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Abstract—A nonconforming nonoverlapping domain decompo-
sition method to approximate the eddy current problem, formu-
lated in terms of the modified magnetic vector potential, in three-
dimensional (3-D) moving structures, is presented. This approxi-
mation allows for nonmatching grids at the sliding interface and is
based on the mortar element method combined with edge elements
in space and finite differences in time. Numerical results illustrate
how the method works and the influence of eddy currents on the
field distribution.
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I. INTRODUCTION

HIS contribution deals with the numerical simulation of

eddy currents in three-dimensional (3-D) moving rigid
bodies. Such a problem arises, for example, from the modeling
of electromechanical systems. We address the question of
how to calculate the electromagnetic fields if the motion of
the bodies is known in advance. In the presence of moving
structures, we can work in Buler variables, adding a convective
term in the equations or in Lagrange ones. The second choice
may be, physically and computationally, more convenient if we
use a method that allows to use nonmatching grids at the sliding
interface. The problem of dealing with nonmatching grids has
been faced for a long time (see [6] for a short overview on the
subject) and the existing methods are difficult to be applied
for 3-D modeling. The mortar element method (see [2] for its
mathematical analysis in the Maxwell’s equations framework
and [4] for its first application to magnetostatics in 3-D)
is a nonconforming nonoverlapping domain decomposition
technique which allows for independent meshes in adjacent
subdomains. The idea of the method is to weakly impose the
transmission conditions at the interfaces by means of Lagrange
multipliers suitably chosen to ensure optimal properties on
the discrete problem. The numerical results we present here
correspond to the first application of the proposed method to
magnetodynamics. They constitute an encouraging step toward
more realistic applications.
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II. THE MODEL

The mathematical model describing the eddy current
problem in the conductors at low frequencies is given by the
quasi-stationary Maxwell’s equations. One may eliminate the
electric field E or the current density J and set up a formulation
in terms of the magnetic field H [3]. Here, we consider the
alternative which consists of eliminating H and the magnetic
induction B by means of a modified magnetic vector poten-
tial A. In this formulation, however, we have to ensure the
uniqueness of the potential in the nonconducting parts. This
can be done by imposing a gauge condition [1], but we adopt
an approach similar to the one presented in [7). For a current
density J = o E 4 J,, we introduce a vector T such that
the source current J, = curl T. Starting with a vector in the
space orthogonal to ker(curl), the conjugate gradient algorithm
applied to the final algebraic system generates, at each iteration,
a solution which is again in the space orthogonal to ker(curl).
This guarantees the potential’s uniqueness; moreover, the
approach is still valid in a domain decomposition framework.

Let © be an open set in R? containing a conducting part 2,
and a nonconducting part £2,,.. We introduce the vector potential
A such that B = curl A inQ, A = — [JE(t')dt’ in 9, and
whose tangential component (A), an = 0 on 952 We assume
that the magnetic permeability u and the electric conductivity
o are linear, bounded, scalar functions of the space variable x;
then the equation we solve reads

6A
0 — + curl

1
91 (}_l, curl A) = Ja. (1)

The first step in the application of a domain decomposition
method consists in dividing the considered domain into a finite
number of subdomains. The initial problem (1) is then reformu-
lated in each subdomain. Searching the solution of the problem
in 2 is equivalent to looking for the solutions of the subprob-
lems which satisfy in addition some transmission conditions at
the interface between adjacent subdomains. In our case, dealing
with rotating structures, we divide the domain  into at least two
subdomains §; and €2, separated by the interface T'; £ can ro-
tate around the z-axis with an angular speed w. We call r; the
rotation operator at time ¢ which rotates the domain ; by the
angle § = wt and 7_, the inverse operator. We assume the exis-
tence of a reference configuration, say, 2(0) = Q;(0)Uf2, and
we denote by Q(2) := (21 (0)) U 25: the material particle oc-
cupies a definite position x in the reference domain 0, (0) and
its changing position in the actual configuration £ () at time ¢
will be given by r;(x). Denoting by A the restriction of A to
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Q% (k = 1, 2), in the “piecewise Lagrange approach” we look
for two fields A; and A, satisfying the problem equation (1) in
% and two time-dependent transmission conditions at T, i.e.,

(Ek@* + curl (i curl Ap ) =J,inf, k=12

(TCy) Rt(Al)rl (x,%) = (Az)r,r(x,%) on T

(TCy) Ru(v curlAy),, r(x, t) = (v curlAz), p(x, t) on I’
(BC) (Al),. aanan, =0 on AN, k=1,2
(IC) Aw(x,0)=01in Q, k=12,

where R¢(v)(x, t) = r[v(r_sx, t)] for any vector v. The
transmission conditions (T'Cy) and (T'C;) describe, respec-
tively, the continuity of E. r (and consequently of B,,r)and
the continuity of H, r across the interface I'.

To apply the edge element method, we rewrite the problem
in variational form. Note that only the transmission condition
(T'Ch) is explicitely enforced on both the field A and test func-
tions. The second condition (T'Cy) is embedded in the varia-
tional formulation and can be recovered by integration by parts.
For a fixed time ¢, we introduce the time-dependent functional
space

U'(t) ={(A1, Az) € H(curl, ;) x H(curl, Q) |

Rt(A] )1' P(x t) (A2)'r I‘(xi t)y Vxe r
(Ak)r, 0080 =0, k=1, 2}. (2)

The variational formulation of the problem reads: find
(A1, Az) € L>=(0, T, U°) NH(0, T, L?(f2)) such that

Z/ cr— vkdﬂ—i-/ veurl Ay - curl vi dS2
Qe

—Z

k=1

Tk-curlvde V(vi, v2) €U’ (3)

JII. DISCRETIZATION

We discretize (3) in each subdomain, using in space an edge
element method and in time a first-order implicit Euler scheme.
When looking for a discrete counterpart of the space U°, the
equality R;(A1), r = (Aa),,r on I becomes a too stringent
condition since both fields are defined on a priori different and
nonmatching grids. Currently a standard procedure for noncon-
forming domain decomposition methods, the mortar element
method leads to impose the transmission condition (I°C;) in
a weak form by means of a suitable space of Lagrange multi-
pliers M),. Once discretized, both domains §2;, by two indepen-
dently created meshes of tetrahedra Ty p, (h is the maximum
size of all mesh tetrahedra), we introduce two edge element
spaces Xk, 5 as in [4) and T}, := {(va,n)r,r|V2,n € X2,1}
the space of tangential components on I' of functions in Xz, p.
We choose M}, as a proper subset of T}, such that dim(Mp) =
dim(T% N Hp( curl ,T)) as in [4]. The definition of My, in-
volving the edge element space X j gives a different but sim-
ilar mortar method (in the mortar terminology, this means that
we choose 3 as the master and Q5 as the slave). The approxi-
mation space is

u)?(t)'-‘{ (A1, Az n)EX1, 0 X Xo 1| (Ak,1)r, 00000, =0,
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Jo(Re(Arn)r,r — (A, n)rr] - 0ndT =0, Voou € My} .

For the time discretization in the interval [0, 71, let At be the
time step and N an integer such that T = NA¢. Denoting by
t" = nAt, v = vi(t") and Llh(n) U(t), the fully dis-
cretized problem reads: Vn =1, ..., N, find (AT ,, A% ) €
Up(n) such that V(vT ,, v3 ) € Llh(n)

2

>[I

k=1
2
:Z/ Th - curl vi , dQ.
k=1 7%

To write the matrix form of the fully discretized problem at
ume ™, we need to construct a basis of the approximation space

UP(n). The elements of the chosen basis are built from the edge
element basis functions and, at the edges lying on I', they are
linked through the matching condition stated in Uy (n). At the
algebraic level, this involves a rectangular matrix Q™ that allows
to couple at the sliding interface the information coming from
{21 and §2; at time ¢™. Let e denote an edge of the tetrahedron
K and E¢ = {ex|K € Ty n,}, Ep = {ex|K € Ty, n,, ex ¢
00 \T'}. The edges lying on T are divided into three sets: £&¥ =
{e Euknr} & = {CE -—k”r} Er = E4\ & We
denote by mg, mk, m,r.\ or»and m* the number of degrees of
freedom associated to all edges bclongmg to &k, gk k. &8, and By,
respectively. Let us denote by w* the basis functions associated
to edges of E: these functions are the elements of the spaces
X n(k =1, 2). Attime t*, foreach of the m}:+m . indices s,
the coefﬁcnents gLr=1; mr\ o+ are determined by imposing
the integral matching condmon

n n—1
Ak,h - Ak, 13

1
= ViRt ;curlAﬁ‘ prcurlvg 4 1dQ

@

/ Re(Wo)ro= D a2(Wh)er|-@oxdl =0, Vi € My.
r CrEfg

Each of these m}. + m3p sets of m2, 5. equations can be put
into the following form Cq°® = D(-, s) where ¢ € My,

C(kv T) = A(“&)T,I‘ * Pk d[‘, e € £§ (5)
s =R : ) 3 )

D(ka 3) = /;(Wa)'r,l‘ ' Pk dF, xs = _‘tn(,;?) zs gg%l"

6

The matching condition allows us to determine the vector q°
for all edges e, € €' U ¢2 and thus the set of basis functions
on the interface. For the matrix form of problem (4), it is useful
to define the coupling matrix @ = C~'D = [QF, QF] of
dimension m#, 5p X (mf: +m3p). Note that C is square and the
fact that it is invertible follows from the theory. The construction
of Q™ is a crucial point in the implementation of the method
and, in the presence of movement, it has to be rebuilt at each new
configuration of the free part. We explain now an easy procedure
to numerically compute the involved integrals over I

In 2-D, we could intersect two different discretizations of T*
since the involved geometric entities were segments [6]. In 3-D,
the intersection between two triangles (that can even live on non-
coplanar surfaces, as it happens with curved interfaces) becomes
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Fig. 1. (a) The integrals contained in the matching condition are computed
by projecting on (T, )i, k& = 1, 2 the quadrature nodes defined on ﬂ-ﬂ"'a'
(b) Mesh used for both domains in the Second Example: the cylinder basis
represents the sliding interface where the matching condition has to be imposed.

a hard task. To overcome the problem we introduce, for the in-
terface only, a new mesh ‘Tar ha? independent and finer (e.g., with
hs = h/3) than the ones given by (7, »)|r, as in Fig. 1(a) [for
the case in Fig. 1(b), 73 | is a triangulated disk]. The choice of
introducing a new mesh is mainly due to the lack of accuracy in
computing the integrals when one of the two interface meshes
is used [5). Note that 7], can be refined independently of the
existing two, to improve the computational accuracy.

The computation of fF Ry(wh)rp - @ dl can be done
as follows: 1) we define a quadrature formula (w}, x7)
(4 = 1,..., Ny) on each triangle K; of 7\, ; 2) we build
a projection operator from triangles of 5‘_?.',‘3 to triangles of
(’I}‘.ﬁ)_!p; and 3) we project each node x‘f on (7, n)jr and we
call x] , the projected node. Then

_/];Rt(wi)f'r\ POk dl'=

Ny
> D Wl Re(wilrr(xl ) - pr(x )-

. T j=
KTy, i=1

The results we present in Section IV are obtained by using quite
a fine grid ‘T; e With Ny = 3. The sensibility of the numerical
results to the choice of this additional mesh is under considera-
tion.

The system we solve to get numerical results is built as fol-
lows. We start by writing, in each subdomain, the final system
associated to (4) with homogeneous Neumann-type conditions
onI'. Then the two systems are coupled by means of the mortar
condition,

Let (A7, A7) be the solution of the fully discrete problem at
time ¢™: we expand it in terms of the edge element basis func-
tions of the spaces Xy . We then have m! unknown coeffi-
cients A and m? unknown coefficients A2. We divide the un-
knowns in each subdomain in three blocks: the first block A} or
contains the unknowns associated to edges in £5., the second
block Aj:, r\6r contains those associated to edges in £§\ o @nd
the third block A} 7., to edges in ZF \ £*. Neither AT nor A?
are solutions of the local problems since the two sets of values
((AT or» AT p\or)s A3 or) and AJ 1 o are linked one to the
other by the mortar matching condition. We have

i
Az ryor = [QT, Q2] ((AT ors AT ryar)s AS or
\

where @™ = [QF, Q%] is the rectangular full matrix of dimen-
sion ml'{\ or Pet m{ + m¥y. obtained from the matching condi-

i

tion discretization at time ¢™. We introduce then the following
matrices:

Id 0 0 o0 s st oo
oo e] ol o)
' = )
M=
0 M2

@t 0 @ 0

0 0 0 Id
with S%, M* denoting the local stiffness and mass matrices.
Indicating by y™ the independent unknowns at time ¢*, ie.,
y" = ((Af or» A?,r\sr)- AT, me» A7 g1y A, rat)’ the ap-
proximated solution is computed by solving the system

@) (5+ 3%) @5 =@ B @y +(@ Y

To solve this system, we apply an iterative Jacobi precondi-
tioned conjugate gradient procedure. Thanks to the mortar
method philosophy, residuals can be computed in parallel. In
detail, for a vector v € R with d = m! + m? — m}, 1., the
matrix—vector product (Q™)!(S + (M/At))Q™v can be done
in three sequential steps: 1) we compute q = Q™v with qER®
with s = m! + m?; 2) we compute p = (S + (M/At))q
separately in each subdomain, i.e., p* = (S* + (M*/At))q¥;
and 3) we compute w = (Q")'p with w € R%. We have used
a classical Jacobi preconditioned conjugate gradient algorithm,
but the matrix—vector products are done as explained. As a
consequence, there is a sensible gain in time, without involving
additional memory storage. Note that the use of the third mesh
T3, p, to compute @™ has lead to a final system whose matrix
is symmetric [5].

IV RESULTS AND DISCUSSION

We present some numerical results for problem (4).

First Example: We start by considering a simple sta-
tionary case where §2 is the unit cube and I' the flat surface
{(0.5, y, 2) | (y, 2) € [0, 1]?}. The chosen data give rise to
a magnetic vector potential which is tangent to the interface.
The mortar method is then used to couple nonnegligeable in-
formation. The nonconformity of the subdomain discretization
at I' is here achieved in one of two ways: either we choose
the same mesh in both subdomains and we rotate one mesh
90° with respect to the other, or we consider a finer/coarser
mesh in one of the subdomains. We take o = 0 and the vector
T such that curl T = Jis T = (0, 0, To(z — 0.5)) with
To = 10" A/m. For the considered situation, the magnetic
induction B has a maximum intensity of 3.9 Wb/m?. In Fig. 2,
we see that the information is correctly transferred from the
master to the slave subdomain despite that the discretizations
do not match at the interface and even when the master mesh
is coarser than the slave one. Moreover, the maximum of the
computed magnetic flux density, on the top of the grey scale, is
equal to the analytical one.

We now investigate the precision of the method by consid-
ering the dependence of the error (W, — W),)/W, for the mag-
netic energy on the mesh parameter h. The computed value
W), for the magnetic energy is compared with the analytical
one W, = 2.208 MI. In Fig. 3(a), the relative error is com-
puted when both subdomains are discretized by the same mesh.
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Fig.2. Magnetic induction B on the sectiony = 0.25 of [0, 1]3: the intensity
(in Wb/m?) and the restriction to the section of B computed at the tetrahedra
barycenters are presented. The dark line separates the two subdomains (h; =
2h,).
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Fig. 3. Relative error on the stored magnetic energy. (a) hy = hj: the
discretizations, induced on the interface by the subdomain meshes, are either
conforming or nonconforming. (b) hy # k.

Whether the two discretizations of T, induced by the subdomain
meshes, match or not. the error is the same and decreases lin-
early with the mesh parameter h, as predicted by the theory.
In Fig. 3(b), we analyze the influence of the master mesh ele-
ment size k1 on the precision of the method. The error is then
computed twice, taking the master mesh finer (h; = 0.5 hy) or
coarser (h; = 2 hy) than the slave one. We can observe that the
error is the same in both cases and decreases linearly with A;.
Second Example: We consider a bounded cylinder of height
H = 6 cmand radius R = 3 cm with axis parallel to the z direc-

R 3.‘3 | “tion [see Fig. 4(a) andd b) for the mesh used in each subdomain].

We present now the distribution of B = curl A in the section
6 = 0 orthogonal to the cylinder basis, generated by a constant
density current flowiny in the coils, for different values of the
lower part rotating velocity w. The coil being circular with axis
parallel to the z direction and the density current J constant, we
have that T = (ar + f)e, with & = (T} — Tb)/(r; - 2) and

IEEE PUBLISHING

doo8

1EEE TRANSACTIONS ON MAGNETICS, VOL. 38, NO. 2, MARCH 2002

(b

Fig. 4. (a) Domain geometry on the section orthogonal to the cylinder basis:
four regions with magnetic permeability puy = g = Ha = g, ps = 10pg
and only o3 # 0. Region (4) is a coil of height 1 = 4 cm, intemal radius
r1 = 1 ¢m, external radius vy = 2 cm, feeded with a constant dengity current
J = 0.125 MA/m”. The dashed linc I" denotes the position of the interface
between the lower Q4 and upper 2 parts. (b) Distribution of B when oy = 0.

Fig.5. Distributionof B: (left) o, = 0 and €, is rotated of 180° with respect
to the initial configuration (presented in Fig. 4); (right) after 20 time-iterations
with At = 5 ms (o1 # 0) and Q, rotating with w = 0.5 7 rad/s.

currents in region 1. As presented in Figs. 4(b) and 5(a), the
stream lines of B follow the way of minimum magnetic reluc-
tivity. If ug 7# o, the problem is no more invariant per rotation;
when w # 0, the induced currents, flowing in region 1, expulse
the field generated by the currents in the coil [see Fig. SSX)].

b
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