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The purpose of this work is to set down some basic tools iowards
the computation of the algebraic and rational invariants of a Lie alge-
bra E; that is to say the polynomial and rational functions on Ef which
are invariant under the coadjoint action of the associated group, or to
put it another way the centers of the universal enveloping algebra of Eh
and of its field of fractioms.

New ideas introduced here are those of the soul of a Lie algebra,

and of its rational soul: they are jnvariant ideals characterized as the

smallest whose enveloping algebra {resp. field) contains all the algebraic
{resp. rational) invariants. To each invariant is also attached an ideal,
its carrier, and the largesi of them is shown to be the soul.

These ideas apply only trivially to the case of reductive algebras,
where the invariants are well known anyway. They are more developed in
the case of algebraic solvable Lie algebras, and specially nilpctent ones,
where souls are looked at as limits of seguences of invarianit commutator
ideals (called nere reducing ideals). Also in case E‘is algebraic, we
give an effective way to compute the rational soul.

The souls are themselves Lie algebras of 2 very particular iype,
inciuding all reductive algebras but not so much more, anrd their classi-

fication seems less hopeless than the general one.



Many examples of explicitly computed rings of invariants have been

spread in the text, illustrating {and using) the notions introduced.

Part of this was developed in collaboration with Anne Fenard (see EZ]).



$1~ The setting and notations

1.1 Q‘is an n-dimensional Lie algebra over the field k of characteristic
zero, and throughout the text we assume one of the two following h&potheses
to be satiafied:

_ either k = R or € (the fields of real or complex numbers )

- OT gAis algebraic.

Tn either case we call G the connected and simply connected Lie group

{resp. the adjoint algebraic group) whose Lie algebra is 9;.9 acts on EJ

via the adjoint representztion Ad, and on the duzal Qf of G via the coad joint

*
representation Ad

* * -
Vxe_q, XeG, feG , Lad (x)f , X> =, Adlx 1)x> .
* *
For feG , X€G we define X.f = gpf(x)e G by

Vveg (x.£)(¥) = £([%,¥])

1
and write as usual Eﬁf) Ker Pr - Clearly Eﬁf) = Inxf% , and

d

Ad tX)
i (exp f .

t=0

X.f

1.2 If V is a vector space cver kK , S(V) is the symmetric algebra of V,
and R(V) its field of fractions. If E is any subset of V, we write <E>
for the lirear envelope of E in V.

Tn particular S(G) and R(G) are here identified with the ring of polynomial
functions and the field of rational funciions on g*.

If P:G*~——>5 ias a rat-onal function, we call p(P) the Zariski open

3*
subset of G where P is regular, and for fe r(P), dP(f) is the differential

of P at the point f .



1.3 U(g) is the universal enveloping algebra of G, with its usual filtra-

tion by the subspaces Um(g) = {PeU(E) deg P my (mel), and

}:8(G) —U(G) the symmetrisation mapping.
If His a subalgebra of G, we identify U(g) and s(g) with subalgebras of
U(G) and S(E) respectively, and R(_g) witn a subfield of R(G). This is

L2 e

compatible with the bijection A

Iy S J
1.4 1f & is a set of derivations of G, we call U(G)" , 8(G) , R(G)" the
rings of QO-invariant elements of U(S‘:), s(6), R{(G) respectively. If H is a
E » o

subalgebra of G, we will write U(E)E . s(\g)Ii , R(g)}—I- instead of U(g_)adﬁ,

s(g)adg , R(E)E’d-}E . We will also write Z(G) for the center U(@g of U(G).

1.9 The symmetrisation mapping A is bijeetive from S~(_C.."_’)gr onto Z(G), and
it is an algebra isomorphism if 9,, is nilpotent ([6],prop. 4.8.12). Actually
for any 9‘_ it could be modified intc an algebra isomcrphism between the two

(see [9], théordme 2). If G is nilpotent or reductive, or G = [E,E] ' R(E}_)g-

is the field of fractions of S(G)g (see the proof of lemma 1 in [5], or in

the niipotent case [2], lemma 10).

1.6 Proposition: S(G)g' and R(G)Q are engendered by their homogeneous elements.

Proof: If {X1,...,Xn} is a basis of G, and
n
> . k
[Xi,Xj} = L C}i:j X, (giiksny Cijez)

S(E_})g’ and R(g)g' are the polynomial and rational solutions P of the system

*
of differential equatiorns on &



# k .
) ZJ Zcijxk oP =o ( i=1,.049m)
*
where the x_k are the cocrdirate functions on 9, inthe dual basis of

-3
{K.i,...,xn} 3 and aj = axj .

As these equations are homogenedus of degree zerc, S(“G‘)Q is the direct sum
of ite homogenecus subspaces. Now if P = 2B e R(S)g-', 4 and B being rela-
tively prime in b(g), the system (*} is eguivalent to the existence of

*
XEQN such that, for i=T,...,n
n

n n
Z g::;c}i{.j 3&() ajA -epr(Xi).A = Z Cl:‘fj X ‘3;;3 - expx()(i).B =

5=1

(reasoning as in [5] lemma 1). As these equations are again homogeneous cf

degree zero, the conclusion follows for R(E)g’ toc. @

We will often use the following basic result of C. Chevalley end

J. Dixmier ([2}, lemmas 7 and 8) i

1.7 Theorem: Let G be the Lie algebra of an g—dimensional algebraic group G

of eutomorphisms of & vector srace V of dimension p {all over k). Take a

. 1 .
pogis {x1,...,xnj of G, a basis {v1,...,vn} of V, end call B = (b))

the nxp matrix with entries bij = Xi(Vj) in VeR(V) . Then

(1) the *ranscendental degree of R(')g' over k is the dimension r of

Ker B ¢+ R(V)P —R(V)"
(i1) V peRr(V) PeR(v)Q.(—_—«_-;’ dPe Ker B

(iii) {G.Pj PeR(V)g} engenders Ker B .



&2~ Algebraic definition of the soul

2.4 Definition: We call soul f.u = &(9) of a Lie algebra 9,, the intersection

of all subalgebras B of G such thai ulH) 2 2(3)

2.7 Propositions é(g) is the smallest subalgebra H f G such that U(E):DZ(Q),

and it is an (Aut G ~Yinvariant ideal of G .

Proof: The family F of subalgebras H of G such that U(g):z(gj is obviously
atable under finite intersections and not empity. So any element of i of
minimal dimension is A(G). If @ehut G, 50(‘1}_‘) is also in F, and of the

same dimension as & , S0 50(&) =4 .8

2,% Propesition: (a) The soul of a direci sum of algebras is the direct sum

of their souls.

(b) A reductive algebra is its own soul.

Proof: (a) Clearly 4(S,@G,) < A(G,)@A(G,) , since 2(¢,®8,) = 2(G,)®(g,)-
But for j=1,2 z(gj)c: z(g1egz)c: U(g(g@gQ)) and thus &(93)C£(§1@92) .

(b) Using {a) we can cszsume that G is aimple cr abelian. If G is simple,
A(G) is either {0} or G, by 2.2. But é(g)={o} is eclearly equivalent to
Z(g) =k . As the Casimir element of G is a second degree elemern:t of Z(g),

we rmist have A(G) = G in this case, as shviously in the other case. ®
[P

2.4 As the above shows, the notion of soul is empty for a reductive algebra.
On the other side we have &(9) = {o} as soon as 2(G) = k , and this is

already the case, for instance, fcr the Z~dimensional non-abelian Lie

algebra. But "in general" the scul of a Lie algebra is a proper invariant



ideal, which dces not sven helong to any of the three classical (central
cescending, central ascending, and derived, here written g.g, Q'E, and Eﬁ.) )
ceries of invariant ideals, as the following example shows:

Eris the €—dimensional nilpotent Lie algebra defined in a basis {X1,...,X6§

by the brackets
ol =x, [_x1,x4] = Xg [X1,X5] - [xz,XB] = [X2,X4-l = X
Clearly c“c G = {o} ; 03G = C,g = LX>5 c¢?g = <XgaXg>
‘1 | - . .
C = <x4,x5,y6 ) <:a<3 x4,x5,x6> ;

and C,G = G . But z(G) =k [% x§-2x4x6+2x5x6] , and 0 A(G) =< XXX, X

1)
f\_)
i
e
\N
u1
B
'
1]
3
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f2. Geometric definiticre of the scul
"

3.1 Provosition(¥. ReIs): The soul of G is the subcrece é(g-) = 2 , . ap(f:
*
Pe S(G)g,feg

7+ is the smallest subspace V of & such that S(V)DS(Q)Q.

Proaf: Tf V is a subspace of § and S(V) DS(G)Q", then .for any PeS(E)g,

R

¥*
feg ,f‘eV'L, we have BP(f+f') = P(f) , so that £apr(f),f"™> = o . Hence

V ccrdzins the space Vo= E ' dp(f) .
O e %
res(g)*,feg

AL
0

we have Sp‘(t) = Lap(f+tf'),f'> =0, 80 99(1;) = ;0(0) . Thus S(E)*g'c S(VO).

E.3
Reciprocally if Pes(g)g, freg , f'ev and we put P(t) = P(f+tf') (te.}_c_),

* *
Por any xe€G and f&G , the invariance of P implies 2d(x)an(f) = ap(ad (x)f).

Herce VO ie ar idezl of G, and by the gyrnetrisetion mapring U(VO)DZ(E}_).
If now K is & cubalgebra such that U(H)DZ(@, we have again by symmetrisation

S(HEY > S(G)g', thue H DV . 3y 2.8y V_ = Alg,.®
s - Ad 0 -

z,7 Froposition (M. Reois): Assume k=R or ¢ and there exisls & dense

*
G-invariant open subset {2 of G such that S(G)gg_gparates the G-orbits

*
in £1. Then for any subset L of )} wwicn is Zariski-dense in G , cne has

LG = Z Glf) .

- fe

1 -
Procf: Take f{'€ n G(t) and PeS(g)"". For each f'€ [Ll' we can
fefl'

choose X€ G gquch that f' = X.f . Since P is G-invariant,
LAP(£),f'> = Lap(f),X.f > =o
and the polynomial function f|——)<dP(f),f'> vanishes on £1', thus
EVL"—.‘I’II\,;}“_.: T i : 1 .-L
. P € n~*(dP(f))

fe

e

. Finally



...9...

4 1 4
M Gr) <« Q L (@P(£)) = a(g) by 3.2
el

re S{G)*,feG
. " ‘
Reciprocally if f'eg(g) , for any rel) we can find &€>¢ such that for
ary tek , |t|<€ implies retrrefd , If Pes(g)g-, we have by 3.1
*

p(f+1f') = P(f) , and using our assumption it follows that f+tf'e Ad (G)f
for {t{< € . Differentialing with respect to t , there exists X& G such that

4
£' = X.f , hence f'e€G(f) . Thus

L 1 L
fz(g.z)'j“ < glr) = ﬂ ) < alg L@
fef) fed

3.2 Definition: Let O be an orbit of ithe ccadioint representation. We call

*
saturation subspace D(Q) of C the set of all f'egv such that for any fe 0,

L
- N c(fy  , that is D(_g)'l' D G(2) ,

{teg l f4tf 69} iz cpen. Clearly D(Q)
- fel
where S(Q) = Z G{f) is the smallest ideal in E contairing any one

feg

of the g(f) for feQ .

Proof: By 3.3, (9

‘ﬁ.
W
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€4~ Tre soul of a nilpotent lie algebra

4.1 We assume in this paregraph that E'.a is nilpotent, and k =R or € . The
field of fraciione of Z(S; cen be identified, via the symrmetrisation, with
the field of fractlons of S(Q)g, and this one, since E’, is nilpotent, with
R(g)g {see 1.5). Furthermore R(g)g" is a purely transcendental extension of
k of degree T = n-2d , where d ic the commutativity defect of & ([2], defi-

nition 2), ard cre can fird P, Fiyeee P, in z(G) such that F_ £ 0 3

Pj = A'1(Pj) e S(E)g is homcgeneous for J = OylyeseyT : the natural

morthism 15(51"”’51') -3 R(g)g is an isomorphism ; and the G-orbits in
g* which are ccrntained in the G-stable Zariski open subset

= {xe 9* | af’o(x) £ c} are exactly the algebreic subva.riétie.s defined
ty the equations

‘ﬁjkx) = aj B IS ajGE )

(See for all this [2], and [14}, proposition 2,2). Thus 3.4 applies here :

4.2 Corollary: 1f G is nilpotent, the orthegenal of its soul is the inter-

section of the saturation subspaces of all the orbits contained in eny open

*
subset {1 of G defired as in 4.1 .

* *
4. Let G. be a 1-codimensicral ideal of G, and M: G —> G, the canonical
w] w e we]

projection. 1t is well known ([14]) that only one of the two following

situations can occur @

, A4
- either Z(g) c Zj(.}_’.‘)_ , hence &(g_) <G, , Ker T < A(G) , and by 4.2
each orbit C0cfl contains with any point x the entire fibre ! (t(x)).

We shall then say that E1 is a vertical icdeal of G.



-1%-

- or 2()E2(G,) , but then  5(g) = U(E)N2(E) R(G)® is 2

transcendental extension of degree one of R(§1)g’| = R(..G4 )Q , and one can
. . Gy .
find P ,...,F € 2(G) such that PiyaeerPly generate P“(..ng L. ¢ U(g1)

(see [2] lemmas 9, 1C, 11 and propcsition 3) , and {Po""’Pr} has all the
properties described in 4.1 . In particular if Q is an orbit in {1 and 1

a fibre of T meetingg ’ ﬁrﬂaril is not identically zero, and 102 is “a
thus finite. As 1(’13 is also comnected ([_14] lemma 6.1), it is a single %
point. We shall then say that 51 is a transversal ideal of G,

Furthermore we shall say that G is completely transversal (resp. comple~

tely vertical) if all its 1-codimensional ideals are transversal (resp.

vertical).

4.4 Provcgition: let G be a nilpotent algebra over £ or €, G' its derived

zlgebrz, & its soul, and E‘I a 1-codimensional ideal of G.

(=) 91

is vertical if and only if 9.1 DA, transversal otherwise,

(b) G is completely vertical if and only if A« G'.

(¢) G is completelyv transversal if and only if A=G.

(4) The intersection of vertical _U-codimensional) ideals of G is the inva~

riant ideal A+G'.

Proof: (a) comes from the equivalences

peg e Q) € UE) <> UY < ()

(b) The family F of 1-codimensional ideals of G is precisely the family of
1-codimensional suberaces of G containing 9,,'; thus

Lo G'&e==> A n G, and (v) follows from (a).

(c) As soon as A #G one can find a i-codimensional ideel G, containing &,
and G, is then vertical by (a).

(a) follows from (a) and the proof of {p).m
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4.5 Let us call Z the center of Ge. Clearly A oD E So if Eis completely
vertical, necessarily 2<&G'. But the converse is not true: if G is the
only A-dimensional nilpotent Lie algebra which cannot be split into a direct
sum, it can be defined in a basis {X1,..,X4} by the brackets

[x,],x?] =%, [x1,x3] =X, -
Then G, = <X2,X3,X4> ig vertical while G, = <X1,X5,X47 is transversal,

. o 2
aince L'(ti) =k [X4,X3—2K2)L4] and thus &(g‘) = <X2,X3,X47 =G, ?f S, -

4.6 We will call unsplitable & Lie algebra g which cannot be written

E1$ 92, where the dimensions of 91 and 92 are strictly less than that of G.

4.7 Proveosition: Let Q be nilpotent, unsplitatle, of dimension = 1. Then

if 2(G) [\ G engerders 2(G), G is completely vertical.

Proef: z(g)ﬂg = 2 is the center of G, So Z(G)e« U(Z), and clearly
A(Q) =2 . If {xq,...,xp] , {x1,...,xp,xp+1,...,xq] .
{X1,‘¢.’Xp,xq+1,o.-,xr} ’ {X1,-oo,xr’xr+1’000,xn} are bases of ?:.-n E',

z2,6G ,6 respectively, ard if G, and §2 are the subsyaces engendered by

{Xp+1""’xq} and {x1,...,xp,xqﬂ,...,xn} respectively, we have

E =G ®BG, . As _92 = {o] would imply n=q , SO E: 2 5 and an unsplitable
abelian algebra is of dimension one, wWe have 94 = [o} , 80 p=q , and

&(g) =2 < G' . The conclusion follows by 4.4(b).®

4.8 The completely veriical nilrotent Lie algebras are not rare. For ins-
tance there are 6 classes of isomorphism of unsplitable nilpotent algebras
of dimensicn 5 (they are given and called r,; 3 1€£35&6 in [3]), and 24

]

of dimension 6 over R, 20 over € (given and called G6,k , 1€k€24 in [15])_
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One can check that the completely vertical ones are the r i for j=1,3,6
’
and the Gé,k for k=2,8,9,11,15,16,17,19,20,21,22,23,24. A11 but the first

five G6 K cited here satisfy the hypothesis of proposition 4.7 .
]

4.9 The comrletely transversal nilpecteni Lie algebras, that is the alge-
vres which are equal to their soul, are much less comncn, &3 the following

table shows:

(geetdbch7nu€Pﬁge)

Lpart from k itself, the seven unsplitable completely transversal algebras
of dimension < 7 (over R or €) are defined below by their brackets in a
basgis {X1,...,Xn} , and we give for each cne the center Z of its enveloping

algebras

() (= F5’4 in [3]) X%, = XE , [x1,x3] =%, [xz,xﬂ

2 —k[X4 53 X2-2X x4+2xx]

(“"'G6,15 in [.15]) [vaz] =% [wai] = X [xz,xﬂ = Xg

Z =k [x4,x5, O xé]

p—

(b

() [xwxﬂ = X5 [x1,x3__| = X, [x1,x4] = X,
[Xva] = %Xg 0 [Ko¥s] =% [%5%4 1= ¥

L gr%ps X -ﬁx B 2x1x7]

(d

—t

[x1,x2]: X5 [XT,Xﬂ =X, » [x1 ,XA] = Xg [x, ,x5] = X
[ngx3] =X, 0 [Kprks 1= % s [x50%,] = -

2 2
7 =x [xé,x,(, x5x6+x X-2x 4x6-2x5x5x7+2x2x6x7.-2x1x7]
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(e) [x”xﬂ = %y [x1 ,XB_J =X, [x1,x4] = Xg [x, ,x5] = X¢
[KE’XBJ = £g (%21 X,]=% g [xz'xs] X [ 4]
Z -k [xs,x,l, 2x55+5xi17-6x 4x5x6+sx3ng6x3x5x7+6x2xéx?—6x1x?[]
[x1 Ao | =X, [){1 ,X5] = Xg x1,x5] = xg
[xz,xﬂ = X [x2,x5'j =X [X.j,,xd = X

7 =k [xé, e e ma XE 42X ) Xom2X 17]
[x1,x2]= Xy o [x1,x3] = %5 [x1,x4__[ - X,

Pkl =% o (RoXg =2 s [%5%si=

L e 2
2=k [ grX 5x7+x4x6-2x5x,‘.-2x?x £ +2% xbx.?]

That the last five are the only completely +ransversal nilpotent
algebras of dimension 7 can be checked on the list of all 7-dimensional

nilpotent Lie algebras over i or € given in [18] .
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§5- Reducing ideals and the soul

5.1 Definition: If J is a subalgebra of G, we =ay that Qe U(G) is

;J;-reducir:g if =24 Q : i————)U(E) is of rank one, and we call c{Q) the

kernel of this mapping, that is to say the commuitator of 0 ir J .

5,2 Lemma: Let QeU(g) _b_e__J-—reducin.fz,_a::d Fe U(g’) .

If [P,Q] =0 , then F€ U(c(Q)) .

Proof: Let { X, geeesX 1 pe & basis of J such that (X gevegk 7 isa
Prooi 1 4 2 )

m
basis of c{@). If q and P are the degrees of § and F = Z adXT"...K;m
(d ={\d1gov-,dm)é Nﬂl), we have
m
- B ag 1
o = LP,Q] = 3221 5. [xj,o,] modulo Upﬂ_glﬁ)
= =1 Hg Ay 1
= ( Z ; Ko Xyt Kple oKy ) [%,.2] modulo T . »(G)
0{1+...+o!m=p

A= [}[1,(3,] ;é o is of degree q, this implies d1ao( = 0 as 800n ag
e

. B . , ,
o(1+...+am=p , that is to say P = PP+P with Ppe U(ckQ)) sy P eUpﬂ(J) ’

and [P',Q] = [PP+P',Q] = o , The procf foliows by induction on p . %

5.3 For qe, let Rq(.l) be the intersection of the cormmutators e(@) of

all J-reducing Qe U (G) .
W qQ

Lemma: If J is an invariant ideal of G, 89© is R(J (:L).

Proof: 1f Yehut§ , 5p|£eAut J and if QeU () is J-reducing,
()D(Q)EUQ(Q) is thus also J-reducirg, and c((ra(Q,)) = (F(CKQ)) . So

tp(nq(g)) = ?(Q c(Q)) =?Q) (@) =Rylg) . W



16—

5.4 Definition: Write R(i) = n Rq(g) , and define a sequence R‘j(.l) by
gel

W) = R(EI(1)) end EO(J) = g . We will call the rJ(G) the reducing

idesls of G , and finally we put R(J) = ﬂ RJ(g) . The following
je ™

proposition follows immediately from lemma 5.3 @

5.5 Froposition: Let J be an invariant ideal of G.

(2) For any finite seguence Qqsee<sly of integers, Rq (‘Rq
1

eenty ()-2)

is zn invariant jideal of 9, .

(v) The R‘j(i) (je W) are a decreasing (thus stationary) sequence of

invariant ideals of G . In particular Rw(i) is an invariant ideal of G, .

5,6 The notion of an J-reducing Q&U(g) is well krmown in the case where
deg @ =1, 3=G , and [€.6] = 2(&) (s=ee [14] lemna 4.7; [11] II Chap.II,
83 3 [6] 4.7.7,8,11,12 3 [11] Satz 1.5 ), but it may happen that U(G) has
no g-zeducing elemert of degree cre, while having many of higher degrees:
for instance if G is the 6-dimensional algetra defined by the brackets
[x1,x2] = Xg [x1,x5] = X [xz,x4'] = X » {xa,x4] =X
one checks easily that ad X @ Qg-—-—>§ is of rank 2 or O for any Xe§ .
But X2X5+X5X6 . x1x5—z.4x6 s X1X6+X315 and X2X6—X5X5 are G-reducing, and

H(E}J) is the center <X5,X6> of G .

5.T Lemna: Let G be nilpotent, J a subalgebra, Q€ U(G) be J-reducing.
= .}El

Assume [_Q,‘._JJ

c('%,!) =e(Q) , or Q commutes with J .

Q, » with Q1eU\§) . Then either Q, is J-reducing and




Proof: First note that c(Q) is not only a subalgebra of Q_, but an ideal of :L :

i

take Xev{-c(Q) , S0 that [Q,)&J Q, £o0 and J = k.x@®clQ) ; it Yeclq),

we have [_X,Y] -~ aX modulo c{d) , and hence

a, = [Q,aX] = [e,[x.x]] [[e.x],¥] = fa,.¥]

Y0 a is an eigenvalue of ad Y Uq((::_) -—?Uq(g.”) , wnere q 1is the degree

of 4 and Q.. As G is nilpotent, a = o , and [g,c(Q)] < c(Q) . bow

[¢] = Mexde] = Ta, [xx]] +lax]x] =0 @

5.8 Fropcgition: ;_f_g is nilpotent, g is a subalgebra, and g is J-reducing,

-

thewe is another J-reducing Q' of the same degree, such that cl@') = cLQ) ’

-

amd [a,9] = UE7 .

Proof: Choose XeJ-c(Q) , and put e, =49, Qy = [Q,,X] £ o, Q’j =[Qj_1,X]
for Jj»1 . By the preceding lemma, all the non-zero Qj are of the same
degree q , and either in U(E)'*I' or J-reducing and such that c(Qj) = e(Q).

As ad X is nilpotent in Uq(G), there is a smallest integer j_ such that

J
0] _ : | I
(ad X) °(Q) = o . we have j_3z 2 and chocse Q' = Qjo_2 . -

5.9 Lemma: Let A Dbe the soul of G , J a subalgebra, and Q€ U(g) be J-reducing.

It AeJd, then Accl@) .
—_— e we ——

Proot: To any FE Z((i) = U(&) s U(g) we can apply lemma 5.2. Thus

72(G) e= U(e{Q)) , and hence & < c(Q) . W

5.10 Corollary: All the reducing ideals R, (...(Rq (G))ees) Rj'(g) .
1 J

R®(G) ccntain the soul ot G .
w [

Proot's Apply lemma 5.9 as many timee as nececssary. B
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.11 Proposition: Let E}, be an algebraic Lie algebra, J and J, ideals ot G,

_—— w‘] Skl iivel—Ri

J ot codimension one in J . If R(i)v- fand R(J ), then R(G)'-]ﬂ is a trans-

i v —_— L

cendental extensicn of degree cone cof R(g)

Prcof: Let {Xr+2"°°’xn;} ’ {Xrﬂ"“’xn} ’ {X1 ,...,Xn] be bases of “3:1,

;T“, and '(;: reaspectively. Then for = R(J) we have
G , E '
PER(;{)“"@::?V?;:",...,H [X =0
J=r+1

and the inclusion of H(;I’)L‘g’ in R(ii) me ans

n
; z : - P
k*) VPER(J) Vi:1,-oo,n X.,){. 'B_P- = 0 —-7\6' a = 0
v . it ddx, oX
j=r+1 3 r+1
By 1.7 applied with vV = ;IJ , we know that the solutions
1 . n-r . C
{Qrﬂ""'qnj in R(i) of the system of equations
v i=1,00e49n E , [ 0
J=r+1
are linearly generated over R(J) by the solutions 5__313 . o
T - XrH’..’an,

where Peg R(J . Thus (*) implies

Y izi,.e0m _ [ ,x]o, = j#Q -0 .

= € 1< ] N = . i
Put a5 [xi,xj] S(i) for 1€ign, r1<£Jj<n A (au) defines
a R(;I')-linear mapping R(_J‘)n"r—-——a R(g)n and rank A = (n-r) - dim(Ker &) .
Condition (**) means Xer AaVW = {Q veey le R(J)n'r l Q =0} .
/ r+1?°°° ' "n | w r+1

Thus rank AIW = rank A -1 . Let B= --tA and B,‘ be the matrix obtained
vy deleting the first line of B . As a; €J; < R(J,) for 1<€i<n and

+2<j4n , the rank of B1 over R(‘.L‘) is the rank of E over R(g) minus one,

-

andi for any Re R(‘Ci) we have
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n
Re}{(g)‘gé___“;v‘jzrﬂ,...,n Z [xj,xi]%‘_- = o

i=1 1
3 n
- 3¢
rRe€ R(G) 14?—_7; Vj=r+2,...,n Z [X.,X. OB =0
™ . J 1 a)(
i=1 i
J J1
By 1.7 again, the transcendental degrees of R(G)~ and R(G) over k
are n - rank B oand n - rang 31 respectively . B

.12 Corgllary: Assume that G is nilpotent, Then, with the same notatione,

if U(J)g fend ULJ1) , U(G)e is strictly included in U(G}{’l .
W [ oad bt W

Proct: By 1.5 we have U(g)g = X‘1(S(£)g-) and  U(J, )§_= A—1(S(£1 )c'-}') .

and their respective fielde of fvactions are isomorprhic to  R{J )(-;' and

R(J )" by [ ] lemma 1C . Thus our assumption implies R(J )Q, [k R(J )c-:L' .

ts G is algepraic, we can find by the last propesition R € R(G) --R((}_)'L ,
- I

and again vy [2] lemma 10, R =FQ =, with PR € S(g)

o} a0

As R ’é R((d-)‘l , there exists Xeg-g,l such that
- —
o # [Ro’x} = ( [Po’x] - PoQo [Q‘o’y‘] )Q’o
\ -1 ra , -
Thus [PO,X]# POQO [qO,X] , and either [l—o,)&] # o0 or [QO,X] Lo .
J
Hence either P_ or Q_ belongs to S(‘C_})q—S(E)g“ , and its image by A to

J
w(e) -u(e) . m

5.15 Theorem: It G is nilpotent, R®(G) = A(G) .

Prnof: Bv 5.5 the seguence R‘j(g) ig stationary, say at Rao(g) = R®(G)

ard by 5.10, 4 = 5(9.,) < RJO((}) = J . It the last inclusion was strict

cne could find an idezl £1 of G of codimensicn 1 in J, and containing A, and
20) & 1) v f e vt e ug - 2

would imply U{J )Q = U(J1)g' . By corcllary 5.12 there would exist Qe U(G)
LY L4 [
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+1
commuting to J, but not to J , thus J-reducing. But then R ° ((d‘) c clt) = 91
, | 3,
weuld be stictly included in J =R (G) , in contradiction with the defi-

nition of jo . R

5.14 The necessity of considering reducirg elementz of all degrees to get
a statement like $.13 will be shown on the example of the triangular alge-
bras in the next paragraph. The necessity of several successive recuctions
{the sequence Rj) follows already from the remark that in any case

R(g) = G' when § is nilpotent, since all the c(q) are 1-codimensional

ideals of G (see the proof of lemma 5,7), thus contain G' .

5.15 Example: Take G = PS 5 (nctation of [5]) , that is to say the
1

5-dimencional algebra defined by the brackets
[x1,x2] = X, [x1,x4] = X [Xz'xs] = X
One can creck that X4, Xf)' and Xi—Qszs are E-reducing, and
c(xﬁ) = <x2,x5,x4,x5>, c(](i) = <x1,x3,x4,x57, c(xfl-zxzxs) = <x1 ,xz,xd,x57 .
So R(g) < <x4,x5> =G' , thus R(E) =G' by 5.14.

But X, is G'-reducing and c(x1) = <X5> . Finally :

A(6) = R%(Q) = R(Q) =< Xg> F <Xp¥57 = R(G) = G'

5.16 wxaunple: 8 ig the 6-dimencicrel nilpotient algebra {called G6,2j in [15])

defined by the brackets
[x1,x21 = X, [x1,x3] = Xs [)(1,3(4] =X [Xz')%]: X s [XZ'XA,] ==X

. _ v2_ _
Q, = X3X5+X4X6 y §y = X4X5—X3k6 and Q"j = X4 2)&1)L5 2x,X,  are the only

G-reducing elements in Ug(g) and more precisely
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G(Q1) = <X ] 5!G > ? C(Q ) <X4’X3!E'> ¥ C(Q5) = ‘<X4 !xzigd'>
and - [Q.I ,X.I] = [Q2QX2] = {QB!XB:’: 'X§+X26 < Z(Q) *

<X

so R (G) = R(G) X,> =G . Further X, is G'-reducing, and

4*%5?
e(X;) = <XgpKg» = R%(C) = AGG) -

5,17 Example: E is the 7-dimensional algebra defined by the brackets
[_XP}“?_] = [Xi"xz;:l* x.] ' [_X‘I’X}] = [XE'XJJ = Xg o [x1'x4] = [xz’xjj = xs
The orly G-reducing elements in Uz(g) are

= =X = = - -
Q1 X7+K5X6 5 ’ Q X1X? X3X5+X4X6 ’ Q3 X X6+X2X5 K4X7

__xx-xxe+x3x7 and [Q X]—X-X IC; (3=1,2,3,4) .

and Q4

Thus (c) (G) A(g) <x5,x6x7>

5.14 Corcllary: For a nilpotent algebra 9, the fecllowing conditiorns are

ecuivalent:

(2) G is the scul of a Lie algebra over k

I

{b) 9 is its own socul

{c) There is no Ehreducinggelement in U(g)

(a8) S ias completely transversal.

Proof: 1If Eﬁ: é(&) , there is no Efreducing element in U(E) by 5.9. In
particular there is none in U(E}. Thus (a) ==>{c) . (c) ==>(b) by 5.15,

and (b)=—=>(a) trivially. rFinally (b)&==>(d) by 4.4(c) .H®
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£6- ''he example of strictly lower iriangular matrices

.1 We call Tn the nilpotent Lie algebra of strictly lower triangular
. . . . 1 .
4 .
nxn matrices wiih entries 1n k , and {Xijl 1€ 3€ig its canonical basi=s @

all the entries of Xij are zero, but for the {i,j)th , equal to ore. Clearly

(%) [xié,xklj = Sjkxil - Slixkj for i>j,k>1 ,
with c9jk = o if fk, 1 if j=k .

we will use the notaticn rAI for the formal determinant of an mxm matrix

A = (aij) with entries in a not necessarily abelian ring, meaning :

lA' = ZE: E£f}aﬂ\1),1‘”"adtm),m

0_6631
where Ekdﬁ is the signature of the permutation & of {1,2,...ﬂn} .
Let us write D1 = Xn,T s D2 = Xn—1,ﬂ Xn—1,2 g sos 9
Kn,T Xn,2
D n k=1 Xn+1 .....Xn+1 n
(3] 7 |7 5 J*is 2
X .llll.... x
n, n, n
2

where [.] means the integral part of a rational number.

’

It is known that R(Tn)wnr is the field k( 51,...,3 n]\ ot the rational
'™
2

functions of the ﬁj , 1-.4.'34-[121-] ([4], th.1 ; we again write P = k-“LP) )y

T
and more precisely S{T yvn ja the ring k| D yeeeyD of polynomial
wil - 1 n
Z

functions ot these variables ((4], lemma 2 ). Thus

Z(En) = k [D1’.-"DP%]] . bv 1.5, and we conclude
sa) - <Jrg Dol o] <] >
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i n+l .
For any qQ 4[—-_2 , we call A,  the matrix (xij) ha1<ign,1<i<q !

znd for 1<£1l<q , we call Aqi

the matrix obtained by replacing in Aq
]

=, A 2 —1 - []
the 1-th column by the cclumn ‘{Ki,q+4 ln—q+|£:Lsr{J y and Aq,l the one
chtained by replacing in Aq the (n—l+1)—th row by the row {Xn—q,jl 15;35;;} .
il t { = IA I a9t = {A' l and we call J and C the sub-
e pu QQil Gyl i Q‘q,l q,l ? ~{ =q
ﬂmwsofgremmeNﬁlﬂ‘weXﬁ for 1€ j€n-3 , atI<ign (i>j),

and for 1<3j<q , n-3+1<i<n respectively (they are ideals of En) :

6.2 Progosition: (a) Qq 1 ‘s Jq—reducitf aré more precicely
9 Lo

D, iL {i,3)

o atheryise

(q+1,1)

1. .ed [' Qg .] =
1] w = QQ.sL’ i,

(b) Q&,l ;gﬂgq—reducing and more precize ¥

D ir (i,3) = (n-1+1,n=q)
x.e J = |8 X, ] = :
ij = wg [ y 1773, o otherwise .

Preof: A direct computation, using the relations (*) . @

By induction on g one can deduce easily :

- T a q n '-'-‘_:‘1+1

6.3 Corollary: R (En) - £q+1 for oé~1<1l 5 .
Fii]_-] o

And  RL2 (gn) = J = A(gn) = R (gn) .

“-"[n+1'l
2
The necessity of considering reducing elements of arbitrarily high degree

for obtaining the soul of an algebra as the 1imit of reducing ideals is

shown on this example by the fellowing proposition 3



Xh“{)" - - - x"‘q“i

X""i*"fr' -~ 'Xn«qn,q




6.4 DPr ition: R {J
4 DPropositi q(wq)

Proof:
ducing

For any
the X, .
1]

Q1 is a

n

34
r=1+Z

X

r,1+1

and since no

Hence c¢(%) is an ideal of Jq

lemma 5.7)

polynomial cof the Xij

belongs

containing all the

24~

= <q<|3] .,
gq for o=£q [2]

'Xrl

T,1i+1

i T s
{since B

X1+1,1

1o gq , we ccorclude Ql =

The proof uses tne next statement. Suppose there exists an Jq-re-
J

A . e vq

%qu(E‘n). By 5.8 we can ascume [Q,gql < U(:l;'n) .

1, q<li€n—q , Ql = [Q,X1+1’1] is, by theorem 6.5, a polnomial of
(n—q+1$i$_n,15j£q) and the Dm(q+‘|£mé[§}). ks deg leq '

alone, that is Q€ U(gq) . But

moduls terms ¢f a lower degree,

o .

nilpotent, gee ithe prcof of

(q<1<n-q); but this implies

c(‘;?,) = -'-]Jq , contrary to the definition of a reducing element. B

6.5 Thecrem: The commutajg;;giigq_;Q:U(En) is_the abelizn algebra of the

ol

n c .
For q = [;] , this is nothing but thecrems

proof we give here generalizes the argurents of

lemras.

=T

£ 1L

= ==

2D

1 and 4 of [4], and the

[4]. We divide it into five

the space of pxp' matrices with entries in k,

For N we call M
pe @ p,p'
Moo= M d if X =(x,.) el and 1<€g< ut
. pyp * AN (13) p q<p , we T
A X = x s ssaase smas X
q( ) 1,¢ 14D
Xomq+l,q "0 Fpa4t,p
and N = Jxen |A A o0 A .
. z o, | 4,008 00 A0 £

6.5 Lemma: Ary XelN

can be written in crnly one way

E.

X = YEZ , with
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I ¢ A 0
Y = y L= , I teing the unjt-matrix ¢f M, A and D
E I 1

lower ftriangular matrices of M with entries 1 on_the diagorel, BeM ’
B4 A G,2-9

eM d E = ]

CeM o 4 and (eij) with
xij if 1<i<q gnd pg+l<j<p

@5 = (o if i>»e or Jj€pa, ad i+ # ¥

AT . , _
(Tt M aveise amd = p-itl

-

Y has <he ceme form as Y and put Y-1 = (v. ), 2=z,

Ayl

Pronf: Note th

ii ij
The eguation X = YEZ Dbecomes :
(*%> v i’f' Z y-i ‘L,-}r‘s{j = Z e;:ﬁ_zg{j
kz i T kel - '
For q+l<igp and je>p-i+l , (*¥) means z, YiKes = %550 and
kegi-1 o H
thig determines the y., entirely, the detevninont of the syeten Teing

ik

N - . . - - - -
A JYY 4 o, Tence Y ie uriguely determined.

r i ) i o= peisl o (%% g S . : = .
For qgq+l<i<p and j = p=i+l . {¥*) give ©5, pmi = X, peiet

and-byv the Craner fimmilee (Iving the ¥..o o

o D

i- ) i
ei,p-i+1 = (-1) -m . In particular ei,p-—i+1 £o .

For g+l1<£igp and j<Lp-i+l , we wzet Z yikxkj =

e, - .
ke im1 i,pri+t 141,

which determines the zp—i+‘l 3 for 1<j<p-i , q¥1<1i<p , that is to sey
¥

the matrix & .

For 1<i<q . (**) becomes x, . = Z

e, Z . ,
13 k3 3 ik k3

and we get xij =e.. for pqti<j<p , and for 1=£jspq

J
X.. = ; : eikzkj

o kzpq+

The determinant of this last system with unknown zkj (pqt1<k<p , ] fixed)

im Aq(}() £ o, and the matrix B is thus entirely determined .8

We owe the proofs of the iwo following lemmas to J. Briangon.

X,
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6.7 Lemma: Let F = Z Faﬂd be a polynomial function on Mp , where

* A%+ %p p—q :
A = Aqﬂ AP , end for each o= (otqﬂ,...,dp)elN , F is a poly-

nemial of the xij for 1<i<l , p-l#t=j<p , where 1l = sup {kldk ;4 o} .

Then if Aq divides F , it divides all the E .

Proof: By inductior c¢cn 1, qgl=p.(It is clear for 1=q). If F = Z FdA«

&
g+ ....Al , and for each

of
iz a polynomial on Ml (1>q), N =

= ._cl i : - ; '
A = (dQ+1,...,d1)ei1\Il Fot iz a polynomial of the lij for 1£igl' ,

p-l+1<jgp , vhere 1' = sup{k]o(k # o} , and if Aq divides F , we can

- - of
write F =G + F where G is a multiple of Aq and F = 2 AT,
€A

L peing the set of the o(e[Nl-q suchthat Aq doee not divide ¥ .« The res-
triction of F to the subspace of I‘Il defined by the equations

. o
=0 (1gigl) is Z . A, and it is again a multiple

*i,p-1+1 o
Aeh, &

=0

1

of Aq‘. By induction we have {o( EA\O(l = o} =@ , and thus

o —€
o= Al( z Fdﬂ 1) where o - Eleiﬁl—q and El = (o,...,o,1) .
deA

As Al and Aq are relativelr prinre, the bracket is itzelf a multiple of

Aq , and the proof follows by irduction on Je] =dQ+1+...+d1 . R

6.8 Lemma: Every polynomial function on Mp which ig a polynomial of the xij

A

. 1
(1<isq , p«-q+‘T£ij£~.p) and of —Aﬁ- gresy Z-Q , is actually a polynomial
q q
of the mseme x_ . a&nd of A ,...,A .
B Ny —/— Ta# p

K
<™ A q+1 A _\%»
3
Proof:; Let P = Z_, P“ (___‘1‘_*_) sees (IE) be a polynomial

ac\ A q

q
function on M, where AP is finite, and for o = (Nq+1.-~-,dp)

P is a non-zero polynomial of the X, (1€ i<q,p-a+1<€ j4p). For x ey, put
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r
o
Po(, = Q, (A ) where A deces not divice Qg s, and ¢ = sSUp {lo(l-r 1 .
ol q q & |
‘ ey
- o
Then P = 2o Q A TltE A% A%P so o polynomial on M, and
wKel) q+1 p P
o E q+1 P . A
A P = dA 1 ...A modulo a multiple of .
4 ot €N, el —I‘“= q a

If one had o->o , the right temm weuld be a mltiple cf Aq , and this
would imply by lemma 6.7 {o{'eA\Ioﬂ] -T ﬁo"j = pﬁ , an absurd statement,

eince /\ is finite. Thus for all &, jet} <r, .- @

6.9 Lemma: With the notations of lemma 6.6, for any polynomial function

f: MP—“? k , the foliowing are equivalent :

(2} \'/ Xel‘flp, VY,Z as in lemma 6.6 , f(YXZ) = £(X)

(b} £ is a pvolynomial of the x, . (1= igq,p-a+1 <€ j<p) and of A ... A .
ij === Tq# ™p

Proof: Put (xij) = X' = YXZ . Then x{, =x;. for 1€i€q , pq+H1€j<p,

and for any r (a+1<T<p) ,

' = 3
(xij)‘tsiér (yij)‘lsisr'(xij“lﬁ-isr '(Zij)p—rﬂsisp ’
p-r¥1 £ j<p 1sj=sr pr¥lL£j<p p-r+1<4J<p
1 . N
so that xij jeier xij lei<r , and (b) implies {a) .
prHl £ Jj<p p-r+1<j=<p

Reciprocally, if f satisfies (a), let g be its resiriction to ihe subspace
of Mp defined by the eguations X5 = o (i»q or J=p-q , and i+J £ p+l).
Then g is a polynomial of the x, (14 igq, pa+1< j<p) and of

X1 p_q,...,xp g o If Xe NP 9" write X = YEZ , using lemma 6.6. Then
’ ] H

I

£1X) = £(YEZ) = £(E)

]

.
8‘{ (1£1i<q,p-at] J*—-P), q+1 p__q"“lep’1}

(x) A_(X)
[] - 1 1
& {xiju_é3_._{__q,p-q_+1égép),(—1)q'—q‘—*A;(xj R 1)p_ﬂp_ (X)} .

Let h be the restriction cf £ to the subspace of the matrices of the form
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R x ceee X, )
& ° 1,p-q+1 *1,p
0O = - - - 8] X seevs X

q,p-q+1 qQ,P
X esse X eussesssnsas C
q+1,1 q+1, =g
O snssses O 1 O secaescrases O
A :
\o 4 O oo ur R N /J

Then h is still a polynomial of the remeining variables, and its restricticn

to the cren subseti {xq+1,2 £ 0 yeeny X, 1, pmq # o}

i< < L
h {Xij(1-- igq,pq+1£ J‘-P)’Xq+1,p__qsxq+1 p-q -1 qu -;}

. . +1 g 1,p-q+ -1 1
- g{xij(‘lé 1_<_q,p.-q+1é.j_ép), —xq+1 p_o,(_‘])q ,...,( 1)p _Q.i_:l}
' *q+1,p-q Yq+1,2

Comparirg the two last expressicns we have of g, we get

)q+1An+1 . (_1)q+1 AS+2 feees (-1 )qﬁ%;q}.

A A

f(X) =h {xijk1éiéq,p-q+1éjé P, (=1
q q

The conclusicn follows then from lemma 6.6 . R

J
6.10 Lemma: For oéqé[g] ' S(g‘n)*q cs(ﬁ(“l“n))

J
Proof: PeS(;I‘n) beiocngs to S(E‘n) 9 {f and only if

(*¥*%) o = Z X, for all {i,3j) such that i> j,izq+l,l<€n-q
k>»1 L kl ax'kl '
= Z: X a‘ Z by the relations (*)
1<y ek T £ xk v ) -
j1 k>»1i
For instance for (i,3) = (n-1,1) and (n,2) , cne gets oF ) R,
oX oX
n,n~1 241

J
Assume PeS(gn)‘uq and does not depend on the Xij for i<p or Jsn-p+l ,

for a given integer p < [n';] . Then, as p<Ln-p , (¥%%) applied with i=n-p

and 1< j<p , gives
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P
Z Xk a—-—-——-—-—-—aP = Z Xn—p 1 a__—_-?(P = o0 , hence 3 oF = 0
k> n-p P "k n-p 1< 5%4p ' j,1 xk,n—p

for k> n-p . Inthe same way, for j =p+1 and n-p¥ti<Li<n, (¥¥%) gives

f 22 7.

il axp-ﬂ,l k> iz n-p+l

i
[o]

Xk ,p+1 éXk = 0 , hence 3

l<pt! p+i,l

for l<p+t . By induction on p, we conciude that P does not depend or any

n+1 . n
L im e il =+ .
Xij such that 1§[ 5 ] or 32[2] 1 .0

6.11 Proof of Thecrem 6.5: For any g (oéqé[—?]), each Xe€exyp ..‘.I'q can be

written
1 0 0 O I ¢ 0 0 0
x = BI+E 0 O BI+E QO O O
C F IO or X = a b 1 0 O
D G L I C F c I+« O
D G 4 L I
(if n=2p) (if n=2p+1)
with E,F,KeM ; DeM ;s B,Cek G,LeM ; a€M H
p~q,0-4 Q.4 T=4,9 3 q,p—1 1,
b€M1'p_q H CeMp-q,‘l s de Mq’,1 + E and K being strictly lower triangular,

and I denoting the unit matrix.

In any case Ad x is an automorphism of the invariant ideal &(E‘n) =

~p
co Fo
of En’ and if W = Do Go < Ep o~ Mp s wWith FoeMp—q,P—q ’ DOGMq’q ’
Coenp-q,q ’ GcGMq,p—q , we get, whether n is even or odd,
(14)C, - (I+K)F0(I+E)_1B (1+K)F°(1+E)"1
Ad(x)W =

, -1 . -1
IC +D - (Lh°+G°)(I+E) B (LBO+GO)(I+E)

ax~! with z = [P ard Y=L ©
L I B I+E

Let us identify C :Mp with its dual by means of the cancnical bilinear

"

—_

=P

form (W,W') —>tr WW' . By lemma 6.10, if PGS(E'n)"'Iq , we have
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Pes(g)) = SO ) , and since (d W) = tx (2T = tx (XN

J

any Pe S(MP) belongs to S(En) 9 3¢ and only if the associated polyno-
4+

mial function on MP = Mp is invariant under the automorphisms cf Mp

Wi— v hz .
By lemma 6.9, this means that P is & polynomial of the X33 (1<igq,pq+1<j<p)

and of the A (c+1 <1< p= 2 )} + The conclusion follows by transposing
1 2

agein this result by means of the same bilinear form. @
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&7~ The rational =cul

7.1 Propcsition: Therels cre ard enly one stiucture of lie algebra on R(G)

prolonging thet of 9 and such that

(*) \,7’][11 /B, Ry € R(G) [H1R2,H5] = [31,35]112 + R, [RZ,R;J

This structure is defined and studied in [jé] (lemmas 2.3,2.4) and
called the Poisscn siructure on R(g) By a straightforward computation

ased on (¥), one gets

.
{n

any basis ¢t G, and R, » R, & R(g) s the

. ; 1
7,2 Lemma: If {,(1,...,an

Poisgon bracxet of E, and R2 is =

n

[EyoR] = = ax1 3%, [

It is thus clear that the center of R(G) for its Poisson structuwe is

precisely the subfield R(G)d of the rational invariants of G .

7.% Definition: We call rational soul E:: E(g) of G the intersection of

all subalgebras H of G such that R(HE) D R(g)g’f .

Most of the statements of §2,5 and § on the socul can be adapted to the
rational soul, and this is what we do in &1 and 8 . Many proofs, anéloguous

to those of the corresponding statements on the soul, will thus be omitted.

7.4 Proposition:'z(g) is the smzllest subalgebra H of G such that

R(g),—_: H(g)g , and it is an invarient ideal of G .
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Proof: &s in proposition 2.2 . @

7.5 Prorcgition: The rational zoul of S is the subspace

E(S) = z ; dP(f) ,

Pe R(G)%,fe x(F)

and it is tke smallest subspace V cf G such that (V) > R(‘_(.":)g .

Procf: es in propesition 3.1 . H

7.6 Provosition: The rational soul of a direct su;r is the direct sum of

the rational souls.

Proof: Assume 90 = 91@92 is the direct sum of two algebraic Lie algebras,
then for J = 1,2 i

ng' SO — -— ——
R(S;) e RrE) e REEG,)) == AlGy) < A(6,)

Hence E(go) o Zﬁ:(\(}4 )(‘BE(QQ) . In order to prove the converse, complete

1 ¢! < T -
bases {){1,...,)(1_31J and )c]r11+1,...,)c111+pzJ of E(G,) and A(G,) respec
tively intc bases {x1,...,xn1] and {xn1+1,...,xn1+n2} of G, and G, -

= = d' i 1
If ng=nginy 5 844 [Xi’xj] (121,5¢n,) » A (aij)‘léi,j.én,l ’

by = (aij)n1+1£i,jén1+n2 , rvank Aj=n. = gy (1=0,1,2) , the rank being
A1 0

taken over R(C“}J) , then we have A, = o 4 = (aij)‘l_(,i,jsno , and
2

G
by 1.7 , the degree cf R(E}vl) 1 over k is q; (1=0,1,2).

s 1 ' - }
Take systems {Qj(X“,...,Xn )' 3._1,...,q1J and Qj(xn +1""’Xn )|3_1,..,q2f
1 1 c 172 J

of algebraically independent elements of RLQ1 )W‘l and 3(92)““2 respectively.

G
1r R(E(G,)@E(G,)) did not centain R(G,) © , we could find

G
QX yee Xy ) e R(So)wo such that % £ o for some
o i



ie {pj-ﬂ,...,n1,n'1+p2+1,...,nO] _ But then Q would be algebraically inde-
perncdent of the Q. and Q! , 80 that R(go)wo , containing

k(Q Q ,...,Q ’Q1""’Q ) would have at least degree q1+q2+1 over k ,
G

and this is absurd, since g =1, ,+d, . Hence R(G ) c R\w(91)@1}_(~2)) ,
and finally E(go) < §(91)®§(92)

Now if G and G‘,2 are not necescarily algebraic, tut k=RorC,
we still have A(G (-BG Y = A(G )(BA(G ) by the same argument as above.
As the rational invarianis or §1 . §_2 and 90 = 94692 are the ratiocnal
solutions of the corresponding syatems of differential equations {(*)
cersidered in 1.6 , the inverse inclusion follows easily from propositicn
7.5 and the classical Proberiuvae theory of linear differential systems

hormogenecus of order one .

[ 7 R(G)"- always contains the field of frections of ‘S(G)Q , hence
A(G) e A(G) , and they are equal if and only if R(G)- is the field of
fractions of S(G)w . T™nis nappens for instance whenever G is reductive (in

this case A(G) g E—) =G by 2.3(b) ) , or nilpotent (zee 1.9)

[.8 Example: E is the 2~dimensional ncn-abelian Lie algebra : we can find
a basis {X,Y} of it suchk that [X,Y] =Y , If PER(E)Q' , we have

1% p.) ap .
a,b€k 0 = [P,a.X+bY - Y(v& - &%) by 7.2, and so P is constent.

Thus R(E)Q =%k, and 3(9) = A(G) = {o] .

7.9 Example: Let G = ER ()‘E R) be the sclvable 3-dimensional Lie

algebra over R defined on a bacis {X,Y,Z] by the brackets

[x,y]=v , [xz]=2z.

(*) VPer(c) [x,r]:aé%a( +23~—§z . [Y,P]:-%—%Y , [z,P]=-A§—§z



So PeR(g)g if and only if it is a rational function of Y and Z only, and
a function of Y—A Z only .

- if A is rational negative, writing A= -% (a,belN , aab = 1) , we get

IR[YaZb] , R(E)g - R(Y%ZP) , and A(G) = B(Q) = <Y,2> .

s’

s(6)¥

- if A

It

iG) =<2z>.

i
i

o, s(©f =r[], REF -=8E), and AQ)

- if A ig rational positive, writing :{ = (e,belN , aab = 1) , we get

ole

s(0)f =R, R(E)E = RETZY) , end AQ) = [o] 4 BG) = LVi2Z

~
- if A is irrational (that is if G is not algebraic), S(G)g = R(G)* =R

7.10 Croposition: Agsume k = R or € and there exists a dense G-irvariant

¥
open subset flof G such thet P(E)g separates the orbits in {L. Then for

3
anv subset (' of £ which is rariski-dense in G , we_have

G = Z G(f
29 fe ” )

Proof: analoguous to that of propesition 3.2 .0

| ot - D
7.11 Corollary: Under the same assumption as in 7.10 ¢ é(g) = D(g)

W

Proof: as in corollary 3.4 .8

1.12 If k is algebraically clocsed, and 3 is algebraic, there exists a
*

dense C-invariant Zariski open subset 1 ot G such that R(“G’)g' geparates

the G-orbits in Q. ([8], proposition 1 even defines such an ﬂ which is

caronical ).



8- Reducing ideals and the rational soul

8.1 Definition: If £ is a subalgevbra of E we say that QeR(E) is i—reduci:w

if 2d & : J —>E(G) is of ranx ome , and we rote c(&) tre kerrel of
svis marpire, that is te sey tne commutatcr ot in J . It is a subalgebra

of J .

-

8.2 Lemma: Let &€R(G) be J-veducing, and PeR(J) . If [p,e]l=0,

ther PeR(c(Q)) .

Proof: Write P = AB—1, with & and B relatiively prime in S(i). From 7.1

we deduce [A.B-1B R Q] = [AB—1, Q]E + [B . Q,JAB-1
and thus [’_A.B" Lal= [ 5! - [B,qJar™
20 that [, 0] =0 == [2,48 - [E.Q]s -

Complete a basis {XZ,...,Xm} of c{@) inte a basis {X1,...,Xml of J .
By lemma 7.2 , [_A,Q]: [qu]%% and [B,Q] = [xwﬁ% , hence

[Fe]-0 = & n-Z

3)(1 aX1
.. ... OA oB. . . .
and this implies 3. = 5'—— = o , since A and B are relatively prime . a
1 1

8.3 1In complete analogy to §9, we oall -E-.(.L) the intersection of the
commitators c(Q) of all J-reducing ¢€R(G) , Tt (.L) = E{ﬁakg‘)) .
ﬁm(i) = n ﬁ‘](i) , and we prove that they all are invariant ideals of G

Jen
am soon a3 :I. is one .
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8.4 Lemra: ﬁm(g) contains the ratioral soul of G .

Proof: Assume A(G) < RI(G) . To any Pe€ R(E)g < RAG)) < R(RY(G))
and io any ﬁ‘](g)—reducing qde R(g) we can apply lemma 8.2 withi = -ﬁJ(g).

e RG)E < RET(E) , end AE) < ) .m

8.5 Theoyem: If G is algebraic and solvable, then ﬁm(g) = K(E) .

—_—

- - _J
Procf: By lemma 8.4, A(C) = R®(G) = k O(E) = J . If the inclusion was

strict one could find an ideal ;11 of G of ccdimension one in‘;IJ and contal~

ring & = E(G) , and thus

Y

R(G)E < rEE < vy ¥ R < r(H% .

J
Hence R(i)g = R(£1)(-}~ , and by propositien 5.11, R(E)‘"1 would be of cdegree
J £1 J
one over R(g)"* . But then any <€ R(G) - R(E)w would be J-reducing ,

+1 3
and R ° (G) @ c(@) =J, would be strictly included in R O(G) .M

B.6 Corollary: For an algebraic_solvable Lie algebra G over & field of

characteri=stic zero, the following corditicors are equivalent

() G is the rational soul of a Lie algebra over k

{p) EL jg ita own rational soul

(¢) There is nc G-reducing element in R(g) .

Proof: If G = E(E) , there is no g—reducing Q in R(S) , otherwise lemma 8.2

applied to any P€ R(G)g— would imply E(gv) c cQ)e= G . Thus (a) =>(c).
~ #

But (¢) == (b) by theorem £.5, and (n) =3 (a) trivially .®

8.7 Example: E ia the Lie algebra of upper triangular matrices of order 2 @

Xy X3
x.X. + x.X, + xX; , with the bracxets
171 22 373
o X,
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1l

[r1:%5] - x

Crie checks easily Z(g)

s Prots]= -

3
[x ], R(G) 9—

= E(X1+X2)
so A(Q) = B(Q) = <XH> = R(G) = K%Y

(X, and X, are G-reducing, and X5 is <X1,X27-reduclng).

This is in contrast with the next and higher dimensionas

8.8 Example: E ig the Lie algebra of upper triangular ratrices of crder 3

b'd = Z x.Xj , with brackets
3=1

[x1,x4] =X, [x1,x6] =X, [xz,x4]= X, [xz,x5]= X
[XB,x5]= X [x5,x6] = X [x4,x5]= X -

M,

(X, 4K
3 L) X6 ]

H

G - G
S(G)* = lc_l_x1+x2+x3] , but R(G)*
so A(G) = <x1+x2+x3> f ﬁ(g) = <X +x3,x x4,x x6> R(G) = B°°(G)

(XG_ is G-reducing . ) .

8.9 The general case of the algebra G of upper triangular matrices of
crder n has been studied in [12] where cne «can find explicit cemputa-
tiors of the reducing ideals, the soul, the retioral =scul, and the alge-
braic ard rational invariants. We only note here that the rational soul

cf ugn is much bigger than its soul, for nz3 : if we put

1-. (v;3) Zn: . >
- = X. A, +

y,.Y..
(o) ° j=1 99 1ei<jgn 91
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and g, = <x1+xn,x2+xn_1,...,xq+xn_'q+1> [ | <Yij [ 1€i<jen >

for o0«£1q 4[‘9;—1] y We ‘have

A(G ) = while é(gn) = <X, oo ot K >

[””] =)

G
Mhe firs% explicit description of R(Qn) T i5 to be found in [16] .

8.10 Going through the list cf colvable Lie algebras over R of dimension
< 4 givern in [1] , one finds that the only one of them which is equal to

its rational soul is egual to its scul, and it is the "diamond” algebra :

[x1,x2] = X5 [x ,x1] = X, [xz,x3] =X
2

for which Z(Q) = [4, x +1 +2X XA] R(G)¥ = g(xd,x Ho 42X X,) «
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§9-. The carrier of an invariant

9.1 Definitien: We call carrier &(P) of a rational invariant P€R(§_)§

the interseciion of all subalgebras H of G such that Fe R(g) . Clearly

ir pes(c)® we have PER(E) if and only if PES(H) .

9,2 Propoaition: é(P) is the smallest subtelgebra H of G such that Pe R(H),

and it is an ideal of 9 .

Proof: The family F of subalgebras H such that PeR(E) is stable under
finite intersecticns, An inner automerphism of G extends to an automorphism

of R(g) which precerves Pé R(g—)g, thus also F globally, and finally A(P) . B

9.5 Proposition: (a) If Pes(0)®, A(A(P)) = A(P)

(v) Ir Per(Q)¥ , A(A(R)) = &(R) .

Proof: f{z) Write B = &(5) We have Pe S(E)Q c S(‘}%)?- . If H is a subal-
gebra of B, Pe R(H) implies E = B by 9.2, and thus H =B . But this
means &(E) =3B .

(b) is proved in the same way .

9.4 Remark: Obviously we have

a(g) = 2. A(®) e () 2. A®) .
pes(g)é per(g)%



9.5 Proposition: For Pe‘R(G)E , A(P) = Z dP(f) , and it is the
* - fe r(P)

amallest subspace V of G such that PeR(V)

Proof: If V is a subspace of G and PeR(V) , then for any fer(P), f'e V‘L,
we have £ @&P(f),f'> = o . Hence V contains VO = Z. dP(f) . In parti-

fer(P)

cular A(P) = V_ . Reciprecally if fexr(P) , f'eV;L and we put

l;p(t) = P(f+tf') , we have 99'(1-,) = L AP{(f+tf'),f'> = o , and thus
P(f+tf') = P(f) , so Fe€ R(Vo).
*
For any x€G, ve have sd(x)aP(f) = éP(dd (x)f) since P is invariant,

hence V_ is an ideal of G, and thue v,o= &(P) by 9.2 . H

9.6 Remark: Clearly we also have .‘E‘:(P) = Z dP(f)} , whenever 1
fer{P)NIL

*
is a dense open subset cf S .

9.7 Propositien: If P, Py yeeey P.€ R(G)g and P is algebraically

related to P1,..., Pr , then r

AR < 2 MR

=1

oF
Proof: Take Fe_lg_[zfo,Y.l,...,Yr] such that F(PO’P1""'P1-) = o and aYo #o .

I

For any fém r(Pj) , we have bY (f)dP (f) = Z L f)dP (£)
juo 3= Yj

and the conclusion fellcowe frem 9.5 and 9.6 . @

9.8 Corollary: If P1,P2 = H(G)g are algebraically related, A(P1) = A(PZ) .
[ T -
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9.9 Froposition: 1f P_I,PzeR(g)g— {o] , one can find integers 0(,[% such that

- NE -
&(P‘] P2 ) - é(P1) + &(Pz) <
roof: By 9.7 we have A(PRPL) < A(R) + A(P,) . Let {x1,...,xr}

and {X“ ...,Xn} be bhases of &(P.]) + &(Pz) and G respectively. Now assume

. ol
r>»o, and for instance A(Py PS) L {XZ,...,Xr} . We have

ar 1P,
B P ) I ~ =11
o= Fy 2ax(PP)'°(P1ax1+ﬂ'Pzax
oF, JF,
and since 33— an and éi-— are not both zero, this can only happen when (A,f3)
1

velongs to a straight line in Nz, asay L1 . Reasoning in the same way for

each Xj (j=24..0,T) and choosing (t,3) outside L = U Lj .
j=1,--o,r

o B 1 -
we conclude f\_(?1 P2 Yy D {X1,...,x” = _&(P1) +£(P2) B

9.10 The product P:’{ Pg’ in proposition 9.9 is cumberscme, but it may

happen on the other hand that é(a.P1+bP2) land A(P.l) + ~;{!;(PZ) for all pairs
# e

(a,b)€k K’ , as in the following example :

G is the 6-dimensional nilpotent algebra (isomorpnic to G6 18 of {1 5])

wi

defined by the brackets

[x1,x2] =%, [%.1,)(3] =X [x1 ,x4] = X
tne can check that R(G)E = k(X XgyPyaBp) with Py = xi-zxzxé and
P, = =X X —X3 ¢ (Note that S(E)g is not a free algebra :
(P X2 P )x6 € S(G)- ). Clearly A(P,) = <x2,x4,x6>, A(®,) =<x3,x4,x5,x67,
A(P) + 4(R,) = A(G) = A(G) = <x2,x5,x4,x5,x6> .
L2aX, + By X4 X x6> if b #o

é(aP1+bP2) =
<9.X2, aX,, ax6> ifb=o0 .
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9,11 Theorem: (a) There exists PGES(Q)Q' such that A(F) = A(G)

-

(b) There existis PeR(g)g such that A(P) = A( (G)

-

{c) In both cases one can choose such a P homogeneous.

Proofs Take a maximal system of algebraically independent elements in
S(E)Q (resp. R(E)g), say {P1"'°’Prj}° By propositien 9.9 and an induction
on v we can find PNES(Q)Q {resp. R(g)g) such that

AMP) = &(P1) + oeee +£(Pr) .

G A
Any QéES(E)g (resp. R(G)*) is algebraically related to PiyeeesP . Hence

-t

A(P) C AlG)  (resp. A(Q) )

w

= D ) (zesp. 7. a@)) vy 9.4

qes(o) aer(g)
e &(P1) 4 een +£(Pr) = A(P) by 9.7
So we have (a) and (b), and (c) follows from the construction of P by 9.9
and the fact that we can take F,,...,F homcgeneous, since S(g)g and R(E)Q

are engendered by their homogeneous elemenia (propositiocn 1.6)

9.12 Example: g js the 6-dimensional nilpotent Lie algebra (isomorphic to

Gg o of [15]) defined by the brackets
[*; X ] =%y (X Xs ] = %5 s (orxgl=%s [xz'xs_J =%+ [%5%,]= %

G
_15[}(6,13] , B(G)E = k(X,,P) , with

(G) A(G) = <:X1,X4,X5,X6:> y and Z(E)

g

P=X 3x1x6 , so that A(P) = A(G) , and there is no Qe 2(G)

3
5 = XyXskg *

of smaller degree whose carrier is A(g}
T
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£10- Souls and gquadratic Lie algebras

10.1 Definition: We shall call soul (resp. rational soul) a Lie algebra

which is equal to its soul (resp. rational soul}. Reductive algebras are
souls. Nilpotent algebras are souls if and only if they are rational souls
{cf. remark 7.7). Alsc recall the charactericsations 5.18 and 8.6 .

La zn immediate consequence of theorem 9.11 we have

10.2 Corollarv: (a) G is a soul if and only if there exists PGS(Q)-G' such

that A(P) = G -

(b) G is_a rational soul if and cnly if there exists PER(G)g such
[ od Wiy —

that A(P) = G .

{c) In beth cases one can choose such a P hcmogeneous.

10.3 Definition: We will say that G is a aoul of degree m if E is a soul

and m is the =mallest degree of a homogeneous Pe 5(9)9. such that &(P) =G .

10.4 Iet Gbe a soul of degree twec, and PeS(g)g, homogenecus of degree
two, such that é(P) = G . Then P is an Ad*(g)-invariant quadratie fomrm
on 9*, which is non-degenerate Dy proposition 3.1. Identifying E and 9_’*
by means of this form and iransposing P on S , we getl a non-degenerate

Ad{G)~invariant gquadratic form on G, that is to say 9 is a guadratic_Lie

almebra (cf. D}] §Z.‘3,EX,2.10,and [10])

For instance reductive Lie algebras gare all quadratic Lie algebras

(souls of degree two), since G = A(P) with P=C+D , where C is the

Casimir element c¢f their semi-gimple part, and D is any non-degenerate

quadratic form on the dual of their center .
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10.5 Example (of a soul of higher degree than two)

There are only five sculs ameng the unsplitable nilpotent Lie algebras of
dimension 7 over R or €, and we gave their definition in 4.9. Only one of
them is quadratic and the four others are of degree three. Here is another
example, of physical interest:

3 ie the Lie algebre tangent to the group of affine isometries of 84 .
In the basis of infinitesimal rotations Rij and infinitesimal translations

mj along the axes (1€£i<j<€4) , G is defined by the brackets

= «R = o=
[Rij ,Rik] i and [Rij,Ti] T,
{all the brackets that cannot be deduced from these by antisymmetry are zero).

*
T+ im well known that the only invariant quadratic form on G is, up to a

multiple, ithe Laplace elementi Z& = Tf + Tg + Tg + Ti
hut one can check that
2 2 2 2 2 2 2 2 7
= T T
0 RZ, (15 + T;) + By (T + T2) + Ry, (T, + T3)

2 2 2 2 ml 2 2 2 2
+ 325{T1 + T4) +R24(T1 + Ta) -1-1354("531 + T2)

-~ 2R,.R,,P.T, - 2R, R, ,T.T, + 2H12R13T1T5

1277137273 127147274
+ 2312R2411T4 - 2R13R14f3T4 - 2R15R23T1T2
2 R, T T, - R T, - T
+ 2Ry Ry Ty Ty = ByRay T T gt

- 2R25R24T5T4 2R23R34T2T4 - 2R24R34‘I‘2T5

+

belongs to Z(g), and more precizely Z(§) = 5(9)9 = IR[A,D] and R(E)g =r(A,0).

In particular &ﬁ[]) = G and G i= a soul of degree four, no less.

10.6 Souls of degree two, that is to say quadratic Lie algebras, have been

atudied in [10], where it is proved that any unsplitable quadratic Lie
algebra with non-trivial center is a certain central extension of ancther

quadratic Lie algebra of dimension two less. This procedure, following an

idea of V. Kac ([ji], loc. cit.) is enough to construct many examples of
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(non—reductive) quadratic Lie algebras, and in particular one can describe
in this way, by inducticn on the dimension, all solvable gquadratic Lie
algebras. But there are also non—-reductive quadratic Lie algebras with

trivial center

10.7 Example: % is the Lie algebra tangent to the group of affine isome-

tries of ﬁ3 . In the basis of infinitesimal rotations Hj and iranslations
Tj (i=1,2,3) along the axes, it is defined by the brackets
- - = =T =
[Ri'Rj]”” e [Ri’Tj] Eh [Ti'Tj] °
where € is the signature of the rermutation {i,j,k} of {1,2,3} .
It is easily checked that

2(G) = S(g)g =1R[A,EI] and R(E)Q rA ), with

I

2 2 .2
D=1]+ 05+ T and [=R,T, +RT, + RsTs

Hence the center of G is trivial, () = G, and G is a quadratic Lie

algebra .
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§11-~ Souls and the defining form B

11.1 We recall here acme of the jdeas end notations of [T]. Call B the
bilinear antisymmeiric mapping Ex E — G defining the Lie algebra
structure of E : VX,YEE}' B(X,Y) = [X,YJ .

The tensor product R{G) ®G has a canonical structure of n-dimensional
[ nar

Lie algebra over R(g), and according to [6],1 .11.1, there is one and only
one R(G)-bilinear antisymmetric form on R(G) ® G (with values in R(G)),
ad Vo hand (o)

which we will again call B, such that

\/x,y €g B1®X,18Y) = [X,Y]

If f}: {XV""Xn} is any basis of G, the matrix of B in the basis
o Bb - -

{1®x1,...,1@xn} of R(C)®G is 3% = (v.) = ([xi,xj])1éi, S¢n

The differential P > dP is a natural linear mapping from R(G) into
g

R{E) ®G , and the following is a particular case of 1.7 8

11,2 Corollary: If G is algebraic, the kernel of B in R(E)@& is (line-

arlv) engendered by {dP\ PER(E)Q} over R(G), and the transcendental

dersree of R(g)k"' over k is precisely the dimension T of Ker B over R(Q) .

»*
11.3 For any fEE consider the k-bilinear form Bf = Boef on 9

defined by  VX,YEG B (X,1) = <<sid

. : . B _
The matrix of 3, in the basis @ is 3y = (<0 >) = (<f,[xi,xj]>)
Hence the rank (n~r) of B over R(E) is none other than the maximal rank
-
of Bf over k for feg : it is an even integer 2d=n-1r , and it is the

»* *
maximal dimension of the Ad (E}_)—orbits in Gw . In particular we have the
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+1.4 Proposition: For an algebraic G over-an algebraically closed field k,

the three following properties are equivalent :

(i) B is non-degenerate over ®(G)

* *
(ii) There is an open Ad (3)-orbit in G .

. G
(iii} R(GI* =k
»*-
Proof: ﬁi) :::q>(il) By 11.3 one can find fe€G  such that Bf is non-dege-
nerate. So for any Xéfgfio}, X.f # o (notation defined in 1.1). As
*
{K.f‘i)(eC}] i= the tangent space to the Ad (g)—orbit Qf of f , which

ig a smooth subvariety of G, Of is thus of dimension n .

(ii) == (iii) for instance by {b], proposition 1.

(iii) = (ii) by 11.2.

11.5 Call i the (R(S),k)-bilinear mapping (R(G) gg)x‘gf —> R(G)
which satisfies

Vaer(c), xeg, reg {ABX,T) = <£,X>Q
As a consequence of corollary 11.2, we et an effective way of computing

the rational soul of any algebraic Lie algebra :

11.6 Corollary: If G is algebraic, the orthogonal of A(G) in G is the

——

nrthogonal of Ker B for the bilinear manpigg_i .

[z -
dP(f)) by 7.5

PGR(Q}Q,fe r(P)

f
- 4L
Proof: ‘ﬁ(g)

{f'é E*] VPER(E)E,er r{P) <dP(f),’f'> = o}

I
]

1
°J

o} by 1.2 . W

*
[f'e G | Yreer(c)¥  i(ap,f')

]
I

{f'e o'| Veexers  i@,c")

By elementary methods of linear algebra over B(G), one can easily cal-
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culate a basis of Ker B for any algebra Q'defined by explicit brackets,
and this gives a simple and effective algorithm for computing the rational

gonl .

11.7 Definition: We shall scy thet G is balanced if for &ny pasis (3 of G

each row (or columm) of the matrix Br5 is a linear combination cf the
others with coefficierts in R(5).

Mul*iplying each one ~7 thece relations ty the common denominator,
senarating homogereous parts and combining tne relations thus cbtained,

&

ope checks e&sily

11.8 Lemma: G is balanced if and oniy if for any basis /5 of G, there is

s linear relation beteween the rowz lorT cnlumnqlfof the matrix Bﬁ with

~11 non-zerc ccefficients, homcgenecus of the same degree in S(E) .

11,9 If p' = tPﬂ, with PeGL{n,z) is encther basis of G, we have

pP - teafr .
It may well happen that each row (or column) of Bﬁ igs a linear combination
of the others, while this is not true of Bﬁ', as the following example shows:

g i3 the 7-dimensional niipctent Lie algebra defined by tle braciketls
(ol =7 [as 1= % (451 = % 0 [Raxg] =% [x52,] = %

In the basis f3'.= {X;,...,X%'} defined by

_ 1 U N w1 X
X! o= 2(x1+x4) ,y ¥ = =(X, x4) y 23 =X, 4 X

A

t
1

il

J
tre non-zero brackets are ! [X{,XA-] X% ' [Xé,x&j): Xé ,

Thus
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(o X X6 X_] o o o] (o o © X,} o o o\
-—Xb ¢ o XD o o o o o o XS' o © o0
5 -X6 f:> 0 X6 o o o P; o o ci é 0o o o
BY = —X7-,(5—X6 o 0o o © , but BF = -X,}-X%-é O 0o o o
o 0o 0 © 0 0 ©° o o 0 0 © o 0
o o o 0o 0o 0 0 ¢ 0o 0 o o O ©

Lo © ¢ o o o o) \c o o o o o o)

Now Xou Xgy Xy Zy = Xy¥g + XXe #2K5K, , T, = XX o+ KXo 4 25K,

and Z. = K. ¥, - K X engender Z{(G) , and more precisely :
b Wt

Z(G) = 8(g)* = 5{}\:5&6,3(7,41,.&2,23]/ KyZy = KTy + K52y

RS = K0 K Xp02008,) o and E(Q) = KK+ K, X5 Xe0 X Xy > £ 8

11,10 Lemna: Let G be algebraic (cf dimeneion r), ard p the dimension of

“'Gf Then p is the emallest integer ¢ such that there exists a basis ﬂ

of E satisfyving the three conditions :

(i) Bach one of the g lest columps cf BB ig a linear combination of the

q-1 others.

(+1) The n-qg first cclumns of Bp are linearly independent.

(iii) The subspaces engendered by the n-q first celumns and by the q

lest ones intersect trivially.

Furthermore the bases satisfving these ccnditions with q = p are those

corrleted frem a basis Xn-p+1’“"xn} of a(w) .
Proof: Assume [5 is a basis {KT’""Xn} of G satisfying (i), (2i), 1idi,.
Then the first n-q coefficients of any R(‘Ci)—linear relation between the

columng of Bp must be zero. Hence Ker Bﬁ: R(E)n —_— R(E)n iz included

in the subspace VW = {(Q1,...,Qn) emg)“ \ Qp = eow = Qn_q = o} . In

-

view of 11.2 we have in particular for any ]E’eR(G)L-"'L

%%:...:% =0 , and thus by 7.5 Eg C<
1

...,xn> .

n—q+1’*

So q2»p, and if g =D ,

S

(G) = (xn_p+1,...,xn7 .
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Reciprocally, if [3 is any basis of gfcompleted from a basis

1,.““’}{ 1 Of E(“"),

n f
N P _ _
Y per(y) ST

Lln—p+

G

P

X
n-p

|

since PeR{A(G))

L
|

" ] . n ‘ _ }
n B = e = sew = - -
and by 11.2 Ker B < v (Q1, ,Qn) = R(E) Q1 Qn-p e}
i Bﬁ is the matrix obtaineéd by daleting the first n-p columns of BP ’

we have rank BE ~ rank B8P - p , and so none cf the first n-p colurms

of Bﬁ dependeg cr the others . [+

41.11 Theorem: An algebraic Lie algebra Gis a rational scul if and cnly

if it is balanced

14,12 Theorem 11.11 is an immediate application of lemma 11.10, for p=nr .
But we can make it more precice. If E{is a rational soul, then by thecren
a.11 ve can fird PEE(C)¥ such that A(F) = G . In any basis

P .
[3 = {X1,...,Xn} of E{we thusg have SEI £ o (1:1,...,n)

and calling s (i=1,...,n) the columns of Bﬁ we get the linear relation

n
—

o/

P —_—
X, Ci = 0 .
1

Qo

-
il
-

For insatance if E’is reductive, {X1,...,Xp} is a basis of [Q,G] in which
the Killing form is diageral, and we complete ii into a basis {X1,...,Xn]

of E by adding elements of the center of E’, we have

n

n

PP 7.

P=_1xiGZ(g), and thus .1Xici=o,
1= 1=

where actually the last n-p columns s are zero, and this generalizes in
an cbvious way tc any gquadratic Lie algebra {cf. §€10) .
We will end by giving a "geometric" characterication of the ideals of

an algebra that can carry a rational invariant, similar to the characteri-
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sation 11.11 of rational souls .

11.1% Definition: We shall say that an idealtg of E'is s balanced ideal

of G if for any basis ﬁ3 = [XT,.n.,X } of G completed from a basis
[ It ot
X y seagk } of J , each one or the p last rows (or colurme ) of the
n-p+! n o

matrix B is a linear combination of the p-1 remaining last ones over R(Q) .

In particular balanced ideals are themeelves balanced, but an ideal of

E wnich is a balanced algebra is not always a balanced ideal of E;.

11.14 Proposition: An ideal J of an algebraic Lie algebra G is the carrier

of some rational invariant of S if and only if it is a balanced ideal of G .

Proof: Assume J = &(P), with P&:R(G)g , and chocse a basis (3 of G as
2P

ln 1’13130 Then dP = (O,...,O, aT"""_—- g e 3 g%—
n-p+1 n

)6 Ker Bﬁ ’

and calling oy (3=1,00.yn) the columns of Bp , we have
n
P P
z ; %Sf c. =0 and %f- # o0 for j = neptly.eu,n .
jm-prt 975 7 J

Reciprocally if 2 is a balanced ideal of E and [3 a basis chosen as
in 11.13, call BP the matrix of the p last colums of P,

n

If c¢. = 2 L QL (X ,eeasX ) for 3 = n=p+l,e.eyn
J 3k n’° 'k
k:n—p+1
K#)
with all ij 4 o , substituting appropriate scalars ayyesesd o to

X1""’Xn-p , we get

n
c. = z Qo laygeneya X yeeesX ) C
3 k=nop#1 Jk 1 n-p' n-p+l n’ 'k
k#3

with all ij(a1,...,an_p,o,o-.,c) £ o

asince the entries of the columns Ch belong to R{J), ilbeing an ideal .
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Hence each ceclumn of BE is a linear combination of the others with coeffi-

cients in R(i), and Ker BQ’ : R(i)p —-3 R{J )n contains a vector

(Qn-— P+

Applying theorem 1.7 with ¥ =‘£ and the natural acticn of Q’on i, we

,e+03% ) whose eniries Q. are all non-zero .
1 n 3

conclude that in any basis {)ﬁ geeagk ) of J , there exists
2P n-p+i n -
PO 3 < R(J)g such that —2zd £ 0 for each J = n-p+tl;ee.,yn.
¥ e .
J

Now R(i)t:- has over k the transcendental cegree T = dim Ker B{? (over R(i))
and if we take Py,eee P algebraically independent in R(i)"q, and put

Jr = &(P1) + eae +£1(Pr) < J , we have de eR(g") for j=l,eceyT o
and thus 4P G.R(.L‘) for any P GR(.‘_I’)G. 1f J° # J , this contradicts the
existence of ihe PO 5 in any basis completed from a bagia of i' .

S

So J° =£ , and choosinz F as in the procf of 9.11, we get

'

A(P) = A(P)) + «vs +a(R) =J'=].@
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