk

such that:

• The r-embedded graph Γu intersects each cycle and each circuit of V exactly once.
In particular, there are at least two circuits and two cycles in V and the circuits
have no self-intersection.

• V does not embed in a 3-manifold.

Proof: We cut W along a r-embedded graph associated to a positive cocycle represent-
ing α. Gluing in a suitable way a sufficiently hight number of copies of the resulting 2-
complex, and then identifying its top and bottom, yields a standard dynamical branched
surface V as announced. ¤

From now on, V and u are assumed to satisfy the conclusions of Lemma 8.2.

The second step is to give an explicit definition of a map “induced” by a positive
cocycle and representing the associated outer free group automorphism.

Let Γu be the r-embedded graph associated to the positive cocycle u ∈ C1(V ;Z). It
defines a sequence of positive cocycles ui, i = 0, · · · , n, with u = u0 = un, and of
associated r-embedded graphs Γui

such that Γui
is obtained from Γui−1

by a Whitehead-
move. This Whitehead-move corresponds to the passage through a vertex of V . We define
in Figure 12 an elementary-map, that is the map associated to such a passage.

x
y

z
t

u

v
x  z

x  t

y  u
y  v

s

-1

-1

-1

-1

Figure 12. The elementary-map

Let us describe more this figure. We subdivide the edges of the Γui
’s at the intersection

points with the cycles. With respect to the orientation of the edges of S(V), Γui
is just

after the vertex s of V , whereas Γui−1
is just before s.
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The map, denoted by ψi, is defined from Γui−1
to Γui

by the labels put on the edges of
Γui−1

. No label means that the edge is collapsed. Outside the edges contained in the small
contractible neighborhood of s ∈ V drawn in Figure 12, there is a trivial identification
between the edges from Γui

and from Γui−1
. The edge from Γui−1

which belongs to the
germ of region in the middle of the 3-sheeted portion is collapsed. The other edges from
Γui−1

in this figure are dilated through an half of the region with source s, two covering
x−1 and the other two y−1.

We feel important to stress that, because of the “symmetry” in the definition of an
elementary-map, such a map does not depend on the way the complex has been smoothed
in a neighborhood of the vertices (as long as the local smoothing is compatible with the
orientation of the edges of the singular set).

We let ψu be the graph-map on Γu defined by ψu = ψn◦ψn−1◦· · ·◦ψ1. Observe that the
2-valent vertices of Γu are periodic orbits (in fact fixed points because V and Γu satisfy
the conclusions of Lemma 8.2) for ψu. In other words, the cycles are periodic orbits for
the semi-flow on V admitting ψu on Γu as return-map. This semi-flow is not transverse
everywhere to the singular set.

The following lemma is obvious from the definitions.

Lemma 8.3. With the notations above, up to collapsing the edges of Γu with trivial images
under ψu, (ψu, Γu) is an invariant train-track of the outer free group automorphism defined
by u (Γu is equipped with the train-track structure inherited from the smooth structure of
V).

We revert the orientation of all the edges. The cocycle −u is a positive cocycle of the
resulting standard dynamical 2-complex, denoted by D. If β is the outer automorphism
represented by u, the outer automorphism represented by −u is β−1. In the same way as
in Lemma 8.3, we define a representative (ψ−u, Γ−u) of β−1.

The incidence matrix M = (mij) of a graph-map f mapping vertices to vertices is
defined by setting mij equal to the number of times the edge e±1

j appears in f(ei). We
denote by λ(f) or λ(M) the growth-rate of the map f , which is the greatest positive
eigenvalue of the matrix M .

Lemma 8.4. For any k ≥ 1, the volume (i.e. the sum of the entries) of the incidence
matrix Mk

u of ψk
u is equal to the volume of the incidence matrix Mk

−u of ψk
−u.

Recall the construction of the graph G(M) associated to the incidence matrix M =
(mij) of a graph-map mapping vertices to vertices: the vertices vi of G(M) are in bijec-
tion with the edges ei of the graph; there are mij oriented edges going from vi to vj. The
volume of M is equal to the number of outgoing edges in G(M).

Proof: Consider the cellular decomposition of V obtained by subdividing each region
by an edge connecting the source to the sink. Take the graph dual to this cellular
decomposition. We delete the edges dual to the 1-cells not in the singular graph (i.e. the
1-cells dual to the edges of the cycles). We collapse each edge e which has a vertex in
an edge from S(V) which is outgoing at the source of the region containing e. We orient
each edge e of the resulting graph so that its initial vertex belongs to an edge from S(V)
which is outgoing at the source of the region containing e (this means, roughly speaking,
that the edges are oriented according to the orientation of the semi-flow). See Figure 13.

We denote by G̃u the graph so constructed. The same construction applied to D (i.e.

after reversing the orientation of the edges of S(V)) yields a graph denoted by G̃−u.

The construction of G̃u, and of G̃−u, can be realized embedded in the 2-complex. By
16
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Figure 13. The graphs G̃u and G̃−u

construction also, any positive loop in G̃u defines a periodic orbit of ψu, and conversely

any periodic orbit of ψu defines a positive loop in G̃u. The same conclusions hold for

G̃−u.

There is an isomorphism µ : G̃u → G̃−u which reverses the orientation of the unique

edge of G̃u in each 2-cell which connects the edge of the singular graph originating at
the source to the edge ending at the sink. The isomorphism µ preserves the orientation

of the other edges. Let R̃ denote the union of the edges of G̃u the orientation of which

is reversed under µ. The subgraph R̃ is a union of disjoint embedded loops, positively
oriented, and homotopic to positive loops of the singular graph. In Figure 13, one of

these loops is represented in dash. Among the edges of R̃, we distinguish R0, the set
of edges which do not intersect Γu in an essential way (i.e. such that the intersection
point can be suppressed by a small homotopy of Γu). Since Γu intersects any positive
loop of the singular graph, this set R0 is a forest in R. We collapse R0. The resulting
graph is isomorphic to G(Mu) by an orientation-preserving isomorphism. By collapsing

µ(R0) ⊂ G̃−u, we similarly get G(M−u).
If πu and π−u are the collapsing maps, µ induces an isomorphism µ : G(Mu) → G(M−u)

which reverses the orientations of the edges of πu(R) and preserves the orientation of the
other edges. From our description of R and of R0, πu(R) is a union of positive loops
such that the number of incoming edges at a given vertex is equal to the number of
outgoing edges. Thus the number of outgoing edges of π−u(µ(R)) = µ(πu(R)) is equal to
the number of outgoing edges of πu(R). Therefore, G(Mu) and G(M−u) admit the same
number of outgoing edges, so that the volumes of Mu and M−u are equal.

To conclude for the powers Mk
u and Mk

−u, just consider the standard dynamical 2-
complexes constructed for ψk

u and ψk
−u as was suggested in the proof of Lemma 8.2 and

apply the same arguments as above. ¤

Lemma 8.5. With the notations and assumptions above:
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(a) Let e be an edge of Γu and let R be the region which contains e. ψu(e) is trivial
if and only if there is no vertex from S(V) in the positive path in ∂R from the
trivalent vertex of e to the sink of R.

(b) Let p be a legal edge-path in Γu. Then ψu(p) = p if and only if the endpoints
of p are 2-valent vertices and neither p nor any image of p along the semi-flow
intersects a mirror-edge. In particular the boundary of any region entirely crossed
by p or any of its images contains exactly four edges of S(V).

(c) There are j ≥ 1 and M > 0 such that, if p is a legal edge-path in Γu with length
greater than M , then Γu = ψj(p). The same conclusion holds if p is any legal loop
in Γu.

(d) There is j ≥ 1 such that, if some image under the semi-flow of an edge e from Γu

intersects a mirror-edge, then Γu = ψj(e).

(e) If e and f are the two edges in the 2-sheeted side of a trivalent vertex of Γu, then
Γu = ψj(e) or Γu = ψj(f).

The first item is obvious from the definition of ψu. We refer the reader to Figure 14 to
see the phenomenon of dilation crucial for understanding the other items. The second
item is easily deduced from this figure.

p
dilated not dilatedp p

Figure 14.

The third item was proven in [17]. It comes from the fact that any circuit contains a
mirror-edge (see Lemma 7.5, item (a)). The last assertions are consequences of this one. ¤

The 2-complex D can be smoothed in a small neighborhood of each vertex, such that
the smooth structure is compatible with the orientation of the singular graph. Notice
however that the 2-complex D does not necessarily admit such a smooth structure along
the whole singular graph. The following lemma strengthens, in some sense, Proposition
7.1.

Lemma 8.6. With the notations above, let M be the set of open edges e from S(V) such
that e is a mirror-edge of V whereas the other edge of S(V) with same initial vertex is
not. Then D can be smoothed along the complement of M in S(D) in a way compatible
with the orientation of S(D).

Proof: The lemma relies upon the two following observations:

• Keep the same cyclic orderings for D as for V on the germs of edges at each vertex.
Then D can be smoothed along an edge e in a way compatible with the orientation
of S(D) and with these cyclic orderings if and only if e is not a mirror-edge of V .
See Figure 15.

• Permute the two incoming, or the two outgoing, edges of D at some vertex v. Let e
be an incoming edge at v. If D was smoothable (resp. non-smoothable) along e, in
a compatible way, before the change of cyclic ordering, then D is not smoothable

18







e e

Figure 15. Reversing the orientation of a mirror-edge

(resp. smoothable) along e in a compatible way after the permutation. Nothing
changes for the other edges of the singular graph. We leave the reader check by
inspection.

To obtain the lemma, it then suffices to permute each pair of mirror-edges in V which
have a same initial vertex, reverse the orientation of the edges and then smooth in a
neighborhood of each vertex in a way compatible with both the orientation and the
cyclic orderings on the germs of edges. These local smoothings can be extended along
the singular graph as announced in the lemma. ¤

Lemma 8.7. With the notations above, let Bu (resp. B−u) be the maximal, not neces-
sarily connected, proper subgraph of Γu which is invariant under ψu (resp. under ψ−u).
Then Bu is a union of disjoint, legal embedded intervals (in particular it is a forest) and
λ(ψu|Bu

) = λ(ψ−u|B−u
) = 1. Moreover, if πu : Γu → Γu (resp. π−u : Γ−u → Γ−u) is the

map collapsing the edges of Γu with trivial images under ψu (resp. under ψ−u), then
πu(Bu) = π−u(B−u).

Proof: The point (c) of Lemma 8.5 tells us that any legal path in Bu is an interval. The
point (e) in the same lemma tells us that Bu contains no illegal turn. Thus the connected
components of Bu are legal intervals. It is straightforward that the growth-rate of the
map restricted to Bu is 1.

Let p be a ψu-invariant legal edge-path. By the point (b) of Lemma 8.5, and by def-
inition of the elementary-maps, it readily follows that p is ψ−u-invariant. Let us now
consider an edge e of Γ−u outside Bu such that ψ−u(e) is non-trivial. As long as the im-
age of e under the semi-flow remains a legal edge-path, the same arguments as for Lemma
8.5 apply, so that the image of e is a legal edge-path which eventually covers all the graph
if D is smooth. Otherwise, at some point, the image of e decomposes into two legal edge-
paths. Since we do not reduce the image, iterating the process yields a concatenation of
an increasing number of legal edge-paths which covers the graph. We so get the lemma. ¤

Lemma 8.8. Assume that D does not admit a smoothing compatible with the orientation
of its singular set. There is m ≥ 1, an invariant train-track (ψm, τ) representing the
same automorphism as (ψm

u , Γu) and a representative (φm, τ) of the same automorphism
as (ψm

−u, Γ−u) with λ(φm) < λ(ψm).

Proof: By Proposition 7.1, some vertex in V is the initial vertex of both a mirror-edge
and a non-mirror-edge. We consider the partial smooth structure given by Lemma 8.6:
D is smooth except along a non-empty set M of open edges in S(D), which does not
contain two edges with same terminal vertex.
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Let us consider an edge f0 from M. Consider the edge f1 of S(D) which is outgoing at
t(f0) and does not follow f0 in its circuit. Without loss of generality, we can assume that
Γ−u connects the two outgoing edges at t(f0) in the region admitting t(f0) as a source.
We embed Γ−u in D so that each vertex of Γ−u belongs to a small neighborhood of the
initial vertex of the edge from S(D) containing it. We equip Γ−u with the induced smooth
structure.

Let Γ−u1 be the r-embedded graph connecting the two incoming edges at t(f0) in the
region which admits t(f0) as a sink. We assume that the two trivalent vertices v1, v2

of Γ−u1 in these incoming edges belong to a small neighborhood of t(f0) and Γ−u1 is
equipped with the smooth structure induced by this embedding.

Let v1 be the vertex of Γ−u1 in f0. Since no vertex from S(D) is the terminal vertex of
two edges in M, some image ψ−u(y) of an edge y crosses the illegal legal turn of Γ−u1 at
v1 and consecutively crosses the legal turn at v2. See Figure 16. Pushing Γ−u1 through
t0 then creates a cancellation.

no cancellation

  never happens because never 2
    non-smoothed edges incoming
             at a same vertex







f
f

f

f

0

0

1

1eR

cycles

Figure 16. How cancellations arise

Let v0 be the vertex of Γ−u in f1. Consider the turn τ of Γ−u at v formed by the edge in
the 1-sheeted side and the edge e in the region R containing the turn f0f1. The legal turn
of Γ−u1 at v1 which has one edge in R is mapped to τ by the passage through t(f0). Since
f0 is in M, by pulling Γ−u1 along f0 until a small neighborhood of its initial vertex, this
turns becomes illegal. By definition, no illegal turn is in the image of an elementary-map
when pushing through a vertex of the singular set (this is only after pushing along an
edge that an illegal turn may appear). On the contrary, any legal turn which belongs to
a small neighborhood of the vertex though which we push appears twice. Observe that
τ is also a legal turn for Γu, and that the observations of the last sentence hold for V .
It follows that the turn τ of Γ−u appears a smaller number of times in the image of ψ−u

than in the image of ψu. Moreover, since f0 is in M, the edge e of Γ−u introduced above
is outside Bu, so that τ is not in Bu. Thus the number of times τ appears in the image
of ψk

u grows exponentially faster with k →∞ than the number of times τ appears in the
image of ψk

−u.
We have a natural one-to-one correspondance between the turns of Γu and those of

Γ−u (equipped with the smooth structure defined at the beginning of this proof) such
that any legal turn τ ′ of Γ−u corresponds to a legal turn of Γu which is crossed at least
the same number of times by the image of Γu under ψu than τ ′ is crossed by the image
of Γ−u under ψ−u. Moreover, no illegal turn of Γ−u is crossed by the image of some edge
under ψ−u.
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Therefore, by Lemma 8.4, after collapsing Bu, and by pulling-tight each iterate of

ψ−u, we get two sequences of representatives (ψ̃k
u, Γ̃u) and (φ̃k, Γ̃−u) such that the volume

growths exponentially faster in the first sequence than in the second one. The lemma
follows since, by Lemma 8.7, the matrices associated to the representatives obtained after
collapsing Bu are irreducible (a non-negative, integer matrix M is irreducible if for any
(i, j), there is Nij such that the (i, j)-coefficient of MNij is positive). ¤

Proof of Proposition 8.1: Let W be a standard dynamical branched surface with a
positive cocycle representing α ∈ Out(Fn). Up to passing to a positive power αk of α,
Lemma 8.2 gives a standard dynamical branched surface V for which subsequent lemmas
apply. Let m ≥ 1 be the integer given by Lemma 8.8, and let (ψm, τ) and (φm, τ) be
the two representatives given there. They respectively represent αkm and α−km. Since
(ψm, τ) is an invariant train-track, λ(ψm) = λ(αkm), whereas λ(φm) ≥ λ(α−km). Lemma
8.8 then gives λ(α−km) < λ(αkm), with k and m positive integers. Thus λ(α−1) < λ(α)
as announced. ¤

9. Proof of the theorems

Proof of Theorem 2.3: (b) ⇒ (a) is a consequence of

Proposition 9.1. [16, 17] Let α ∈ Out(Fn) be represented by a positive cocycle u of a
standard dynamical branched surface W. Let us assume that W admits an embedding in
some compact 3-manifold M3. Let MW be the regular neighborhood of W in M3. Let u
be any positive cocycle of W. Then:

(a) u defines a surface Su, with fundamental group Fn, which is properly embedded in
MW ;

(b) Su is the fiber of a fibration of MW over S1;

(c) the monodromy of this fibration induces α on the fundamental group of Su. Fur-
thermore the monodromy is pseudo-Anosov and the associated foliations have no
interior singularities.

The monodromy is pseudo-Anosov because no singular leaf connects ∂MW to itself (see
[17] for the construction of the contraction-dilation directions). This is indeed forbidden
by the non-existence of annuli or Moebius-bands among the regions of W and by the
compatibility of the orientation of the singular graph with the smoothing. All the other
assertions are borrowed from [16, 17]. ¤

(a) ⇒ (d): By Proposition 8.1, W can be embedded in a compact 3-manifold. By
Proposition 7.1, the same standard 2-complex, equipped with the reverse orientation on
S(W), admits a compatible structure of dynamical branched surface V . If u is a positive
cocycle of W representing α, the cocycle −u of V represents α−1.

(d) ⇒ (c): Assume that α is not geometric. Then W does not embed in a 3-manifold.
Thus λ(α−1) < λ(α) by Proposition 8.1. If α is not geometric, neither is α−1 so that the

same arguments applied to α−1 give λ((α−1)
−1

) = λ(α) < λ(α−1) whence a contradiction.
It follows that α is geometric so that λ(α) = λ(α−1).

(c) ⇒ (b) is given by Proposition 8.1. ¤
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Proof of Theorem 1: Call nice any outer automorphism of Fn which is in NTT(Fn) =
SDBS(Fn). The theorem is then implied by Theorem 2.3 and Proposition 9.1. ¤

Proof of Theorem 4.7: The equivalences (a) ⇔ (c) ⇔ (d) are a straightforward con-
sequence of Theorems 2.3 and 6.1. The implication (a) ⇒ (b) is a consequence of the
combinatorial suspension explicited while proving Proposition 6.2 (see Remark 6.6), and
of the equivalence between the items (a) and (b) of Theorem 2.3.

Let us prove (b) ⇒ (a). Let (ψ, τ) be a nice train-track for α. Let B be a set of loops in
τ homotopically preserved by ψ, as given by Item (b) (we call “set of ∂-loops” such a set
of loops). The combinatorial suspension described for proving Proposition 6.2, applied to
(ψ, τ), gives a standard dynamical branched surface W with a positive cocycle u defining
(ψ, τ) as the return-map ψ of some non-singular semi-flow on a cross-section τ in W (see
Remark 6.6). Assume that α is not geometric. Then, by Theorem 2.3, W cannot be
embedded in a 3-manifold. By Lemma 7.6, some region R of W admits an odd number
of mirrors in its boundary. Let s and a be the source and sink of R. Assume that τ is
embedded in W with an edge e connecting the two incoming edges at s. The loops in B
pass over e either like in the trivial I-bundle over e (left of Figure 17) or like the twisted
I-bundle over e (right of Figure 17).

Figure 17. Preservation and Non-Preservation of ∂-loops

Assume that this last case is satisfied. Then, as illustrated by Figure 17, the reduced
image of B under the semi-flow is not a set of ∂-loops and pass four times over the
edge of the new train-track which connects the two outgoing edges at s. Since the four
subpaths are legal subpaths, any further image of B also crosses at least four times the
edge intersecting the cycle of W through s. It follows that the reduced image of B under
ψ passes also at least four times over the edge e, thus B is not homotopically preserved
by ψ, which is a contradiction with our assumption.

Assume now that the loops in B pass over e like the trivial I-bundle. Then this is
also true for their reduced images under the Whitehead-move through s (see Figure
17). Pushing further along the semi-flow, since R has an odd number of mirrors in its
boundary, we get a train-track τ ′ with an edge f connecting the two incoming edges at a,
and such that the reduced image of B in τ ′ is a set of ∂-loops which pass over f like the
twisted I-bundle. This implies, as before, that B is not homotopically preserved when
pushing through a.

It only remains to check that we can assume that some edge e of τ connects the two
incoming edges at s. If this is not satisfied by τ , then it is satisfied by the invariant
train-track (ψ′, τ ′) obtained after pushing τ through some vertices of W - see Section 5.
Moreover, the same arguments as those exposed above, about the preservation or non-
preservation of a set of ∂-loops when pushing through a vertex of W , give a set of ∂-loops
in τ ′ homotopically preserved under ψ′. The conclusion follows as above, by substituting
(ψ′, τ ′) to (ψ, τ). ¤
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Appendix A. From train-tracks with circuits to nice train-tracks

Let ψ : Γ → Γ be a tight graph-map, i.e. the image of any edge is a locally injective
path, and let (p, q) be a cancellation-pair for ψ.

A BH-folding [2] at (p, q) from (ψ, Γ) to (ψ̂, Γ̂) is defined by: ψ̂ ◦ π = π ◦ ψ, Γ̂ is the

graph obtained from Γ by folding at (p, q) and π : Γ → Γ̂ is the associated quotient-map.

An unfolding [21] from a tight graph-map (ψ̂, Γ̂) to a tight graph-map (ψ, Γ) is a

homotopic right-inverse of a BH-folding from (ψ, Γ) to (ψ̂, Γ̂), i.e. for any edge e of Γ,

(ψ̂ ◦ π)(e) = (π ◦ ψ)(e) up to pulling-tight. An efficient unfolding is an unfolding from a
invariant train-track to an invariant train-track.

Let (ψ, τ) be a train-track with circuits. Consider a cancellation-pair (pi, qi) associated
to a cancellation-path wi. Its tip, i.e. the common vertex of pi and qi, is the terminal
vertex of a cancellation-path, noted wi−1. Associated to wi−1 is another cancellation-pair,
denoted by (pi−1, qi−1). Eventually, repeating the process, we go back to (pi, qi). The
cyclically ordered sequence of cancellation-pairs, or of the associated cancellation-paths,
is called a circuit.

The circuits exhibited above allow us to efficiently unfold, as long as we wish, any
train-track with circuits, starting from any tip of cancellation-pair.

Lemma A.1. Let (ψ, τ) be a train-track with circuits. If any two cancellation-pairs in
bad position belong to two distinct circuits then a finite sequence of efficient unfoldings
transforms (ψ, τ) to a nice train-track.

Proof: Let us consider two cancellation pairs (pi, qi), (pj, qj) in bad position. Without
loss of generality pi = wpj · · · and w does not contain the tip of a cancellation-pair
(pk, qk) with pi = · · · pk · · · . We unfold at the tip of (pj, qj) along a legal path which is
the concatenation of a proper subset of an edge with the path w. This suppresses the
considered pair in bad position. This might create a new one if, by this unfolding, we
put the cancellation-pair (pj−1, qj−1) preceding (pj, qj) in its circuit, in bad position with
respect to some (pk, qk). If this happens we iterate the process. Thanks to the assumption
that no two cancellation-pairs in bad position lie in a same circuit, we eventually end with
a train-track map with one couple less of cancellation-pairs in bad position. Lemma A.1
readily follows. ¤
Corollary A.2. If α ∈ Out(Fn) is represented by a train-track with circuits, then there
is an integer 1 ≤ k ≤ (2n− 2)! such that αk is represented by a nice train-track.

Proof: Let (ψ, τ) be a train-track with circuits of α. Setting k equal to the lcm of the
lengths of the circuits of (ψ, τ), (ψk, τ) admits a collection of length 1 circuits for which
it is a train-track with circuits. Lemma A.1 gives a nice train-track for (ψk, τ). ¤

Thanks to Theorem 4.7, the above corollary gives the following statement:

Theorem A.3. Let α ∈ Out(Fn) admitting a train-track with circuits. Then the following
properties are equivalent for some 1 ≤ k ≤ (2n− 2)!:

(a) αk is geometric.

(b) λ(α) = λ(α−1).

(c) both αk and α−k admit a nice train-track.

Remark A.4. As can be observed by looking at the proof of Corollary A.2, (2n− 2)! is
only a rough upper-bound on k. The best upper-bound is max

n1+···+ni=2n−2
lcm(n1, · · · , ni).
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Appendix B. Finding train-tracks with circuits

To be able to search for train-track with circuits representatives among the represen-
tatives of an outer free group automorphism, we need the “connectedness”, in a sense to
be defined, of the set of efficient representatives of an outer free group automorphisms.
Here, an efficient representative of α ∈ Out(Fn) is a representative (ψ, Γ) of α such that
for any k ≥ 1, ψk is locally injective when restricted to the edges. It is easily checked
that an invariant train-track of α is an efficient representative of α. Usually, efficient
representatives are required to map vertices to vertices, which is not the case here but
this is a fairly unimportant point.

Once the connectedness established, it would not be hard to describe a finite algo-
rithm. Unfortunately, the state of art about the connectedness of the set of efficient
representatives is very unsatisfactory at the moment of the writing of this paper.

• In [21], the connectedness is asserted in the case of an irreducible automorphism
and with respect to certain moves (essentially, BH-folding and efficient unfoldings).
However there is a slight mistake in [21]. This mistake should be corrected by the
introduction of global BH-foldings and global unfoldings : a global (un)-folding
consists of (un)-folding simultaneously all the cancellation-pairs of a same circuit.
On the other hand, the assumption of irreducibility seems needed there only to
ensure the existence of an efficient representative.

• If the automorphism is Irreducible With Irreducible Powers (IWIP), the connect-
edness under the above moves is a consequence of [22]. The methods of this last
paper are completely different from the previous one.

• In [14], the connectedness is established for the set of efficient representatives of
an outer free group automorphism induced by a pseudo-Anosov of a surface, which
are embedded in the surface. The connectedness is established with respect to the
same kind of moves as above, but which are also embedded in the surface. This
does not mean that the whole set of efficient representatives is connected under
these moves (even non-embedded ones): it might exist non-embedded efficient
representatives which could not be joined to any embedded one.

Appendix C. Characterizing mapping-tori of pseudo-Anosov
homeomorphisms

Proposition C.1. Let S be a compact surface with boundary. Let h be any pseudo-
Anosov homeomorphism of S, with no interior singularities. The outer free group auto-
morphism α induced by h on the fundamental group of S is represented by a train-track
with circuits. If, in addition, S is orientable and h is orientation-preserving, then α
admits a nice train-track representative.

We refer the reader to [26] and [8] for all what is needed about pseudo-Anosov homeo-
morphisms.

Proof: Any outer automorphism α induced by a pseudo-Anosov without interior singu-
larities is represented by an invariant train-track (ψ, τ) which admits a set of cancellation-
paths. This is a well-known and easy consequence of the existence of the singular
leaves. These leaves give the way to unfold at the vertices of the train-track to get
the cancellation-paths.

Now, consider an oriented edge e. Since any train-track of a pseudo-Anosov homeo-
morphism is recurrent (i.e. carries a measure with positive weights), there are two legal

24



edge-paths p+, p− in τ beginning at the 2-sheeted side of their initial vertices and ending
respectively with e and e−1. By the dilation property of a pseudo-Anosov homeomor-
phism, the lengths of the legal paths composing a cancellation-pair for (ψj, τ) tend toward
infinity with j. Thus, there is j ≥ 1 such that both p+ and p− belong to cancellation-pairs
of (ψj, τ) so that (ψ, τ) is a train-track with circuits.

When the surface is orientable and the homeomorphism is orientation-preserving, two
cancellation-pairs in bad position do not belong to a same circuit. Lemma A.1 gives the
second assertion of the proposition. ¤

Theorem C.2 below is then a straightforward consequence of our process of combina-
torial suspension:

Theorem C.2. Let S be an orientable compact surface with boundary. Let h be an
orientation-preserving pseudo-Anosov homeomorphism of S, with no interior singulari-
ties. Then the mapping torus of (h, S) admits as a spine a standard dynamical branched
surface W carrying the weak unstable foliation of the suspension flow. Moreover W ad-
mits a positive cocycle u ∈ C1(W ;Z) associated to the fibration over the circle with fiber
S and monodromy the isotopy-class of h. This cocycle defines an invariant train-track
for h.

The weak unstable foliation is the foliation tangent at each point to the plane, in the
tangent space of the manifold, spanned by the neutral and unstable directions of the flow.

Appendix D. Examples

D.1. Example 0: Two automorphisms which do not admit train-tracks with
circuits representatives. We borrow the two examples from [20] (the two are IWIP).
The first one, denoted by β and represented by (g, G), is defined as follows: the graph
G has two vertices r, q, four edges B,C,D,E with B from q to r, C and D from r to q,
E from q to q; the map g is defined by g(B) = CE−1C−1DE, g(C) = C−1B−1E−1D−1,
g(D) = B, g(E) = CB. The three turns (C,B), (C,E−1) and (E,B) at the vertex q are
crossed respectively by g(E), g(B) and g(C). This forbids to unfold (g,G) by keeping
the efficiency of the map. Thus β does not admit a train-track with circuits (thanks to
the connectedness evoked in Appendix B which holds here since β is an IWIP).

The second example is γ ∈ Aut(F3) given by γ(A) = B, γ(B) = C and γ(C) = B−1A,
with F3 =< A, B, C >. This is the automorphism of lowest growth-rate in the pair
{γ, γ−1}. We consider the representative on the rose with three petals, A,B and C. Con-
sider the illegal turn (A−1, C). The turns (B,A−1), (C−1, B), (C−1, B−1) and (A,C−1)
are crossed by γ7(B), γ3(B), γ8(B) and γ6(B). This forbids to unfold (A−1, C) in what-
ever direction by still keeping an efficient map. Therefore, for the same reason as β, γ
cannot be represented a train-track with circuits.

Figure 18 presents the elementary-map used to compute the invariant train-tracks in
the examples below. It makes the computations easier than the elementary-map given
for proving Proposition 8.1.

D.2. Example 1: Figure 19. We consider the standard dynamical branched surface
illustrated by Figure 19. The positive cocycle u(0) = 1, u(1) = 3 defines the invariant
train-track (ψ1, τ1) where τ1 is drawn in this figure, and ψ1 is given by : ψ1(A) = C,
ψ1(C) = AE, ψ1(E) = H, ψ1(H) = I, ψ1(I) = A−1K, ψ1(K) = A. The automorphism
of F3 =< X, Y, Z > it represents is α1(X) = Y , α1(Y ) = Z−1X, α1(Z) = X. There is
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one mirror on the edge 0 so that there is an odd number of mirrors in the boundary of
the unique region of W . Therefore W cannot be embedded in a 3-manifold and thus α1

is not geometric. This is checked directly by computing the growth-rate : λ(α1) ' 1, 32
whereas λ(α−1

1 ) ' 1, 16 (up to 10−3).
Some words about this example : We can slightly modify this example by putting mir-
rors on both edges of the singular graph. We get a unique region with boundary
“0, 0, 1, 0−1, 1−1, 1−1”. This is also a standard dynamical branched surface, and it ad-
mits as positive cocycle u(0) = u(1) = 1. This cocycle defines an automorphism of F2.
These automorphisms are known to be geometric and, indeed, the branched surface em-
beds in a non-orientable 3-manifold. The author did not think immediately to these so
simple (too simple . . . ) examples, but became aware of them thanks to John Crisp, who
studied these 2-complexes with other perspectives in mind [6].
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Figure 19. A “simple” non geometric automorphism

D.3. Example 2: Figure 20. We consider the invariant train-track (ψ2, τ2) with τ2

being represented in the right-hand side of Figure 20 and ψ2 being defined by: ψ2(A) =
EAC, ψ2(C) = IEKA−1, ψ2(E) = H, ψ2(H) = AK−1E−1I−1, ψ2(I) = E−1I−1, ψ2(K) =
EAK−1E−1I−1.

It represents α2 ∈ Aut(F3), F3 =< X, Y, Z >, defined by α2(X) = X, α2(Y ) =
Y ZY −1X and α2(Z) = Z−1Y −1.

A first way to check that α2 is geometric: try all the sets of reduced loops in τ2 whose
union crosses exactly twice each edge. There are only a finite number of them. Compute
whether they are homotopically preserved or not by ψ2. There is such a set preserved,
this is the set of boundary loops of the trivial thickening of τ2 embedded in the plane
as illustrated on the right-hand side of Figure 20, i.e. the surface is the three times
punctured disc.

A second way: the combinatorial suspension yields the standard dynamical branched
surface W2 with positive cocycle and r-embedded graph illustrated by Figure 20. Check
whether W2 admits an embedding in a compact 3-manifold (see the criteria given in 7.6,
7.1, or 7.7).
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To obtain the surface where to realize α2, just read-off, once local embeddings of
W2 in R3 have been chosen, the cyclic orderings that they define at the vertices of the r-
embedded graph, and whether over each edge the surface is the trivial or twisted I-bundle.
All is deduced from the combinatorics of the complex.
Some words about this example: the automorphism is in fact in the same class than the
braid automorphism σ1σ

−1
2 of B3. The example was constructed from the “usual” efficient

representative (g, G) where G consists of four 3-valent vertices and six edges: three, d, e, f ,
are loops and the three others, a, b, c, connect the vertices of d, e, f to the fourth vertex.
The map g is defined by g(a) = ada−1c, g(b) = a, g(c) = cf−1c−1b, g(d) = f , g(e) = d
and g(f) = e. To construct W2, we unfolded until obtaining (ψ2, τ2). Observe that the
invariant train-track defined by the given positive cocycle is not (ψ2, τ2) but (ψ′2, τ2) with
ψ′2(A) = ACI, ψ′2(C) = EK, ψ′2(E) = HE, ψ′2(H) = K−1E−1I−1, ψ′2(I) = A−1E−1I−1

and ψ′2(K) = AK−1E−1.
There are many other positive cocycles, and so many other free group automorphisms,

represented by this branched surface: for instance u(6) = u(7) = u(1) = 1, u(3) = 2,
u(4) = 3 and u(x) = 0 for the other edges. All are geometric.
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Figure 20. A geometric reducible automorphism

D.4. Example 3: Figure 21. Let α3 ∈ Aut(F5), F5 =< X, Y, Z, T, U >, defined by:
α3(X) = Y , α3(Y ) = Z, α3(Z) = T , α3(T ) = U , α3(U) = TX−1.

This is the automorphism represented by the standard branched surface W3 and pos-
itive cocycle of Figure 21. It admits as invariant train-track (ψ3, τ3), τ3 being in the
right-hand side of the figure, and ψ3 is defined by: ψ3(A) = B, ψ3(B) = CA, ψ3(C) = D,
ψ3(D) = E, ψ3(E) = F , ψ3(F ) = G, ψ3(G) = HK−1A−1, ψ3(H) = IK, ψ3(I) = J ,
ψ3(J) = A, ψ3(K) = L, ψ3(L) = K.

The edge 1 of S(W3) does not appear in last-to-one position whatever maximal positive
path in the boundary of a region is considered. Thus W3 cannot be embedded in a
compact 3-manifold so that α3 is not geometric.
Some words about this example: computing α−1

3 is very easy. One has α−1
3 (X) = ZU ,

α−1
3 (Y ) = X, α−1

3 (Z) = Y , α−1
3 (T ) = Z, α−1

3 (U) = T . This is a positive automorphism
so that the map on the rose with petals {X, Y, Z, T, U} is an efficient representative. One
thus obtains λ(α−1

3 ) ' 1.19, whereas λ(α3) ' 1.23 (up to 10−3).

D.5. Example 4: Figure 22. We consider the automorphism α4 ∈ Aut(F4) given
by α4(X) = Y X−1Z−1Y −1, α4(Y ) = XZ−1Y −1, α4(Z) = Y ZX−1TY −1 and α4(T ) =
X2Z−1Y −1, with F4 =< X, Y, Z, T >. By unfolding, we find the nice train-track
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Figure 21. A non-geometric automorphism

(ψ4, τ4) where τ4 is the train-track on the right-hand side of Figure 22 and ψ4 is de-
fined by: ψ4(A) = C, ψ4(C) = MI−1, ψ4(E) = H, ψ4(H) = EA, ψ4(I) = KM ,
ψ4(K) = A−1E−1L, ψ4(M) = N , ψ4(N) = AM , ψ4(L) = EAMI−1AMI−1. Our combi-
natorial suspension yields the standard dynamical branched surface of Figure 22 with the
positive cocycle u(0) = u(2) = 2, u(4) = u(7) = 1 and u(x) = 0 for the other edges x of
the singular graph. This branched surface can be embedded in a compact 3-manifold so
that α4 is geometric. The surface where to realize α4 is the trivial thickening of τ4 which
has been drawn with the correct cyclic ordering at the vertices. This is the orientable
genus 2 surface with one boundary component.
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Figure 22. An IWIP geometric automorphism
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Études Scientifiques 43 (1974) 169-203.
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