RADON TRANSFORM ON THE TORUS

AHMED ABOUELAZ AND FRANÇOIS ROUVIÈRE

Abstract

We consider the Radon transform on the (flat) torus $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ defined by integrating a function over all closed geodesics. We prove an inversion formula for this transform and we give a characterization of the image of the space of smooth functions on \mathbb{T}^{n}.

1. Introduction

Trying to reconstruct a function on a manifold knowing its integrals over a certain family of submanifolds is one of the main problems of integral geometry. In the framework of Riemannian manifolds a natural choice is the family of all geodesics. The simple example of lines in Euclidean space has suggested naming X-ray transform the corresponding integral operator, associating to a function f its integrals $R f(l)$ along all geodesics l of the manifold.

Few explicit formulas are known to invert the X-ray transform. With no attempt to give an exhaustive list, let us quote Helgason [5] for Euclidean spaces, hyperbolic spaces and spheres, Berenstein and Casadio Tarabusi [4] for hyperbolic spaces, Helgason [6] or the second author [7] for more general symmetric spaces, [8] for Damek-Ricci spaces etc.

We consider here the n-dimensional (flat) torus $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ and the Radon transform defined by integrating f along all closed geodesics of \mathbb{T}^{n}, that is all lines with rational slopes. Arithmetic properties will thus enter the picture, as in the case of Radon transforms on \mathbb{Z}^{n} already studied by the first author and collaborators (see $[1,2,3]$). Our present problem was introduced by Strichartz [9], who gave a solution for $n=2$. But, relying on a special property of the two-dimensional case (see Remark 1 at the end of Section 3 below), his method does not extend in an obvious way to the n-dimensional torus. The inversion formula proved here for \mathbb{T}^{n} (Theorem 1) makes use of a weighted dual Radon transform R_{φ}^{*}, with a weight function φ to ensure convergence.

In Section 2 we describe a suitable set of parameters for the closed geodesics on the torus. Our main result (Theorem 1) is proved in Section 3. Section 4 is devoted to a range theorem (Theorem 2), characterizing the space of Radon transforms of all functions in $C^{\infty}\left(\mathbb{T}^{n}\right)$.

2. Closed geodesics of the torus

The following notation will be used throughout.
Notation. Let $x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}$ be the canonical scalar product of $x, y \in \mathbb{R}^{n}$. For $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{Z}^{n} \backslash 0$ the set $I(p)=\left\{k \cdot p, k \in \mathbb{Z}^{n}\right\}$ is an ideal of \mathbb{Z}, not $\{0\}$, and we shall denote by $d(p)=d\left(p_{1}, \ldots, p_{n}\right)$ its smallest strictly positive element. Thus $d(p)$ is the highest common divisor of p_{1}, \ldots, p_{n} and $I(p)=d(p) \mathbb{Z}$. Let

$$
\mathcal{P}=\left\{p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{Z}^{n} \backslash\{0\} \mid d\left(p_{1}, \ldots, p_{n}\right)=1\right\}
$$

and, for $k \in \mathbb{Z}^{n}$,

$$
\mathcal{P}_{k}=\{p \in \mathcal{P} \mid k \cdot p=0\}
$$

Date: July 5, 2010.
2000 Mathematics Subject Classification. Primary 53C65, 44A12.
Key words and phrases. torus, geodesic, Radon transform.
This paper is in final form and no version of it will be submitted for publication elsewhere.

For $n \geq 2$ be the n-dimensional torus $\mathbb{T}^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ is equipped with the (flat) Riemannian metric induced by the canonical Euclidean structure of \mathbb{R}^{n} and the corresponding (translation invariant) measure $d x$; thus $\int_{\mathbb{T}^{n}} d x=1$. We denote by $\mathrm{pr}: \mathbb{R}^{n} \rightarrow \mathbb{T}^{n}$ the canonical projection.

All functions considered here are complex-valued.
In \mathbb{T}^{n} the geodesic from $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{T}^{n}$ with (non zero) initial speed $v=$ $\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$ is the line

$$
\ell=\{x+\operatorname{pr}(t v), t \in \mathbb{R}\} .
$$

Since $v \neq 0$ the set of all t such that $t v$ belongs to \mathbb{Z}^{n} is a discrete subgroup of \mathbb{R}, that is $T \mathbb{Z}$ for some $T \geq 0$. Thus the geodesic ℓ is closed if and only if $T>0$. In this case we set $T v=p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{Z}^{n} \backslash\{0\}$, and the p_{j} 's are relatively prime: a nontrivial common divisor would contradict the definition of T. Thus p belongs to \mathcal{P}.
Now for $p \in \mathcal{P}$ and $t \in \mathbb{R}$ we have

$$
t p \in \mathbb{Z}^{n} \Longleftrightarrow t \in \mathbb{Z}
$$

Indeed the set of such t is a discrete subgroup $\tau \mathbb{Z}$ of \mathbb{R} (for some $\tau \geq 0$), obviously containing 1. Thus $\tau=1 / m$ for some integer $m>0$, so that m is a common divisor to all p_{j} 's, which implies $m=1$ and $\tau=1$.

For $x \in \mathbb{T}^{n}$ and $p \in \mathcal{P}$ we denote by

$$
\ell(x, p)=\{x+\operatorname{pr}(t p), t \in \mathbb{R}\}
$$

the corresponding closed geodesic from x. By the above remark the map $t \mapsto x+\operatorname{pr}(t p)$ induces a bijection from \mathbb{R} / \mathbb{Z} onto $\ell(x, p)$, since $\operatorname{pr}(t p)=\operatorname{pr}\left(t^{\prime} p\right)$ if and only if $\left(t-t^{\prime}\right) p \in \mathbb{Z}^{n}$ that is $t-t^{\prime} \in \mathbb{Z}$. We shall therefore let t run over $[0,1[$ only in the sequel. The length of $\ell(x, p)$ is $\|p\|=\left(\sum_{j=1}^{n} p_{j}^{2}\right)^{1 / 2}$.
Lemma 1. Let $x, y \in \mathbb{T}^{n}$ and $p, q \in \mathcal{P}$. The following are equivalent:
(i) $\ell(x, p)=\ell(y, q)$
(ii) $q= \pm p$ and there exists $s \in \mathbb{R}$ such that $y=x+\operatorname{pr}(s p)$.

The set of closed geodesics from x is therefore in one-to-one correspondence with $\mathcal{P} /\{ \pm 1\}$. Proof. (ii) implies (i) since, for any s,

$$
\begin{equation*}
\ell(x, p)=\ell(x,-p), \ell(x+\operatorname{pr}(s p), p)=\ell(x, p) . \tag{1}
\end{equation*}
$$

(i) implies (ii). Conversely, assume $\ell(x, p)=\ell(y, q)$. Since y belongs to $\ell(x, p)$ there exists $s_{0} \in \mathbb{R}$ such that $y=x+\operatorname{pr}\left(s_{0} p\right)$. More generally, for any $t \in \mathbb{R}$ there exists $s \in \mathbb{R}$ such that $y+\operatorname{pr}(t q)=x+\operatorname{pr}(s p)$. Replacing s by $s+s_{0}$ we have: for any $t \in \mathbb{R}$ there exist $s \in \mathbb{R}$ and $z \in \mathbb{Z}^{n}$ such that

$$
t q=s p+z .
$$

Let us fix $j \in\{1,2, \ldots, n\}$ so that $p_{j} \neq 0$. Fixing $l \neq j$ let

$$
k=\left(k_{1}, \ldots, k_{n}\right) \text { with } k_{j}=p_{l}, k_{l}=-p_{j} \text { and } k_{m}=0 \text { if } m \neq j, l .
$$

Then $k \cdot p=0$, therefore $t(k \cdot q)=k \cdot z$ is an integer for any $t \in \mathbb{R}$. It follows that $k \cdot q=0$, that is

$$
\begin{equation*}
q_{j} p_{m}=p_{j} q_{m} \tag{2}
\end{equation*}
$$

for any $m=1, \ldots, n$ (including $m=j$). Applying d we get $d\left(q_{j} p\right)=d\left(p_{j} q\right)$ whence $\left|q_{j}\right| d(p)=\left|p_{j}\right| d(q)$, that is $p_{j}= \pm q_{j}$ since $p, q \in \mathcal{P}$. In view of $p_{j} \neq 0$, (2) gives $p= \pm q$ as claimed.

3. An inversion formula

3.1. Let f be a continuous function on \mathbb{T}^{n}. We define its X-ray transform $R f$ as the integral of f over closed geodesics of \mathbb{T}^{n}, namely

$$
\begin{equation*}
R f(\ell(x, p))=\int_{0}^{1} f(x+\operatorname{pr}(t p)) d t \tag{3}
\end{equation*}
$$

with $x \in \mathbb{T}^{n}$ and $p \in \mathcal{P}$. As noted in the previous section $x+\operatorname{pr}(t p)$ runs over the whole geodesic $\ell(x, p)$ when t varies from 0 to 1 .

The natural dual transform R^{*} is obtained by summing over all closed geodesics through a given point, that is

$$
R^{*} F(x)=\frac{1}{2} \sum_{p \in \mathcal{P}} F(\ell(x, p))
$$

where F is a function on the set of all closed geodesics and the factor $1 / 2$ is introduced because of (1). However such an operator is not even defined on constant functions and we shall rather replace it by a weighted dual transform as follows. By weight function on \mathcal{P} we mean

$$
\begin{equation*}
\varphi: \mathcal{P} \rightarrow] 0, \infty\left[\text { such that } \varphi(-p)=\varphi(p) \text { and } \sum_{p \in \mathcal{P}} \varphi(p)<\infty\right. \tag{4}
\end{equation*}
$$

for instance the restriction to \mathcal{P} of any strictly positive even function in $l^{1}\left(\mathbb{Z}^{n}\right)$ such as $\varphi(p)=e^{-\|p\|}$ or $\varphi(p)=(1+\|p\|)^{-n-1}$. The weighted dual transform R_{φ}^{*} is then defined as

$$
\begin{equation*}
R_{\varphi}^{*} F(x)=\frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) F(\ell(x, p)) \tag{5}
\end{equation*}
$$

and the series converges whenever F is a bounded function on the set of all closed geodesics. The transform R_{φ}^{*} is dual to R in the following sense

$$
\begin{equation*}
\int_{\mathbb{T}^{n}} R_{\varphi}^{*} F(x) f(x) d x=\frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) \int_{\mathbb{T}^{n}} F(\ell(x, p)) R f(\ell(x, p)) d x \tag{6}
\end{equation*}
$$

valid if f is continuous on \mathbb{T}^{n} and F is bounded. Indeed, by (1) and (5), $R_{\varphi}^{*} F(x)=$ $\frac{1}{2} \sum_{p} \varphi(p) F(\ell(x-\operatorname{pr}(t p), p))$ for any $t \in \mathbb{R}$ and the left-hand side of (6) is

$$
\begin{aligned}
\int_{\mathbb{T}^{n}} R_{\varphi}^{*} F(x) f(x) d x & =\frac{1}{2} \sum_{p} \varphi(p) \int_{\mathbb{T}^{n}} F(\ell(x-\operatorname{pr}(t p), p)) f(x) d x \\
& =\frac{1}{2} \sum_{p} \varphi(p) \int_{\mathbb{T}^{n}} F(\ell(x, p)) f(x+\operatorname{pr}(t p)) d x
\end{aligned}
$$

Then (6) follows by integration with respect to $t \in[0,1]$. The calculations are valid since, for any t,

$$
\sum_{p} \varphi(p) \int_{\mathbb{T}^{n}}|F(\ell(x, p))||f(x+\operatorname{pr}(t p))| d x \leq \sum_{p} \varphi(p) \sup |F| \sup |f|<\infty
$$

3.2. Several classical inversion formulas for Radon transforms involve $R^{*} R f$. As noted before the sum defining it does not converge here in general (not even for a constant function f) and we shall use $R_{\varphi}^{*} R f$ instead with R_{φ}^{*} defined by (5). As usual we denote by ${ }^{1}$

$$
\widehat{f}(k)=\int_{\mathbb{T}^{n}} f(x) e^{-2 i \pi k \cdot x} d x
$$

with $k \in \mathbb{Z}^{n}$ the Fourier coefficients of f. Let us recall the notation $\mathcal{P}_{k}=\{p \in \mathcal{P} \mid k \cdot p=0\}$.

[^0]Theorem 1. Let φ be a weight function on \mathcal{P} satisfying (4) and, for $k \in \mathbb{Z}^{n}$,

$$
\psi(k)=\frac{1}{2} \sum_{p \in \mathcal{P}_{k}} \varphi(p) .
$$

Then ψ is strictly positive on \mathbb{Z}^{n}, the operator $R_{\varphi}^{*} R$ is a convolution operator on $\mathbb{T}^{n}(n \geq 2)$ and, for any continuous function f on \mathbb{T}^{n} such that $\widehat{f} \in l^{1}\left(\mathbb{Z}^{n}\right)$, the X-ray transform R is inverted by

$$
f(x)=\sum_{k \in \mathbb{Z}^{n}} \int_{\mathbb{T}^{n}} \frac{e^{2 i \pi k \cdot(x-y)}}{\psi(k)}\left(R_{\varphi}^{*} R f\right)(y) d y, x \in \mathbb{T}^{n}
$$

This inversion formula applies in particular to any function $f \in C^{n}\left(\mathbb{T}^{n}\right)$.
Formally $\sum_{k} e^{2 i \pi k \cdot x} \psi(k)^{-1}$ is thus a convolution inverse for $R_{\varphi}^{*} R$. However the natural assumption to justify this by permutation of series and integral, namely $\sum_{k} \psi(k)^{-1}<\infty$, is never true since $\psi(l k)=\psi(k)$ for any strictly positive integer l.

Proof. (i) Our definitions imply, for any continuous f,

$$
\begin{aligned}
R_{\varphi}^{*} R f(y) & =\frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) R f(\ell(y, p))=\frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) \int_{0}^{1} f(y+\operatorname{pr}(t p)) d t \\
& =<S(x), f(y-x)>
\end{aligned}
$$

where S is the distribution on \mathbb{T}^{n} defined by

$$
<S, f>=\frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) \int_{0}^{1} f(-\operatorname{pr}(t p)) d t
$$

Indeed the estimate $\left|<S, f>\left|\leq \frac{1}{2}\left(\sum_{p \in \mathcal{P}} \varphi(p)\right) \sup \right| f\right|$ shows that S is actually a measure on \mathbb{T}^{n}. Thus

$$
\begin{equation*}
R_{\varphi}^{*} R f=S * f \tag{7}
\end{equation*}
$$

(convolution on \mathbb{T}^{n}), and this convolution equation can be easily inverted by means of Fourier coefficients. From (7) we have

$$
\widehat{R^{*} \varphi R} f(k)=\widehat{S}(k) \widehat{f}(k),
$$

with

$$
\widehat{S}(k)=<S(x), e^{-2 i \pi k \cdot x}>=\frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) \int_{0}^{1} e^{2 i \pi t k \cdot p} d t .
$$

The integral vanishes whenever $k \cdot p \neq 0$, therefore

$$
\widehat{S}(k)=\frac{1}{2} \sum_{p \in \mathcal{P}_{k}} \varphi(p)=\psi(k) .
$$

(ii) Given an arbitrary $k=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}^{n}$ we claim that $\psi(k)>0$. Indeed $\varphi>0$ and the set \mathcal{P}_{k} is nonempty:

- if $k_{j}=0$ for all j, then $\mathcal{P}_{k}=\mathcal{P}$.
- if $k_{j} \neq 0$ for some j and $k_{l}=0$ for all $l \neq j$, then \mathcal{P}_{k} is the set of all $p \in \mathcal{P}$ such that $p_{j}=0$.
- if $k_{j} \neq 0$ and $k_{l} \neq 0$ for some j, l with $j \neq l$, then \mathcal{P}_{k} contains $p=\left(p_{1}, \ldots, p_{n}\right)$ with

$$
p_{j}=\frac{k_{l}}{d\left(k_{j}, k_{l}\right)}, p_{l}=-\frac{k_{j}}{d\left(k_{j}, k_{l}\right)}, p_{m}=0 \text { if } m \neq j, l .
$$

Finally, in view of the assumptions $f \in C\left(\mathbb{T}^{n}\right)$ and $\widehat{f} \in l^{1}\left(\mathbb{Z}^{n}\right)$, the Fourier inversion applies to f whence, by (i),

$$
f(x)=\sum_{k \in \mathbb{Z}^{n}} \widehat{f}(k) e^{2 i \pi k \cdot x}=\sum_{k} \frac{1}{\psi(k)} \widehat{R_{\varphi}^{*} R f}(k) e^{2 i \pi k \cdot x}
$$

for all $x \in \mathbb{T}^{n}$ and the inversion formula follows. (iii) If f belongs to $C^{n}\left(\mathbb{T}^{n}\right)$ we have $\widehat{\partial_{j}^{n} f}(k)=\left(2 i \pi k_{j}\right)^{n} \widehat{f}(k)$ (with $\left.\partial_{j}=\partial / \partial x_{j}\right)$ and $\sum_{k \in \mathbb{Z}^{n}} k_{j}^{2 n}|\widehat{f}(k)|^{2}<\infty$ by Parseval's formula applied to $\partial_{j}^{n} f \in L^{2}\left(\mathbb{T}^{n}\right)$. Therefore

$$
\left(\sum_{k \in \mathbb{Z}^{n}, k \neq 0}|\widehat{f}(k)|\right)^{2} \leq \sum_{k \in \mathbb{Z}^{n}, k \neq 0}\left(k_{1}^{2 n}+\cdots+k_{n}^{2 n}\right)^{-1} \sum_{k \in \mathbb{Z}^{n}}\left(k_{1}^{2 n}+\cdots+k_{n}^{2 n}\right)|\widehat{f}(k)|^{2}<\infty
$$

by Cauchy-Schwarz inequality, thus \widehat{f} belongs to $l^{1}\left(\mathbb{Z}^{n}\right)$.
Variant of the proof. Though natural, the distribution S can be skipped in the first part of the proof of Theorem 1. Given a function F on $\mathbb{T}^{n} \times \mathcal{P}$ let us write

$$
\begin{equation*}
\widehat{F}(k, p)=\int_{\mathbb{T}^{n}} F(x, p) e^{-2 i \pi k \cdot x} d x . \tag{8}
\end{equation*}
$$

We then have the following "Fourier slice theorem", with f continuous on \mathbb{T}^{n} (and a slight abuse of notation),

$$
\widehat{R f}(k, p)=\left\{\begin{array}{cl}
\widehat{f}(k) & \text { if } p \in \mathcal{P}_{k} \tag{9}\\
0 & \text { otherwise }
\end{array}\right.
$$

emphasizing the important rôle in our problem of the set \mathcal{P}_{k} of all $(k, p) \in \mathbb{Z}^{n} \times \mathcal{P}$ such that $k \cdot p=0$. Indeed

$$
\begin{aligned}
\widehat{R f}(k, p) & =\int_{0}^{1} d t \int_{\mathbb{T}^{n}} f(x+\operatorname{pr}(t p)) e^{-2 i \pi k \cdot x} d x \\
& =\int_{\mathbb{T}^{n}} f(x) e^{-2 i \pi k \cdot x} d x \int_{0}^{1} e^{2 i \pi t k \cdot p} d t
\end{aligned}
$$

and (9) follows.
Since $\sum_{p \in \mathcal{P}} \varphi(p)<\infty$ and $|R f(\ell(x, p))| \leq \sup |f|$ the series

$$
R_{\varphi}^{*} R f(x)=\frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) R f(\ell(x, p))
$$

converges uniformly on \mathbb{T}^{n}, therefore

$$
\widehat{R_{\varphi}^{*} R f}(k)=\frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) \widehat{R f}(k, p)=\frac{1}{2} \sum_{p \in \mathcal{P}_{k}} \varphi(p) \widehat{f}(k)=\psi(k) \widehat{f}(k),
$$

and the proof ends as before.
Remark 1. For $n=2$ and $k \neq 0$ the set \mathcal{P}_{k} only has two elements:

$$
\mathcal{P}_{k}=\{p(k),-p(k)\} \text { with } p(k)=\left(\frac{k_{2}}{d\left(k_{1}, k_{2}\right)},-\frac{k_{1}}{d\left(k_{1}, k_{2}\right)}\right) .
$$

Indeed $k_{1} p_{1}=-k_{2} p_{2}$ with $d\left(p_{1}, p_{2}\right)=1$ implies $k_{1}=l p_{2}$ and $k_{2}=-l p_{1}$ for some $l \in \mathbb{Z}$, whence $d\left(k_{1}, k_{2}\right)=|l|$ and $p= \pm p(k)$.

The finiteness of \mathcal{P}_{k} in this case was the key to Strichartz' inversion formula for $n=2$ in [9] p. 422. Writing $e_{k}(x)=e^{2 i \pi k \cdot x}$ he observed that, for $k \neq 0, \operatorname{Re}_{k}(\ell(x, p))=e_{k}(x)$ if $p \in \mathcal{P}_{k}, \operatorname{Re}_{k}(\ell(x, p))=0$ if $p \notin \mathcal{P}_{k}$ (cf. (9) above), therefore

$$
e_{k}(x)=\frac{1}{2} \sum_{p \in \mathcal{P}} R e_{k}(\ell(x, p))
$$

where the sum only contains two (equal) terms. Multiplying by the Fourier coefficient $\widehat{f}(k)$ and summing over all $k \neq 0$ he obtained

$$
\sum_{k \neq 0} \widehat{f}(k) e_{k}(x)=\frac{1}{2} \sum_{p \in \mathcal{P}} R\left(\sum_{k \neq 0} \widehat{f}(k) e_{k}\right)(x, p)
$$

that is

$$
f(x)-\widehat{f}(0)=\frac{1}{2} \sum_{p \in \mathcal{P}}(R f(\ell(x, p))-\widehat{f}(0))
$$

since $R c=c$ obviously for any constant c. This is actually an inversion formula for R because

$$
\widehat{f}(0)=\int_{0}^{1} \int_{0}^{1} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\int_{0}^{1} R f\left(\ell\left(x(s), p_{0}\right)\right) d s
$$

with $x(s)=(s, 0)$ and $p_{0}=(0,1)$ for instance.
Remark 2. Strichartz' method does not extend in an obvious way to \mathbb{T}^{n} for $n>2$, the sets \mathcal{P}_{k} being infinite. Indeed let $n \geq 3$ and $k \in \mathbb{Z}^{n}$. If $\left(k_{1}, k_{2}\right)=(0,0), \mathcal{P}_{k}$ contains $(l, 1,0, \ldots, 0)$ for all $l \in \mathbb{Z}$. If $\left(k_{1}, k_{2}\right) \neq(0,0)$ let $k_{j}^{\prime}=k_{j} / d\left(k_{1}, k_{2}\right)$. By Bezout's theorem there exist $q_{1}, q_{2} \in \mathbb{Z}$ such that $k_{1}^{\prime} q_{1}+k_{2}^{\prime} q_{2}+k_{3}=0$, therefore

$$
\left(q_{1}+l k_{2}^{\prime}, q_{2}-l k_{1}^{\prime}, d\left(k_{1}, k_{2}\right), 0, \ldots, 0\right)
$$

is orthogonal to k for all $l \in \mathbb{Z}$. Dividing the first three components by their highest common divisor we obtain elements of \mathcal{P}_{k}, easily seen to be distinct when l runs over \mathbb{Z}.
Remark 3. As noted above we can pick, for any $k \in \mathbb{Z}^{n}$, an element $p(k)$ of \mathcal{P} such that $k \cdot p(k)=0$. By (9) we have $\widehat{f}(k)=\widehat{R f}(k, p(k))$ therefore

$$
\int_{\mathbb{T}^{n}}|f(x)|^{2} d x=\sum_{k \in \mathbb{Z}^{n}}|\widehat{f}(k)|^{2}=\sum_{k \in \mathbb{Z}^{n}}|\widehat{R f}(k, p(k))|^{2}
$$

This may be viewed as a Plancherel type theorem, expressing the L^{2} norm of f by means of its Radon transform.

4. A RANGE THEOREM

In order to state the next theorem we shall denote by \mathcal{V} the space of all functions F on $\mathbb{T}^{n} \times \mathcal{P}$ satisfying the following three conditions:
(i) for any $p \in \mathcal{P}$ the map $x \mapsto F(x, p)$ belongs to $C^{\infty}\left(\mathbb{T}^{n}\right)$ and, for any multi-index $\alpha \in \mathbb{N}^{n}$, there exists a constant C_{α} such that $\left|\partial_{x}^{\alpha} F(x, p)\right| \leq C_{\alpha}$ for all $(x, p) \in \mathbb{T}^{n} \times \mathcal{P}$
(ii) $\widehat{F}(k, p)=0$ whenever $k \in \mathbb{Z}^{n}, p \in \mathcal{P}$ and $p \notin \mathcal{P}_{k}$
(iii) $\widehat{F}(k, p)=\widehat{F}(k, q)$ whenever $k \in \mathbb{Z}^{n}$ and $p, q \in \mathcal{P}_{k}$.

Properties (ii) and (iii) of \widehat{F} defined by (8) are the "moment conditions" relevant to our problem.

Theorem 2. The X-ray transform $f \mapsto F$, with $F(x, p)=R f(\ell(x, p))$, is a bijection of $C^{\infty}\left(\mathbb{T}^{n}\right)$ onto \mathcal{V}.
Proof. Given $f \in C^{\infty}\left(\mathbb{T}^{n}\right)$ the function $F(x, p)=R f(\ell(x, p))=\int_{0}^{1} f(x+\operatorname{pr}(t p)) d t$ clearly satisfies (i). And (ii), (iii) follow from (9).

By Theorem 1 the map $f \mapsto F$ is injective ; only the surjectivity remains to be proved. Given $F \in \mathcal{V}$ let

$$
\begin{equation*}
g(k)=\widehat{F}(k, p) \text { for any } p \in \mathcal{P}_{k} \tag{10}
\end{equation*}
$$

well defined by assumption (iii), and let us consider the Fourier series

$$
\begin{equation*}
f(x)=\sum_{k \in \mathbb{Z}^{n}} g(k) e^{2 i \pi k \cdot x} \tag{11}
\end{equation*}
$$

By (i) for any $l \in \mathbb{N}$ there exists a constant C_{l} such that $|\widehat{F}(k, p)| \leq C_{l}(1+\|k\|)^{-l}$ for all $k \in \mathbb{Z}^{n}, p \in \mathcal{P}$. The series (11) therefore defines a C^{∞} function on the torus. Finally let G be the function defined by $G(x, p)=R f(\ell(x, p))$. Using (9), (11) and (10) successively we have, for $k \cdot p=0$,

$$
\widehat{G}(k, p)=\widehat{f}(k)=g(k)=\widehat{F}(k, p) .
$$

Besides, by (9) again and (ii), $\widehat{G}(k, p)=0=\widehat{F}(k, p)$ for $k \cdot p \neq 0$. Thus \widehat{G} and \widehat{F} coincide and it follows that $R f(\ell(x, p))=F(x, p)$, which completes the proof.

Acknowledgement. The authors are grateful to the referee for several helpful remarks.

References

[1] Abouelaz, A. and Ihsane, A., Diophantine integral geometry, Mediterr. J. Math. 5 (2008), 77-99.
[2] Abouelaz, A. and Ihsane, A., Integral geometry on discrete Grassmannians $\mathbb{G}(d, n)$ associated to \mathbb{Z}^{n}, Integral Transforms and Special Functions 21 (2010), 197-220.
[3] Abouelaz, A., Tarabusi, E.C. and Ihsane, A., Integral geometry on discrete Grassmannians in \mathbb{Z}^{n}, Mediterr. J. Math. 6 (2009), 303-316.
[4] Berenstein, C. and Casadio Tarabusi, E., Inversion formulas for the k-dimensional Radon transform in real hyperbolic spaces, Duke Math. J. 62 (1991), 613-631.
[5] Helgason, S., The Radon transform, second edition, Birkhäuser 1999.
[6] Helgason, S., The Abel, Fourier and Radon transforms on symmetric spaces, Indag. Mathem. 16 (2005), 531-551.
[7] Rouvière, F., Transformation aux rayons X sur un espace symétrique, C. R. Acad. Sci. Paris, Ser. I, 342 (2006), 1-6.
[8] Rouvière, F., X-ray transform on Damek-Ricci spaces, Inverse Problems and Imaging, 2010 (to appear).
[9] Strichartz, R., Radon inversion - variations on a theme, Amer. Math. Monthly, June-July 1982, 377-384 and 420-423.
Current address, A. Abouelaz: Department of Mathematics and Computer Science, Université Hassan
II, Faculté des Sciences Ain Chock, Route d'El Jadida km.8, B.P. 5366 Maarif, 20100 Casablanca, Morocco
E-mail address: a.abouelaz@fsac.ac.ma
Current address, F. Rouvière: Laboratoire Dieudonné, Université de Nice, Parc Valrose, 06108 Nice cedex 2, France

E-mail address: frou@unice.fr
$U R L$: http://math.unice.fr/~frou

[^0]: ${ }^{1}$ The exponential $e^{-2 i \pi k \cdot x}$ is of course unambiguously defined, with $x \in \mathbb{R}^{n} / \mathbb{Z}^{n}$ replaced by any representative in \mathbb{R}^{n}.

