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ABSTRACT.   If  P  is a linear differential operator on   Rn  with con-

stant coefficients, which is invariant under a group   G   of linear transforma-

tions, it is not true in general that the equation   Pu = f always has a G-in-

variant solution   u   for a G-invariant  /.   We elucidate here the particular case

of a "big" group   G, and we count the invariant solutions when they exist

(see Corollary 28 and Theorems 32, 33).   The case, of special interest, of the

wave equation and the Lorentz group is covered (Corollary 27).   The theory

of hyperfunctions provides the frame for the work.

Introduction.  In his note [6], M. Rais proves that every linear differential

operator P on R"  with constant coefficients has a tempered fundamental solu-

tion invariant under the subgroup of GL(n, R) under which P is invariant:  it

is a consequence of a theorem of M. F. Atiyah [ 1 ]. But it is not true in general that

P has an invariant solution of any equation whose second side is invariant by the

same group, and M. Rais presents a counterexample where P has degree one.

We study here this question. As, in general, when a group acts on a mani-

fold, some orbits are "singular" (the quotient is not a manifold), one is led natu-

rally to solve an invariant equation first on the open set of the regular orbits, and

then to try to extend the solutions: in order to eliminate any artificial obstruction

there might be to such an extension, we will work within the frame of the theory

of hyperfunctions. To this theory, first developed in [8], one will find a short

and excellent introduction in [3].

We have to make precise here what we mean by "invariant". This is clear

for a function, and therefore for a hyperfunction; for a distribution, there are

two possible definitions: the first extends the definition for functions; the second

is the one used in [6, § 1.4], for which the Dirac measure is invariant under all

transformations of the linear group, and for which one has the
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268 ANDRÉ CEREZO

Theorem (Atiyah-Rais). Every linear differential operator P on  R"

with constant coefficients has a tempered fundamental solution which is invariant

under the subgroup of GL(n, R)  which leaves P invariant.

It should be remarked that the Dirac measure 6 is not invariant under

GL(n, R) in the first sense: it is well known for instance that, on R, 5 is

homogeneous of degree — 1. However, the two definitions coincide if we con-

sider only the subgroup of GL(n, R) (noted here Gn) of the linear transfor-

mations of jacobian ± 1. As this restriction is of no consequence in the most

interesting case we look at here (that is when the operator is invariant under a

general orthogonal group), we choose to stick to it from now on.

The problem is thus the following: P = P(dx)  is a linear differential oper-

ator on  R"  with constant coefficients, G is the subgroup of Gn   under which

P is invariant (that is to say, for instance, that the distribution P5  is invariant);

G is obviously a closed (algebraic) subgroup of GL(«, R); let G0  be its con-

nected component of the identity, and /G B(R") a hyperfunction on  R"  in-

variant under G (resp. G0). Are there solutions u e B(R"), invariant under G

(resp. G0), of the equation Pu = f, and how manyl

G  is obviously the intersection of the groups which leave invariant the

real part or the imaginary part of each of the homogeneous parts of P.   In order

to find a big enough group G, we will thus restrict our search here to the case

where P is a polynomial (with complex coefficients)  in an operator  II, homo-

geneous and with real coefficients, of degree 1 or 2. The principal difficulty lies

then in the extension at the origin of a hyperfunction on R" - {0} invariant

under the orthogonal group of some quadratic form.

We obtain a complete answer to the questions above in both cases (invar-

iance under G or C0-see Theorems 28 and 32-33), and our results apply in

particular to the case where  II  is the wave operator and the group of invariance

is the Lorentz group.

§1 studies the hyperfunctions on  R" - {0}  and on R"  which are invar-

iant under a noncompact orthogonal group, assuming n > 3. We look in detail

at the case of R2   in §2, as it presents a special difficulty, of a topological

nature.  In §3 we state and prove the results on invariant equations which are

the aim of this work.

Apart from [4], [6], and older works like [7], particular cases of this

problem have been treated in [11]-[17].

Finally I would like to thank here F. Rouviere, who simplified considerably

the original proof of Theorem 10.

1. Hyperfunctions invariant under a noncompact orthogonal group. We

Degin this section with a few generalities on invariance of a hyperfunction under
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



EQUATIONS INVARIANT UNDER LINEAR TRANSFORMATIONS 269

a group.  We first recall that, if M is an «-dimensional real analytic manifold and

X a complexification of M, the collection of the spaces

Hn(X - (M - U) mod X - M, 0X)

for all open subsets  U of M, together with the canonical restrictions, constitutes

the flabby sheaf 8  of the hyperfunctions on M, and that it is in a natural way

a sheaf of ^-modules, where  V is the sheaf of linear differential operators with

analytic coefficients on M.

Representing Hn(X -(M - U) mod X - M, Qx) = ß(U)  by the correspond-

ing group of Cech cohomology associated to a relative covering of (X, X - M) by

Stein open sets, one obtains a representation of any hyperfunction f(x) on an

open subset of M by relative Cech «-cocycles ¡p(z), which are families of func-

tions holomorphic in certain subsets of X - M (two such cocycles represent the

same hyperfunction if their difference is a coboundary).

If G  is a Lie group of diffeomorphisms of M, the transformations g G G,

being analytic, act also on the relative cocycles.  A hyperfunction fix) on M

represented by a cocycle  ip(z) is invariant under G if and only if

VgGG   /fee) =/(*),

that is

VgGG   tfgz) = <p(z) + r¡/(g. z)

where  íiVfe, z) is a relative «-coboundary, depending analytically on g&G. But

in general there is no relative cocycle  <p representing / and itself invariant

under G (i.e. such that  <¿fez) = <¿>(z)  for every g S G), as the following ex-

ample shows:

On R, consider the group G  of homotheties of strictly positive ratio. The

relative 1-cocycles can be realized as holomorphic functions in C - R, and these

are G-invariant if and only if they are locally constant.  The  G-invariant hyper-

functions obtained in this way are thus the constants.  But the Heaviside function

where In is the principal determination of the logarithm (holomorphic except

on the negative real half-line), is of course G-invariant:

In (-az) = In (-z) + In a      (a > 0).

Let now G0  be a connected Lie group of diffeomorphisms of M, and

(X¡)l=i ... r a basis of the Lie algebra of G0. We identify X¡ with the vector

field on M, right-invariant under G0, generated by X¡: if / is a (hyper-)func-License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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tion on an open subset of M,

Lemma 1. Let  U be a G0-invariant open subset of M, and f a hyper-

function on   U. f is G¡¡-invariant if and only if XJ= 0 (/' = 1, • • • , r).

Proof. Let gf be the image of / under g^GQ: gf(x) =/fec), and

tfz) a relative n-cocycle representing /.  If / is G0-invariant, for any g S G0,

<¿fez) - <¿(z) = \¡j(g, z)

is a relative «-coboundary depending analytically on g, and the hyperfunction X¡f

is represented by the coboundary

X*® = Î <¿>(exp tXt • z) = — |f=oiA(exp tX, • z),

thus it is zero.  If reciprocally X¡f = 0 (i = 1, • • • , r), we have

Á
dt

¥>(exp tXt • z) - x(t, z)

where x is a relative «-coboundary depending analytically on  i€R; thus

<¿>(exp tX, ' z) = <f(z) + Jof x(u, z)du

where the integral is still a coboundary, and this implies /(exp tXf • x) = f(x)

and finally gf = f for any g&G0, since  G0  is connected.   Q.E.D.

Lemma 1 shows that the hyperfunctions on an open set  U of M which

are G0-invariant form the kernel of the application

(X(): B(C0— Br(£/).

One can thus talk of the sheaf  B °  of the locally G0-invariant hyperfunctions:

it is the kernel of the sheaf morphism

(*f): B -> Br.

In particular, if G  is a connected one parameter Lie group, and X its

infinitesimal generator, and if U is open in M and G0-invariant, we denote

n: BC°(M) —» ßG°(U) the canonical restriction, F = M - U, and  BF the

sheaf of hyperfunctions supported in F.

Lemma 2. // X: B(M) —* B(M) is onto, there is a canonical isomor-

phism between  BG°(U)¡ttBG°(M) and BF(M)IXBF(M).

Proof.   It is given by the following exact commutative diagram:License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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0 0 0

1 1 i
BF°(M) -+ BF(M) -£* BF(M) — BF(M)IXBF(M) -+ 0

i 1 l
BG°(M) -> B(M) -^>   8(M) -* 0

jQ
1 i

B °(U) —  B(U) -Z*   B(U)

1
BG°(U)lnBG°(M)

0

Remark.   It is known that every hyperfunction on  U can be extended

to a hyperfunction on M; one could wonder whether any G0-invariant hyper-

function on  U admits at least one G0 -invariant extension.  This is not true in

general, and the preceding lemma, which enlightens the situation, will be used to

prove it (Propositions 12,13).

Remark 3. Lemma 2, as its proof shows, is actually much more general:

if F is a sheaf on M, P: F —► F a sheaf morphism, F^ its kernel sheaf, U

open in M, F = M - U,   FF the sheaf of sections supported in F:

If the restriction of F from M to   U is onto, and if P is onto on the

global sections, there is a canonical isomorphism between   FP(U)/FP(M) and

FF(M)/PFF(M).

It is given by the same diagram, with an obvious change of notations.  This

obvious remark will be used in the proof of Lemma 29.

From now on in this section we study the G-invariant hyperfunctions on

Rp+q, where G = 0(p, q) is the group of matrices which leave invariant the

quadratic form

Q(x) =*2+---+*2,-*2,+i-*p+,

and the hyperfunctions invariant only under its connected component of the

identity G0.

Remark.   G is self-transposed, and it is also the subgroup of GlXp + q, R)

which leaves invariant the operator

n = d2   +... +d2x   -92     ,-92*1 xp xp+\ XP+Q

and thus any polynomial of II.License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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We assume pq > 1 ; that is to say, we assume that the groups G and G0

are not compact (pq = 0), and we leave aside the particular case p = q = 1,

which will be treated in §2.

The Lie algebra of G and G0  is the algebra of matrices

\c I)
where A  and B are antisymmetric, p * p  and q x q  respectively, and  C is

p x q. A basis is given by the matrices of this kind which have only one non-

zero entry, equal to 1, above the diagonal; so we get:

(1) p(p - l)/2 + q(q - l)/2  vectors Xif (1 < i <j <p or p + 1 <

i<j<p+q) generating (£ £).

(2) pq vectors  Y¡¡ (1 </<p  and p + 1 </ <p + q) generating

The right G-invariant differential operators generated by these vectors are,

respectively:

(1) Xg = Xft -Xfi  (1 < / </ < p or p + 1 < i <j <p + q),
(2) Ytj = xfij + xjbt (1 < /' < p and p + 1 < / < p + q).

We write  d,- = 3^. (1 < i < p + #), and we will also use the notations Xy,

Y¡. with / > /:  the X„ are then antisymmetric, and the   Y¡j symmetric.  The

vectors X¡j generate a compact subgroup Gt   of G0, isomorphic to  SO(p) x

SOfo).
Intuitively a G-invariant hyperfunction on Rp+q  is a hyperfunction which

"depends only on Q(x)"; this is what is expressed in Proposition 5.

Lemma 4. Let  U be open in  Rr+i, and   FCRS be its natural (open)

projection.  Assume that the fibres of U above   V are connected.  A hyper-

function /(*!, • • • , xr+s) e B(U) satisfies  df/dXj = 0 (/ = 1, • • • , r) if

and only if f is the inverse image under the natural projection of some hyper-

function on   V.

We do not give any proof here of this well-known lemma.

Let Q denote the analytic map from Rp+q ~ {0}  into  R:

Q(x) = Q(xl,'" ,xp+q)=x\ +••• +x2p-x2p + l-x2p+q.

Proposition 5. A hyperfunction on  Rp+q - {0}  is G-invariant if and

only if it is the inverse image under Q of some hyperfunction on  R.

Proof. As Q is of maximal rank at any point of its domain, every hyper-

function on R has an inverse image under Q (this is a consequence of [9,

Theorem 2.2.6, p. 292]).  Let /e B(Rp+q - {0}) be G-invariant.  Choose two
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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integers k and  /, such that   1 < k <p and p + 1 < / <p + q, and let Ekl

(resp. Ekl) be the open half-space of Rp+q  defined by xk> x¡(Tesp.xk<x¡).

The analytic map

Oki • v*i>        >*p+<j)

\~* (xk ~x¡ = u, Q(x) = v,xlt • • • xk, • • • ,xt,'" ,xp+q)

is a diffeomorphism of Ekl  onto  R* x Rp+<?_1.

Since / is G0-invariant, it must satisfy, according to Lemma 1:

Xiif=Yijf=0   in £*

and by the coordinate change 8kl, the operators

Xif      (\<i<j<p or p + Ki<j<p+ q),

Yif      (Ki<p and p + 1 </ <p + q)

transform into

X\j = xfij - Xjh¡   (i and / distinct from k and /),

*kj = xk^j ~xfiu>

X'il = -Xfii-Xfiu>

Y'a = xfij + xfdt   (i ¥= k and / * I),

Y'kj=xkd,+X,\>

Y'n = xfii-xfiu,

Y'ki = (xk~xiK=uK-

The system of equations X¡3klf=Y¡dklf=0 clearly implies  3uöfc//= 0 and

dßklf=Q  for i # k, I (and reciprocally). Applying Lemma 4, we see that

f\E±   is the inverse image under  Q of some hyperfunction  Tkl on  R.

As / is invariant under the simultaneous change of xk  into - xk and

xl into -x¡, one can assume Tkl = Tk~l = TfcZ; as / is invariant under the simul-

taneous change of x¡ into x¡> and x¡-  into -x, on one hand, and of xk

into xfc'  and xfc-  into -xk on the other hand, one can assume that all hyper-

functions  Tkl are equal to some hyperfunction  T on  R.

If reciprocally / is the inverse image under Q of some  T G B(R), Lemma

4 implies

X'ifiktf=Y'ifikif=n>

thus  Xif=Yif=0  in £^ for any A:,/. There follows that/is G0-invariant,License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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and as it obviously satisfies the symmetry conditions above, and is furthermore

invariant under the change of x¡ into - x¡ (1 < i < p + q), it is G-invariant.

Q.E.D.
Remark 6. If p and q are both strictly larger than one, and if / is

G0-invariant, define the  Tkl as above.  As / is invariant under the simultaneous

change of xk into -xk, xk> into ~xk>, x, into -xp x¡> into -x¡>, one

can take  Tkl = Tkl = Tkl, and the rest of the proof above remains true, so that:

// p > 1  and q > I, every G0-invariant hyperfunction on Rp+q - {0}  is G-

invariant.

If on another hand q = 1 (the situation is evidently symmetric in p and

q), that is in the case of a Lorentz group, one can, as in the beginning of the

proof of Proposition 5, find hyperfunctions on R, Tkl, whose inverse images

under Q are the /L+ , as soon as / is G0-invariant. Moreover / is then in-
ckl

variant under the rotations transforming xk  into xk'  and xk> into -xfc,and

one can thus assume

T^, = T^ = T+    and    1^-1%-r".

We call R'  the non-Hausdorff manifold obtained by gluing together the open

negative half-lines of two copies of R, say R,   and R2.  A hyperfunction on

R' will be a pair of hyperfunctions on  R, say  Tl   and  T2, whose restrictions

to the open negative half-line coincide. Finally let us define an analytic map Q'

from  Rp + 1 - {0}  into R'  as the pair of analytic maps ß;: í/;—► Ry (/=

1, 2)  defined by Q¡(x) = Q(x) (/ = 1, 2),

£/, = {(*„••• ,*p+1)eRP+1- {0}\Q(x)<0 or xp+l>0},

U2 = {(*,, - • • , xp+,) G Rp+1 - {0}\Q(x) < 0  or xp+, < 0}.

The inverse image under Q' of a hyperfunction on R'  is a hyperfunction on

Rp+1 - {0}   defined in the obvious way.

Proposition 7. If p>\, the G0-invariant hyperfunctions on Rp + i - {0}

are the inverse images under Q' of the hyperfunctions on  R'.

Proof.   It is analogous to the proof of Proposition 5.

Remark. Clearly, if T is a distribution on R or R', its inverse image

under Q or Q' is a distribution on Rp+q - {0}, and reciprocally, since it is

enough to check it locally.  Thus we find again Theorem 2 of [4] :

Corollary. Propositions 5 and 7 (and Remark 6) are still true if one

replaces everywhere  "hyperfunction" by   "distribution".
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Let   B0  be the space of hyperfunctions on Rp+q  supported at the origin.

We recall that the elements of B0  are the series of derivatives of the Dirac

measure 5, Sa^S^ (a is a (p + <?)-index), which are convergent in   B, that

is such that

(C)
lim sup (laja!)1"01 = 0.

Proposition 8. The GQ-invariant hyperfunctions supported at the origin

have the form  2aeNflaIIa5 where II = d2 + • • • + d2 - 3* + 1-b2p+q,

and

(C) Km sup (|flQ|(2a)!)1/a = 0.
a-+oo      ,

All these are G-invariant.

Proof (cf. P. D. Methée [4, Theorem 1]). We can assume for instance

p > 1.  If Sa^S^  is G0-invariant, the entire function F(z) = 2aaza  is invar-

iant under the transpose of G0, which is no other than G0.  Since p>\, G0

contains a rotation bringing (*,, 0, • • • ,0) onto (-x,, 0, • • • ,0). Thus

F(xv0, • • • , 0) = F(-xlt 0, • • • , 0) = G(x\)

where G is an entire function.  The entire function

FOe,,*-« ,xp+q)-G(Q(x))

is then G0-invariant, and vanishes on the first axis; since  G0  contains transfor-

mations bringing any point in the cone {x\Q(x)> 0}   onto a point on the first

axis, it vanishes identically.

We still have to write that the series /= S0ieNaaIlQ!5  is convergent in

B0- Since

condition (C) gives

, . Urn sup |aj     ,    a!-: (2a,)! • • • (2a.._)!
(*) |<*i->~ aaI!-"a+  !v    »' *»+«'

ai+--+aP+q=a L J

Since

(«!+••• +"P+g)'   <(2a1+---+2ap+(?)!

V'*•«?+«,' "(2ai)!---(2ap+fl)!'

1/2 la|

= 0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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this condition will be satisfied as soon as

lim sup (l«J(2or, + • ••+2a_+J!)1/2|a|= 0,

1 p + q

which is to say (C'). But (C') is also necessary, as (*) implies it as one takes a, = a

and a2 = • • • = <xp+q = 0. Finally the last assertion is evident, since II and S

are G-invariant.   Q.E.D.

Remark 9. This proposition still holds if p or q is zero, that is if II

is elliptic, and the proof is the same.

The end of the chapter is devoted to the proof of the following result:

Theorem 10.  Under the hypothesis pq # 1, every G¡¡-invariant hyper-

function on  Rp+q - {0}  can be extended to a G ¡¡-invariant hyperfunction on

Rp+q.

Proof.  The case pq = 0 is trivial, since G0  is compact:  it is enough

then to take an arbitrary extension at the origin, and to integrate its transforms

under G0 with respect to the Haar measure of G0. Thus we assume pq>\,

and for instance p > 1.

Let / be a G0-invariant hyperfunction on Rp+q - {0}, and f   an arbi-

trary extension of / on Rp+q. If (X¡¡) (Ki<j<p or p + l </</<

p+q) and  (Y¡j) (1 <i <p and p + 1 </ <p + q) are the infinitesimal

generators of G0  defined above, the Xy generate a compact subgroup Gl   of

G0, of normalized Haar measure dgx ; replacing possibly / (x) by fG .f(Six) dgl,

we can assume that / is G-invariant, thus that

(1) XijF=0      (Ki<j<p  or p + Kt<J<p+q).

As / is G0-invariant, the   Y^f are hyperfunctions supported at the origin.

From the commutation relations

(2) [J^, Yik\ = Yik   and    [Yijt Yk¡] = Xik

(the   Yy are symmetric, and the X¡¡ antisymmetric), we deduce, taking (1) into

account

Ytkf-Wikf   and    YikYikf = YjkYik7.

Choose three integers i, i\ j such that  1 <i <p,   KÏ <p, i^i', p + 1 <

j<p+q.   Clearly  drY^ - B,YfJ « îjXtt so that  (1)  impUes

di,(Yiif) = di(Yi,if).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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But by developing the hyperfunctions  Yiff   and  Ye.j   as series of derivatives

of the Dirac measure, one sees easily that the last equality means that there exists

a hyperfunction g¡ E B0 such that Ytjf = b¡gj and Y^f = b¡'gj. Of course leav-

ing /' fixed and changing the first indices, one proves in the same way that

Y¡¡7 - 3/5/    for every i = 1, • • • , p.

We now show that g¡ is invariant under the subgroup of GQ generated by the

Xtf (1 </</'<p):  the rotation p  of angle  0  on the variables x¡ and x¡>

transforms  3,- into  cos 03,- + sin 03,-,   and    Y„ = x¡b- + Xjd¡   into

cos B(xfij + JC.3,) + sin ö(x(-3- + x.3,0 = cos QY¡- + sin 9Y¡>i. There follows:

cos ebfej ° p] + sin 03,,[s,- ° p] = [d¡g¡] ° p = [Ytjf] ° p

= cos 0 Yif[f o p] + sin eYe,[f ° p]

= cos OYijf + sin 6Yrjf = cos 03,-gy + sin 03,-,^,

and this implies g¡ ° p = g¡, since the operator  cos 03,- + sin 03¿>  is one-to-one

in  B0.

We now show that there exists a G ̂ invariant hyperfunction  <pE B¡¡  such

that  Yytp = Yyf for some fixed i and j,   1 </<p and p + \<*j<p+q.

We have to distinguish two cases:

(A) // q is equal to one.   G,   is then the group generated by the XH>

(1 < i < i' < p).  It follows from Remark 9, applied to the p first variables

only, that every Gl -invariant hyperfunction supported at the origin can be written

V =   Z   baß@adf8   where © = 3? + * ' ' + 3P = 3- + e0.
a,0eN

We have thus:

Yl]<p=(xi<)i+xidi)(Zbaßeadf8
<x.ß

'-Il= Z ü- I" E   ^(^.»-'eHf -ßentf
a,ß (      |_0«!fc<a        v   '

= - 3/ Z baß(2a&*-*tf+1 + ßGPüf-1^.
a,ß

Since g¡ is G,-invariant, it can also be written

*, - Z caßQam
a,ß

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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with the convergence condition (C") on the coefficients caß (see Proposition 8

and Remark 9):

(C") lim sup   [\caß\(2a)lßl]l^2a+^ = 0.
2a+0-*<»

Thus we are led to solve the equation (with unknown baß)

ZXp-(2aAra-1l*+1 +ßXaYP-1) = Zc^YP

in the space of series of two indeterminates satisfying (C"), that is

Zba,2ß(2ccXa-1(Y2f+ßXa(Y2f-1)Y = 'Eca,2ß+lXa(Y2fY.

Zba,2ß^(2aXa-l(Y2f + ßXa(Y2f~l) ^c^X^f.

Condition (C") is easily seen to be invariant under translation on one of the in-

dices (in fact (C"), which means that  'ScctßB(-2a' 2^ converges to a hyperfunc-

tion of two variables supported at the origin, is easily seen to be equivalent to

the statement that the function of two complex variables  l£caßx2ay2ß is an

entire function of zero exponential type), so that we are led to solve twice an

equation of the type

Z/a^o^z*3 +ßx*ze-1) =Zgaßx<*ze

in the space of series of two indeterminates X and Z satisfying (C"). The

last equation can be written

(2bx + 3z)(Z/a^2^ = ZX^Z',

and transforms by the change of indeterminates X =2U, Z = U + V, into

where the new coefficients f'aß, g'aß must satisfy some condition, the transform

of (C").  If we prove that this new condition is no other than (C"), then it is

obvious that any such equation can be solved in the required space (choosing for

instance f'oß = 0  and f'aß = a~lg'a-ltß for a > 0), and the proof will be

complete in case A.

Let us prove first that if the new coefficients satisfy (C"), then the old ones

do as well. We put

F = Zf'«ßV*Vt = Zfaß(Xl2)a(Z - Xl2f.
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As condition (C") is obviously invariant under the change X/21—► X, we take

the liberty to omit the two's in the following, so that we write

F=Z f'Jh<r\)M(ßj)x«+^zh
a,ß \/=0 N// /

= z( Z (-of * *) r;-k,i+k) M « Z tfjTV.

Condition (C") is equivalent to saying that for every e > 0 there exists a con-

stant  C>0  such that, for any integers r, s, l/r'sl< Cer+*/(2r)!(2s)!, but then

7   /j + k\_ej_^_

l/7,/'l<CkÇo\   /   )(2y-2k)\(2j + 2k)\

<C
7  (2j + 2k\

ÀbV   V    )
e7+/

(27 - 2k)\(2j + 2k)\

¿ (27)! \     e7+/      < ^4e)7+/

¿J, (2*)!(27 - 2*)! / (27)!(2/)!   " (27)!(2/)!

and this means that the /7/. also satisfy (C").  It is obvious from the proof

that it works for any linear substitution of indeterminates, so that we will not

write it for the other implication.

(B) // q is larger than one.  We note first that the analogue of the first

part of the proof, the roles of the indices  í and / being exchanged, would

show that there also exists a hyperfunction h¡ £ B¡¡  such that   Yyf - b¡hi for

every /, p + 1 </ <p + q, and that h¡ is independent of / and invariant

under the rotations on the variables x¡ (p + 1 </ <p + q), so that finally

Yyf = d¡dk where  k G B0  is independent of both í and /', and invariant

under the rotations on the variables x¡ (1 < i < p) as well as those on the

variables x¡ (p + 1 </ <p + q), that is to say under the whole group G1.

Remark 9, applied separately to the p first and to the q last variables,

shows that any Gl-invariant hyperfunction i^eB0  can be written

»-   Z   b^rtfB
a,(3eN

where 0 = 32 + • • • + 3p = 3? + 0O  and S = 3p+1 + • • • + b2p+q =

3?+S0.  In particular * = 2a>peNca/J0°1S'îS.  But
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rUf = {xfi, +*¡>»(x »„e-a»»)

<*,ß

+ 3,

= - 23,3; Z ^(a©*-1*" + ßQ"*^.
a,ß

We are led now to solve the equation (in the unknown baß)

ZyaT-'rí + ßj^Y^1) = Zcaßx*Yfi

in the space of two indeterminates whose coefficients satisfy the same condition

(C") as in the preceding case. This equation can be written

0* + »r>(£ V**) =Zcap*"r'3

and is easily seen to have a solution by the change of indeterminates X + Y = U,

X- Y = V, which leaves (C") invariant as in case A, and transforms the equation

into

9u(Zb'aßOaVf) -2/4,0-1*.

b'0ß = 0 and b'aß = a-l<4-i,p* f°r a > 0, is an obvious solution.

We conclude that there exists a G ̂ invariant hyperfunction <p 6 B0 such

that Yi/<p= Yyf for some fixed integers i and j, K/<p and p + 1 </

<p+q.

Since both y and / are G-invariant, we have

V/',/"f   l</'#/"<p,  Vj',j",p + l<j'*j"<p+q,

Xf>f"ip = X¡>¡«f = Xj'j'np = Xi>j«f = 0.

Using this and the commutation relations (2), we get

Yi'j"P = ixi't> Ytj'] V = X¡'tYij'<P

= Xii\Xfj, Yij]<p = Xi-iXfjYijip

= XfiXfjYyf = Xf'iYy'f = Y(ff
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for all i, i", /', /" such that  1 < í # i' <p and p + K/ =£/' < p + q. But

this means that f = f - <p is such that

Xj'i»f = Xf]"f = Fj-'y'/ = 0;

that is to say / is G0-invariant on Rp+q. Finally

^|rp+í-{o}=^|rp+«í-{o}=/:      Q-EX>-

Corollary 11. Every G-invariant hyperfunction on Rp+q - {0}  can

ôe extended to a G-invariant hyperfunction on Rp+q.

Proof.  Theorem 10 gives a G0-invariant extension. As G is the semi-

direct product of G0  by a finite group H, it is enough to select the symmetric

part of this extension with respect to H.

Remark.  If pq>\, any G- or G ¡¡-invariant hyperfunction on any stable

open set of Rp+q can be extended to an invariant hyperfunction on any larger

stable open set: it is a consequence of Theorem 10 and Corollary 11 when one

wants an extension at the origin, and of the flabbiness of sheaf 8 (and Proposi-

tions 5 and 7) when one wants to extend elsewhere.

2. Hyperfunctions on R2 invariant under a noncompact orthogonal group.

In this section, we study the hyperfunctions on  R2  invariant under the orthog-

onal group of a nondegenerate nondefinite quadratic form Q, or under its con-

nected component of the identity, say G and G0. It will be handy to choose

coordinates (x, y) in which the quadratic form is written

Q(x, y) = xy.

G is then also the subgroup of GL(2, R) which leaves invariant the operator

II = d2y, and G0 is the group of matrices

\0    HaJ

Contrary to the preceding case (Theorem 10), there are G0-invariant hyper-

functions on R2 - {0}  which refuse to extend to G0-invariant hyperfunctions

on R2. Let us give immediately an example:

We write  l/|x|  for the distribution on R defined by

,EC;(R)Hlüno[-/:fÄ+ /;~^d* + 2,(0)lne],

which satisfies x • l/2|x| = Vi sgn(x) = H(x) - % where H is the Heaviside

function.
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Proposition 12. Let T be the restriction to R2 - {0} of the distribu-

tion l/2\x\®8(y). T is G ¡¡-invariant. There is no G ¡¡-invariant hyperfunction

on R2  whose restriction to   R2 - {0} is T.

Proof. G0  is connected, and its infinitesimal generator (on R2) is a

multiple of xbx -yd . A hyperfunction / (on  R2  or  R2 - {0})  is thus

G0-invariant, according to Lemma 1, if and only if (xbx -ydy)f = 0.  But

(xdx -ydy)(l/2M ®6(y)) = (dx(x-) - dy(y -))(1/2M ®8ij>))

= dx((H(x) - %) ® d(y)) = 5(x, y).

And by restriction to  R2 - {0}:  (xdx -ydy)T = 0.  Assume there is fe B(R2),

G0-invariant and such that r|R2_r0}= T.and put 5= l/2|x|® 8(y)-T. S is

supported at the origin, thus it can be written

S=    Z   aaßo^V
a,ß<=N

with

(C\ lim sup (\aaß\a\ß\)l,(a+ß) = 0.

Thus (xbx -ydy)S = 2a<ßaaß(ß - a)S(a,(3) but this contradicts

(xdx -ydy)S - (xbx -ybyXH2\x\ ® 8(y)) = 5.      Q.E.D.

In fact the proof leads us to a first result:

Proposition 13. Let f be a G ¡¡-invariant hyperfunction on  R2 - {0},

and f   an arbitrary extension of f on  R2.   The hyperfunction (xbx~yby)f

is a series of derivatives of the Dirac measure 6. f has a G ¡¡-invariant extension

on  R2  if and only if all the diagonal coefficients in this series vanish.

Proof.   The necessity of the condition is implied by the preceding proof.

If, on the other hand, (xbx -ydy)T= Ha^aa^a'^, with aaa ■ 0, choose

g = ^a^ßbaßb^&\ with baß = aaßKß -a).  Since  \baß\ < \aaß\, the last

series is convergent in   B0. Putting / = / - g, one gets (xbx -ydy)f = 0 and

/Ir2-{0}=/Ir2-{0}=/-     Q-E-D-

Remark.   T. Miwa proved [5, Proposition 3.1] that  (*3X -ydy): B(R2)

—> B(R2) is onto.  Thus Lemma 2 applies here with M = R2,   U = R2 - {0},

F = {0}, X = xbx -yb , for the group G0.  But the last proposition exhibits

a complement of XB{0}(R2) in   B{0}(R2): the hyperfunctions which have the

form

Z.aa6^ =Zaa(b2xy)%
License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



EQUATIONS INVARIANT UNDER LINEAR TRANSFORMATIONS 283

(with the convergence condition Urn supa_>00(|aa|(2a)!)1/2a = 0; see Proposition

8). Thus Lemma 2 and Proposition 13 allow us to construct an explicit comple-

ment of 7tBG°(R2)  in   BG°(R2 - {0}):  it is enough for that to note that  b2xy

and X commute, since the first is G¡¡-invariant. But we can proceed directly:

Now put  T — l/4|x| ® 8(y) - 8(x) ® l¡4\y\; as X is antisymmetric in

x and y, one still has XT = Ô, and X(bly)aT = (b2xyfXT= 8^a)  (a € N).

Lemma 14. // Xaa8^a,a^ is a hyperfunction supported at the origin, the

series Sa = Eaa(dxy)aT defines a hyperfunction on  R2  such that XSa =

Zaa5<a'a).

Proof.   It is clear if one knows that the convolution product of two hyper-

functions enjoys the same properties as that of distributions. We give here a direct

proof.

As the variables x and y play antisymmetric roles, it is obviously enough

to prove that Sa = "Zaa(bxy)aT   has the same properties, where    T =

1/2 be | ® 8(y). Noting In, the principal determination of the logarithm, holo-

morphic except on the negative real half-line, one has

1/2|*| = - (l/4ftr) [(1/ÈXIn ç + In (- $))]e=,

and

T = -(l/87r2)[(l/SrO(ln % + In(-£))]

where the bracket is a relative 2-cocycle, represented by a function holomorphic

at least in  (C - R)2.  If the series

^««(^{O/lnXtaf + inei))}

is uniformly convergent on every compact subset of (C - R)2, it will define a

function holomorphic in (C - R)2, termwise differentiable, thus a relative 2-co-

cycle representing a hyperfunction  - 87r25a  on  R2, and Sa will obviously

have the desired property.  But

Since S£_i l//~ In a <§C a, it is clearly enough to prove that the series

2aa(a!)2/(£7?)a+1 is uniformly convergent on every compact subset of

(C - {0})2 ; but this is precisely saying that
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defines a hyperfunction supported at the origin.   QJED.

We now state the analogues of Propositions 5, 7 and 8 of § 1.

Proposition 15. The G ¡¡-invariant hyperfunctions supported at the origin

have the form  2aBiiaa(bly)a8, with

(C) limsup(|aa|(2a)!)1/2a = 0.
Of—^oo

All these are G-invariant.

Proof.  If /= Sa)/3eNaa(33"3^S  is G0-invariant, one has

0 = (xbx -ydy)f= Zaa(3(j? - a)3^5

and aaß vanishes as soon as a ¥= ß. Thus / has the required form, and (C')

can be proved as in Proposition 8.  Again, the last statement is obvious, since

dxy and S  are G-invariant.   Q.E.D.

Let  Q be the analytic map from R2 - {0}  into R: Q(x, y) = xy.

Proposition 16. A hyperfunction on R2 - {0} is G-invariant if and

only if it is the inverse image under Q of some hyperfunction on  R.

Apart from the change of coordinates x = x1 + x2, y = xt -x2, the

proof is analogous to that of Proposition 5, but it is useful to recall the beginning

of it here:  in any of the half-spaces E1 = {x > 0} or E3 = [x < 0} one can

choose xy and x as new coordinates, while one can choose xy and y in

E2 = {y > 0}  or E4 = {y < 0}. If / is G0-invariant, f\E   depends only on

xy, and thus it is the inverse image of a hyperfunction T¡ on R (/ = 1, • • •, 4).

As this inverse image is obviously injective, one has necessarily:

7»|ü>0 = raCW     Wltxo = r40;)|u<0)

Ts(P)\v<o = TiHxo>      r300|u>o = 7»|t>o.

Let now R" be the non-Hausdorff manifold obtained by taking four copies of

R, say Rj, R2, R3, R4, and sticking together the positive parts of Rj  and R2

and of R3 and R4, and the negative parts of Rt  and R4 and of R2 and

R3. A hyperfunction  T on R" will be a family of four hyperfunctions T,

(/ = 1, • • • , 4) on R satisfying the above conditions. Finally let us define an

analytic map Q"  from R2 - {0}  into R", by the condition that it coincides

on each E¡ with Q: E¡—+ Rj. The inverse image under Q" of a hyperfunction

on R" is the hyperfunction on R2 - {0} defined in the obvious way.

Proposition 17. The G ¡¡-invariant hyperfunctions on R2 - {0} are the
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Proof. We just proved the necessity. The sufficiency is obvious.

To state the next result, we need a few notations.  First G/G0  has four

elements, and two generators are represented by

the symmetry a exchanging x and y,

the symmetry t exchanging x and -y.

If /G B(R2 - {0}) is G0-invariant, one can decompose it in a unique way into

a sum f = f0 +fa +fT +/„T where each term is G0-invariant and such that

/o° °=fo°T=f0,   fa°o = -f0,   f0°T=f0,

fT°o=fT, fT°r = -fT, f„ » a=faT o t = -faT.

We call faT the antisymmetric part of /

If now T = (Tv T2, T3, T4) is a hyperfunction on R", we call mass

of T the hyperfunction (supported at the origin)  T1 - T2 + T3 - T4.

Theorem 18. Let /G B(R2 - {0}) be G ¡¡-invariant, and TE B(R")

such that f = Q"~l(T). The following conditions are equivalent:

(1) / has a G ¡¡-invariant extension at the origin.

(2) The antisymmetric part of f is zero.

(3) The mass of T is zero.

Remark.   We will see further two other conditions equivalent to these:

see Remark 21 and Corollary 23.

Proof.  (2) <> (3). As fOT = &(/-/° o -/o r +/«> a ° r), it is easily

seen that, in any open half-space   E¡,   fOT   is the inverse image of

WTi -t2+t3- r4).

(2) => (1). If faT = 0, / is the sum of three hyperfunctions invariant by

at least one of the symmetries a or t. Let g be one of these, symmetric in

x and ± y, and g" an extension of g at the origin. We can assume that g"

has the same symmetry property. But then (xdx -ydyjg is changed into its

opposite by the exchange of x and ± y, and this excludes the possibility that

its development in a series of derivatives of S  might contain nontrivial diagonal

terms. We conclude by Proposition 13.

non (2) => non (1). One can assume f = faT. In the first quadrant Et C\E2

for example, a transforms önl(7'1) into QTl(T2) = ö^1(r,), so that a keeps

/ unchanged. This implies /U1n£,2 = 0. One could reason in the same way in

E3 n E4, and also in the two other quadrants by considering the symmetry t.

Thus / is supported on the two axes.  In the neighborhood of a point on the

half-axis  {y = 0, x > 0}  for instance, / can thus be written

f(x,y)= Z /a(*)®o(a)0>).
aeNLicense or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



286 ANDRÉ CEREZO

Since 8^a\y) is homogeneous on  R, of degree -a-l,and / is invariant

under the group G0  of matrices (£   ya)   (a>0),fa(x) must be positively

homogeneous of degree - a - 1 :

/*(*) = (-!)*<*! aa/4xa+1

for every x > 0, and for some constant aa. As / is changed into its opposite

by  a and by t, there follows

(-l)aa!aasgn(x)
/(*. y) - Z-« s<tt>oo

aGN 4xa+1

^    ittWx     (-l)tta!aasgn(^)
- Z Ô«»(x)®-

aEN 4);0i + 1

on R2 - {0}, and that is to say:

f(x,y)= Z aa(d2xyTT\2  ,,= sa\2
aeN |R -w        IR -w

with the notations of Lemma 14.

We can apply Proposition 13 to the extension Sa  of /: since, according

to Lemma 14, (xdx - yby)Sa = 2aeNaa5*a,0!\ / has a G0-invariant extension

at the origin if and only if aa = 0  for every a, that is, if /= 0.   Q.E.D.

Corollary 19. Every G-invariant hyperfunction on  R2 - {0} can be

extended to a G-invariant hyperfunction on  R2.

Proof. To say that / is G-invariant is to say that / = f¡¡. Thus fOT = 0,

and Theorem 18 gives a G0-invariant extension /.  A G-invariant extension is

then  î4(/" + /•(>+/ »t+/<>oot).   Q.E.D.

We now take a closer look at the hyperfunctions on R", and particularly

at the ones "without mass" (that is such that their mass is zero).

If T= (Tv T2, T3, T4) £ B(R"), we define the shuttle integral of T

(and we write §T) in the following way:  let K¡ be a compact set in  R;-, con-

taining the origin as an interior point, and F¡ the closure of the complement of

K-  in  RL-.  The hyperfunction   T,  can be written as the sum of two hyperfunc-

tions, Tj supported in K¡ and  fj supported in Ff, we put:

$T(v)dv= /     Tl(v)dv- fR2T¡(v)dv+ fRjl(v)dv- /^ Tl(v)dv.

It is easy to check that §T(v)dv depends neither on the decomposition of Tj

nor on the choice of K¡.
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We also call T'(v) (resp. vaT(v)) the hyperfunction on R" whose restric-

tion to Rj is T'j(v) (resp. vaTj(v), a EN). If T(v) is without mass, vaT(v)is

too, for any integer a.

Lemma 20. Let TE B(R") have mass 2aeNaQS(a); then

fvaT(v)dv = (- l)aa!aa  (a E N).

Proof.  We show first that if T is without mass (that is aa = 0 for

every a), the shuttle integrals of all hyperfunctions vaT(v) vanish; using the

last remark above, it is enough to show that §T(v) dv = 0.  For computing this

integral, we can choose K¡, Tj, T2 such that

ri|R+ -ri|R+ , r}|R_ = r4|R_,  r3|R_ = r>|Ä_, n\R+ = T\\R+.

But then T\ + T\ and T\ + T\ coincide on R+  and on R", and also

near the origin, since  Tl + T3 = T2 + T4  and the  T2 vanish there; there fol-

lows the equality T\ + T\ = T\ + T\', and thus fT(v)dv = 0.

Now T is always the sum of a hyperfunction without mass and the hyper-

function (Saaô(a), 0, 0, 0), and

§vaT(v)dv = /R  vaf£aa8^\du = (-l)aa\aa.   Q.E.D.

Remark 21. In particular a hyperfunction  T on R" is without mass

if and only if the shuttle integrals of the vaT(v) all vanish.  Carrying this result

on R2 - {0} by way of Q"~l, it is easy to see that a G0-invariant hyperfunc-

tion f(x, y) on R2 - {0} can be extended to a G0-invariant hyperfunction

on R2  if and only if the hyperfunctions on  R+  one gets by integrating

(x2 - y2)(xy)af(x, y) on the circles centered at the origin, vanish for every

integer.  If / is a distribution which can be extended to a distribution on

R2, one can get this result directly from Proposition 13 by integration by parts.

Noting that fRS'(v)dv = 0 if S(v) is a compactly supported hyperfunc-

tion on R we deduce, for  T E B(R"), the formulation of "integration by parts":

fvaT'(v)dv+a fva~l T(v)dv = 0      (aë N).

Lemma 22.  reB(R") has a primitive in   B(R") if and only if its

shuttle integral vanishes.

Proof.   In a decomposition  T - Tl + T2  as above, T2  always has a

primitive S2 in  B(R"): one can choose Sj to be the primitive of T2 vanish-

ing in a neighborhood of the origin.  As the shuttle integral of T2  vanishes, it
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Let S\ be a primitive of T\, S\ the primitive of T\ which coincides

with S\ on R+, 53 the primitive of T3 which coincides with S{ on R",

S4 the primitive of T\ which coincides with S\ on R+. Evidently T will

have a primitive in B(R") if and only if S\ coincides with S\ on R~. But

Sj(v) is constant for u big enough and for v small enough, and the difference

between these two constants is fR.Tj(v)dv. The conclusion follows immediately.

Q.E.D. '

Corollary 23. A hyperfunction on R" is indefinitely integrable in

B(R") i/a«£i only if it is without mass.

Proof. Let Saa5(0l) be the mass of TEBfr"). According to Lemmas

20 and 22, T has a primitive S E B(R") if and only if a0 = 0; furthermore

$S(v)dv = - £vS'(v)dv = - §vT(v)dv = av

The result follows by induction.

Proposition 24. Every linear differential equation with analytic coeffi-

cients is solvable in the space of hyperfunctions on R" without mass.

Proof.  One can solve any equation (E) with analytic coefficients in

B(R), and also extend any solution on some interval to a solution on a larger

interval (Komatsu [3, Theorems 3.1 and 3.2]). Thus we can solve (E) in  B(R")

in the particular case where T = (T4, T3, T3, T4): it is enough to solve (E) on

R+ with second side r3|R+ = T4\R+, and then extend the solution to á solu-

tion on R with second side  T3, and with second side  T4  separately:  the solu-

tion one gets in this way still has the form (S4, S3, S3, S4), and thus is without

mass.

So it is enough to show that (E) is solvable with second side (7/j - T4,

T2 - T3, 0,0), assuming that (Tv T2, T3, T4) is without mass;Jhat is to say

Tl - T4 = T2 - T3. But  Tl - T4 = T2 - T3 is supported in R+.   If 5X  is

a solution of (E) in  B(R) for the second side Tl-T4 = T2- T3   which

vanishes in R~ (that is, which extends the trivial solution of the equation restricted

to R~), the hyperfunction (Slt St, 0, 0) E B(R") is clearly a solution of (E) in

B(R") in this case, and it is still without mass.   Q.E.D.

Remark. It is not true that any differential equation with analytic coef-

ficients (on R or R", it is the same thing) is solvable in B(R"); as a matter

of fact 3„ is not: see Lemma 22.

3. Invariant equations. P = P(YT) is a linear differential operator on R",
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constant coefficients, homogeneous of degree 1 or 2. We assume that the degree

of P is at least 1, and n > 1.  Let Gn  be the group of linear transformations

of R", of determinant  ±1, G the subgroup of Gn which leaves P invariant

(that is, which leaves  II  invariant), and G0  the connected component of the

identity of G.

We recall that we want to answer the question: if/G B(R") is G- (resp. G0-)

invariant, are there G- (resp. G0-) invariant solutions u E B(R") of the equation Pu =

/, and how many?

(A)  The case where ñ is of degree one.  We do not lose anything by

assuming  IT = dv  G (resp. G0)  is then the group of linear transformations of

determinant ± 1  which do not move the first vector of the basis (resp. its con-

nected component); and the orbits of G (resp. G0) are evidently

the whole of R"  minus the first axis Dx, as soon as « > 2 (if « = 2,

R" -D1   decomposes into orbits which are straight lines or pairs of straight lines

parallel to Dj),

each point on Dl.

Put (xlt • • • , xn) = (Xj, x') with je' G R"-1. The group  G (resp. G0) is the

group of matrices (¿ j¡) where B E Gn_l (resp. SL(« - 1, R)), and A E Rn_1.

A G-(resp. G0-) invariant hyperfunction / on R"  satisfies f(xl,x') =

f(x1 + Ax', Bx') and, by differentiating with respect to A, bx f • x = 0. Thus

/ is constant (with respect to JCj) on each connected component of Rn -Di.

Let k be the constant term of P.   If k = 0, and if «  is an invariant

solution of the equation Pu = f, u is constant with respect to Xj   on each con-

nected component of R" -Dly so that Pu =/ vanishes there, that is, fis sup-

ported on Dj.  If k # 0 and if / is equal to  C(x) on some connected com-

ponent of R" - Di, any invariant solution u must be equal to  C(x')/k there,

so that by substracting from u the locally integrable function of Xj  which is

equal to  C(x')/k in each connected component, one obtains a solution of the

equation with second side / minus the locally integrable function of x¡  which

is equal to  C(x') in each connected component.

In both cases, one is led to solve the equation Pu = f with a second side

/ supported on D1. We distinguish two cases:

(1) If « > 2, the invariance of / under the subgroup of matrices (¿ g)

implies that f(x{) ® 8(x'), since 8(x) is the only hyperfunction supported at

the origin of R"-1   and invariant under SL(«-1,R).  If g(xx) is a solution

of P(dl)g(x1)=f(x1) then u(x) =g(xl) ® 8(x') is obviously a G-invariant

solution of Pu=f.

(2) If « = 2, the second side can be written

(*) Z /«(*,) ® 8«*\x2)License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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where fQ E B(R) must vanish for odd a if / is G-invariant, and

(**) «(*)= Z  S«(*i) ® S(a)(x2)
aeN

where ga  is a solution of P(d1)ga(x1)=fa(xl) is again a G- or G0-invariant

solution, at least formally.  Now if the series (*) converges in  B(R2), one can

write

/«(*i) = aa[Fa(Zl)]   =x     where lim sup (laja!)1'01 = 0,

and the Fa are holomorphic functions on C - R, uniformly bounded on every

compact set.    But then there are solutions   Ga(zx)   of the equations

P(dz)Ga(zx) = Fa(zj) which have the same property (by the Banach homo-

morphism theorem, and since C - R is simply connected), and choosing

£o;(Xi) = aa[Ga(^i)]2l=x.   leads to a series (**) which is evidently convergent

in  B.

We summarize the discussion above in the following statement:

Proposition 25. Let k be the constant term of P, and II be of degree

1. If fE B(R") is G- (resp. G¡¡-) invariant, the equation P(U)u = f always

has G- (resp. G¡¡-) invariant solutions if k =£ 0. // k = 0, it has invariant solu-

tions if and only if f is supported on the G-invariant straight line of R".

Remark.   The example in Rais [6] is covered by the second part of this

proposition: one takes />(IT)=31   in  R2,and G¡¡  is the group of transvections

(]¡ ") (a E R). The equation  3,« = 1 has no invariant solution, as 1 is not sup-

ported on the first axis.

(B)  The case where U is of degree two: First considerations.   We do not

lose anything by assuming that  II  is diagonal:

n = d\ + • • • + 32 - 32 + 1-3P+0      (P +<1 <«)•

Then G (resp. G0) is the group of matrices (£ £) where B is (p + q) x

(n - p - q), A  is in the orthogonal group 0(p,q) (resp. its connected component),

and  C is in the group Gn_p_q  of matrices of GL(« - p - q, R) with deter-

minant ± 1 (resp. in SL(« -p - q, R)). The orbits of G (resp. G0) are

the orbits of 0(p, q) (resp. its connected component) in Rp+q x {0,"',0},

the complement of Rp+q x {0, • • • , 0} in  R"  is composed of 0,1, or

00 orbits according to whether « -p - q  is zero, larger than one, or equal to one.

Using, as in the first case, the invariance of a hyperfunction under the sub-

groups (¿ £.) and (q f ), one sees that the invariant hyperfunctions on R" are

the sums of
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a constant (or pair of constants) with respect at least to (xt, ••• ,xp+q),

one which can be written  S/a(x,, • • • , xp+q) ® 8^a\xp+q+,, • • • , x„)

where / is a hyperfunction on Rp+q invariant under O (p, q) (resp. its con-

nected component), and o*0*  is invariant under Gn_p_q (resp. SL(« -p- <7,R)).

If p +q < «, reasoning as in (A), we see that if k = 0 (k is, as above, the

constant term of the polynomial P), the equation Pu = / will have invariant

solutions only if / is supported in  Rp+q x {0, • • • , 0}; if that is so, on if

k # 0, we are led as above to solve the equation Pu = f in the space of hyper-

functions on Rp+q  invariant under 0(p, q) (resp. its connected component).

It is thus enough to deal with the case p + q = n, in other words the case

where II is of principal type.  This is done in the following paragraph.  However

we will deal here with an easy particular case: that where  II  is elliptic.

This happens if and only if pq = 0, and G = 0(n) and G¡¡  are then

compact. The equation Pu =/, for any second side /G B(R"), is then solvable

since P is elliptic (see [2]), and if «  is a solution,

"(*)=  /corG0"fe*)#'

where dg stands for the normalized Haar measure of G or G0, is obviously an

invariant solution if / is invariant.

Thus every invariant equation has an invariant solution  in this case.

(C) The interesting case. P = P(ü) is now a differential operator which is

a nonconstant polynomial with complex coefficients of a linear differential oper-

ator n with constant real coefficients, homogeneous of degree 2, of principal

type, nonelliptic.

We do not lose anything by assuming that  n  is diagonal:

n=32+--- +32-3p + 1-32 + 0       (p+q=n,pq*0).

The group G  is self-transposed, and it is the group 0(p, q) of matrices which

leave invariant the quadratic form

ß(x)=x2 + ••• +x2-xp+1-x2p+q.

By Propositions 5 and 7 and Remark 6 if pq > 1, and by Propositions 16 and 17

if pq = 1, we can transform the equation Pu = f restricted to  Rp+q - {0}

into a differential equation on  R, R'  or R":  if f=Q~x(T) and u = Q~1(S)

(or replacing Q by Q' or Q"), S and  T being hyperfunctions on R, R'  or

R", this equation is equivalent to the differential equation (on  R, R' or  R")

obtained by transforming P under one of the diffeomorphisms 0kl of the

proof of Proposition 5:
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(E) P(4vd2u +2(p+ q)dv)S(v) = T(v).

It is known (Komatsu [3, Theorem 3.1]) that equation (E) is solvable in  B(R)

for any second side in   B(R); this is still true in B(R'): first one solves (E) on

the negative open half-line, then one extends the solution separately to a solution

on Rj   and to a solution on R2, and this is always possible (Komatsu [3,

Theorem 3.2]). But it is not true in  B(R") (cf. the remark at the end of §2).

However if /Ir2_ t¡¡\ = Q''~1(T) has a G0-invariant extension on R2

(which is certainly the case if /G B(R2) is G0-invariant!), the mass of T is

zero by Theorem 18, and Proposition 24 then states that equation (E) has a sol-

ution S E B(R") with mass zero. We have thus Pu = f in R2 - {0}  with

u - Q"~l(T) E B(R2 - {0}) having a G0-invariant extension on R2  by

Theorem 18.

If on the other hand pq > 1, solving equation (E) in  B(R) or  B(R') is

the same as solving the equation Pu = / in the space of hyperfunctions on

Rp+q - {0}  invariant under G or G0, and we know (Theorem 10 or Corol-

laries 11, 19) that any such solution has a G0-invariant extension at the origin,

thus easily a G-invariant one by symmetrisation, if / itself is G-invariant.

In short, and in any case, the equation Pu = f, where fE B(Rp+<?) is

invariant under G (resp. G0), always has a solution u E B(Rp+<i - {0}) on

Rp+q - {0}, invariant under G (resp. G0), and admitting an extension

uE B(Rp+<?) at the origin, invariant under G (resp. G0).

But then Pu =f + g where g is at least G0-invariant, and supported at

the origin. By Proposition 8 if pq > 1 and Proposition 15 if pq = 1, g can be

written g = Eaetiacflaà-  ^ F be the G-invariant fundamental solution of P

given by the theorem of Atiyah-Rais cited in the introduction. The series v =

So.eNao.n01£' is convergent in  8: as it would be too long here to give a direct

proof of this, as in Lemma 14, we define v as the convolution product of E

and g, which exists as g is compactly supported (see [10, p. 61]). We have then

P(u-v) = f + g-P(E*g)=f.

Moreover as E and g are G-invariant, so is u.and u-v is a G- (resp. G0-) invariant

solution of the equation on the whole space Rp+q.

Finally we have proved:

Theorem 26. Let G be the subgroup of GL(p 4- q, R) leaving invariant

the operator II = 32 4- • • • + 32 - 32 + 1 - • • • - dp+q,  G¡¡ its connected

component of the identity, and P a polynomial with complex coefficients. For

any hyperfunction f on Rp+q invariant under G (resp. G0), there exists a

hyperfunction solution u on Rp+q invariant under G (resp.  G0) of the

equation P(lY)u = f.License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Corollary 27. Let D stand for the D'Alembert operator of Rp+1 and

k be a complex number.  The equation (D + k)u =f has a hyperfunction

solution u on Rp+1  invariant under the Lorentz group, for any hyperfunction f

on Rp+1  invariant under the Lorentz group.

Proof. D + k is the operator of Theorem 26, where q = 1 and P is

of degree 1, and G0 is then a subgroup of the Lorentz group with finite index

(in fact 2). If « is a G0-invariant solution given by Theorem 26,

u(xv x2, • • • ,xp+1) = Vi\u(xv x2,"' ,xp+1)+ U(x2,xx,• • • ,xp+l)]

is a solution invariant under the Lorentz group.

Finally we gather the above results on invariant equations in the following

statement:

Theorem 28. Let Tl be a linear differential operator on R", with con-

stant real coefficients, homogeneous of degree 1 or 2. Let A be the subspace of

R" generated by vector n if Tl is of degree I, by the partial derivatives of n

if n is of degree 2. Let P be a polynomial with complex coefficients, k its

constant term, G the group of linear transformations of R"  with determinant

± 1 a«ci leaving Tl invariant, G¡¡ its connected component of the identity, and

f a hyperfunction on R" invariant under G (resp. G0).

If k ¥= 0, the equation P(TT)u = / has a hyperfunction solution u on

Rn invariant under G (resp. G0).

If k = 0, the equation P(TT)u = / has a hyperfunction solution u on

R" invariant under G (resp. G¡¡) if and only if f is supported on A.

Proof.   If n  is of degree 1, this is the contents of Proposition 25. If

n is of degree 2, it follows easily from Theorem 26 and from the considerations

of §3B.

(D) The homogeneous equation.  We still have to answer the question: how

many invariant solutions are there; that is to say, what is the dimension of the

space of invariant solutions of the homogeneous equation?

We study here only the case where II is of degree 2 and of principal type.

Conclusion in the other cases would follow easily from the present study and the

considerations of §3A and §3B. Finally, the case where II is elliptic is classical

and we do not treat it.

Let B ° be the sheaf on Rp+q of locally G0-invariant hyperfunctions:

according to Lemma 1, and with the notations of § 1, it is the kernel of the sheaf

morphism
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g X'i' Y% ß(P+Q)(p+Q-i )/2

We also write   B °'    for the subsheaf of B  °  of the G¡¡-invariant solutions

u of the homogeneous equation P(Tl)u = 0, and we use analogous notations

with G¡¡  replaced by G; but the presheaf  BG   of locally G-invariant hyper-

functions is no more a sheaf.

Lemma 29. If pq>\,  ßG°'p(Rp+q - {0})/BG°,P(Rp+q) is canonically

isomorphic to

BG£}(Rp+q)IP(n)BG°(Rp+q).

In any case   BG¡P(RP+Q - {0})IBG,p(Rp+q) is canonically isomorphic to

BG{o}(Rp+q)/P(Tl)BG{o}(Rp+q).

Proof.   Since P(Tl) is surjective in   BG°(Rp+q) (Theorem 26), and

since every G0-invariant hyperfunction on  Rp+q - {0}  is the restriction of

some G0-invariant hyperfunction on Rp+q, as pq > 1  (Theorem 10), Remark 3

applies with   F = BG°, P = PQl), M=Rp+q,   U= Rp+q - {0}, F={0},

and the first statement follows.  For the second statement, it is enough to remark

that, although  BG  is not a sheaf, we have still an exact commutative diagram

analogous to that of Lemma 2: as P(TT) is again surjective in   BG(Rp+<?) (Cor-

ollary 27), and the G-invariant hyperfunctions on  Rp+q - {0}  have G-invariant

extensions at the origin (Corollaries 11 and 19), the result is the same.   Q.E.D.

Let «i be the degree of P.

Lemma 30.  The space  B?0°i of G0-invariant hyperfunctions supported

at the origin contains only G-invariant hyperfunctions.   The dimension of the

quotient

B{o}/^(n)BÎo} = B{oVP(n>8{o}

is equal to m.

Proof.  The first statement is contained in Propositions 8 and 15, which

also show that   By  is the space of the series  2aeNaana5  such that

(C) lim sup (JaJO)!)1 /2a = 0.
0£-*0O

Thus we have to compute the codimension of the range of multiplication by the

polynomial P(X) in the space of the series "LaaXa whose coefficients satisfy

(C').  But  (C')  means that  2aa(2a)!/z2a+1   is holomorphic outside the origin;License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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it is a classical result that this is equivalent to saying that 2aaz2a is an entire func-

tion of zero exponential type. Given such an entire function, one can always

find, and in a unique way, a polynomial Q(X) of degree at most  m - 1  and

an entire function  2baz2a  such that

Za«** = P(X)(£baXaS) +Q(X).

As ß(z2) and  2aaz2a  are of zero exponential type, so is P(z2)(Zbaz2a), and

so is  Hbaz2a itself, as  |P(z2)|  is bounded below outside some compact set.

In other words the coefficients ba  satisfy (C'), and the polynomials of

degree at most m - 1  are thus a complement of P(Tl)BG¡¡\  in   Bs¡¡\-   Q.E.D.

Lemma 31. The dimension of BG,p(Rp+q - {0}) is 3m.  The dimen-

sion of BGo>p(RP+Q - {0}) ¿s  3m  if p > 1  and q>l,4m if p > 1  and

q = 1.

Proof. BG,p(Rp+q - {0}) is the inverse image under Q of the kernel

in  B(R) of the operator

(*) P(4vb2v+2(p+q)bv).

This operator is of degree 2m and has a singular point at the origin: its principal

coefficient vanishes there with order m.   It is then a consequence of Theorem

3.3 of Komatsu [3] that the dimension of its kernel in   B(R) is 3«j.

If p > 1   and q>\,  BG° = BG  (Remark 6).

If p > 1  and q = l,  BG°,P(Rp + l - {0}) is the inverse image under

Q' of the kernel of operator (*) in  B(R').  As (*)  is regular on R~, its

kernel in  B(R~) has dimension  2m ; thus its kernel in   B(R) contains «i

linearly independent hyperfunctions supported in  R+, and there follows that its

kernel in   B(R') has dimension  2m + m + m = 4m.    Q.E.D.

Theorem 32. The dimension of the space of G-invariant hyperfunctions

u on Rp+q which are solutions of the homogeneous equation P(TT)u = 0 is

2m, where m is the degree of P. The dimension of the space of those which

are only G ¡¡-invariant is 2m if p > 1  and q > 1, 3m if p> 1  and q = 1.

Proof. As P(J\) has constant coefficients, it is one-to-one in the space

of hyperfunctions supported at the origin.  So the canonical restrictions

BG°'P(Rp+q)-+ BG°'P(Rp+q - {0}),

ßGJ'cRP + Q) _► ßG>p(RP + q - {0})

are injective. The theorem follows then from Lemmas 29, 30 and 31.License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Remark. We find here as a corollary the result of Methe'e [4] : there are 3

independent solutions of the equation (D + k)u = 0, where D is the D'Alembert

operator, which are invariant under the connected component of the Lorentz group,

and only 2 invariant under the whole Lorentz group.

There remains only the computing of the dimension of the space of G0-in-

variant solutions of the homogeneous equation in case p = q = 1. But in this

case, we still have an exact commutative diagram, analogous to that of Lemma 2:

0 0 0

l     i       i
0 — B{#V) — B(°,(R2) -^ S°5(R2) -♦ 8(^(R2)/P8^(R2) - 0

1 I 1
0 -h. BG°'V) — BG°(R2) -^ BG°(R2) — 0

I      !        I
0 — B^'V -{0}) -+BG°(R2 - {0}) -A tf°(R2 - {0})

1
0

f°V-{0B/BC°V)

I

in view of Theorem 26, where   B  °(R2 - {0}) is the space of G0-invariant

hyperfunctions on R2 - {0} which have a G ¡¡-invariant extension at the origin.

So  BGo,i>(R2 - {0})/BGo-p(Ra) is isomorphic to  BG0°}(R2)/PBG0°}(R2), and so

has dimension «i after Lemma 30. The canonical restriction

BG°'V)-*BGo,P(R2-{0})

is still one-to-one, and it is thus enough to determine the dimension of

BG°'P(R2 - {0}), which is the inverse image under Q" of the kernel of the

operator (*) in the space of hyperfunctions on R" without mass.

Theorem 33.  The dimension of the space of G0-invariant hyperfunctions

u on R2  which are solutions of the homogeneous equation P(TT)u = 0 is 4m.

Proof. In view of the remarks above, it is obviously enough to show that the
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dimension of the kernel of (*) in the space of hyperfunctions on R" without

mass is  5m.

A solution of the homogeneous equation on Rf = R+  depends on 2«i

parameters, and there are m more parameters as one extends to  Rj, and m

more as one extends to  R2 ; choosing these 4m parameters determines the so-

lution everywhere except on R3  and on  R4.  By adding m more parameters,

one can determine it on  R3, and it is then determined everywhere except at the

origin of R4, and can clearly be extended to the whole of R".  But it is easy to

check that  (*) is injective in the space of hyperfunctions supported at the origin.

Thus  5«i  is the dimension of the kernel of the operator (*), that is to say

P(4u32 + 43u), in  B(R"), and we have left to show that this kernel contains only

hyperfunctions without mass.

(a) If the constant term of P, say k, is not zero, and if S(v) is a hyper-

function on R"  such that P(4i>32 + 4bv)S(v) = 0, we get for any integer a,

integrating by parts on R"  and developing the polynomial P:

. infOi.a)

0 - $vaP(4vb2v + 4bv)S(v)du  =   ¿      Ajjva-'S(v)dv + kfvaS(v)du

inf(m.a)

= x  Aj(-ir-'(a-j)iaûl_j + (-irka\aa

by Lemma 20, where 2aeNaaô^a^  is the mass of 5.   As k =£ 0, these equations

imply by induction that all aa vanish.

(b) Moreover, if  k =£ 0, any hyperfunction   S  on   R"   satisfying

P(4u32 + 4bv)S(v) = T(v), with T without mass, must be without mass, since

there is at least one such (Proposition 24) and two of them differ from a hyper-

function without mass by (a).

(c) If S E B(R") satisfies (4u32 + 43u)r5(u) = T(v), where r is some

integer, and T is without mass, S also is without mass: in fact one shows ex-

actly as in (b) that it is enough to prove it for T = 0. Now this is obvious if

r = 0; if r > 0, the equation

(4u32 + 43„X4u32 + 4bJ~1S(v) = 0

means that (4u3j + 43u)r_15(i;) is a solution of the homogeneous equation

(4u32 + 4bu)R(v) = 0.  But the solutions of the last equation are the linear com-

binations of 1, ln|u| and H(v), where H is the Heaviside function; since they

are locally integrable, they all are without mass. Whence the conclusion by induc-

tion.
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(d) Since every polynomial is the product of some monomial by a polynomial

with nonvanishing constant term, the theorem follows from (b) and (c).  Q.E.D.

Remark.  The proof shows in fact that

¡5°°' V2 - {0}) = BG°'V - {0});

that is, every G0-invariant solution of the homogeneous equation on R2 - {0} can

be extended to a G0-invariant solution on R2.
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