RADON TRANSFORM ON THE TORUS

AHMED ABOUELAZ AND FRANÇOIS ROUVIÈRE

ABSTRACT. We consider the Radon transform on the (flat) torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ defined by integrating a function over all closed geodesics. We prove an inversion formula for this transform and we give a characterization of the image of the space of smooth functions on \mathbb{T}^n .

1. INTRODUCTION

Trying to reconstruct a function on a manifold knowing its integrals over a certain family of submanifolds is one of the main problems of integral geometry. In the framework of Riemannian manifolds a natural choice is the family of all geodesics. The simple example of lines in Euclidean space has suggested naming X-ray transform the corresponding integral operator, associating to a function f its integrals Rf(l) along all geodesics l of the manifold.

Few explicit formulas are known to invert the X-ray transform. With no attempt to give an exhaustive list, let us quote Helgason [5] for Euclidean spaces, hyperbolic spaces and spheres, Berenstein and Casadio Tarabusi [4] for hyperbolic spaces, Helgason [6] or the second author [7] for more general symmetric spaces, [8] for Damek-Ricci spaces etc.

We consider here the *n*-dimensional (flat) torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ and the Radon transform defined by integrating f along all *closed geodesics* of \mathbb{T}^n , that is all lines with rational slopes. Arithmetic properties will thus enter the picture, as in the case of Radon transforms on \mathbb{Z}^n already studied by the first author and collaborators (see [1, 2, 3]). Our present problem was introduced by Strichartz [9], who gave a solution for n = 2. But, relying on a special property of the two-dimensional case (see Remark 1 at the end of Section 3 below), his method does not extend in an obvious way to the *n*-dimensional torus. The inversion formula proved here for \mathbb{T}^n (Theorem 1) makes use of a weighted dual Radon transform R^*_{φ} , with a weight function φ to ensure convergence.

In Section 2 we describe a suitable set of parameters for the closed geodesics on the torus. Our main result (Theorem 1) is proved in Section 3. Section 4 is devoted to a range theorem (Theorem 2), characterizing the space of Radon transforms of all functions in $C^{\infty}(\mathbb{T}^n)$.

2. Closed geodesics of the torus

The following notation will be used throughout.

Notation. Let $x \cdot y = x_1y_1 + \cdots + x_ny_n$ be the canonical scalar product of $x, y \in \mathbb{R}^n$. For $p = (p_1, ..., p_n) \in \mathbb{Z}^n \setminus 0$ the set $I(p) = \{k \cdot p, k \in \mathbb{Z}^n\}$ is an ideal of \mathbb{Z} , not $\{0\}$, and we shall denote by $d(p) = d(p_1, ..., p_n)$ its smallest strictly positive element. Thus d(p) is the highest common divisor of $p_1, ..., p_n$ and $I(p) = d(p)\mathbb{Z}$. Let

$$\mathcal{P} = \{ p = (p_1, ..., p_n) \in \mathbb{Z}^n \setminus \{0\} \mid d(p_1, ..., p_n) = 1 \}$$

and, for $k \in \mathbb{Z}^n$,

$$\mathcal{P}_k = \{ p \in \mathcal{P} \mid k \cdot p = 0 \} .$$

Date: July 5, 2010.

 $^{2000\} Mathematics\ Subject\ Classification.\ {\rm Primary}\ 53{\rm C}65,\ 44{\rm A}12.$

Key words and phrases. torus, geodesic, Radon transform.

This paper is in final form and no version of it will be submitted for publication elsewhere.

For $n \geq 2$ be the *n*-dimensional torus $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ is equipped with the (flat) Riemannian metric induced by the canonical Euclidean structure of \mathbb{R}^n and the corresponding (translation invariant) measure dx; thus $\int_{\mathbb{T}^n} dx = 1$. We denote by $\mathrm{pr} : \mathbb{R}^n \to \mathbb{T}^n$ the canonical projection.

All functions considered here are complex-valued.

In \mathbb{T}^n the geodesic from $x = (x_1, ..., x_n) \in \mathbb{T}^n$ with (non zero) initial speed $v = (v_1, ..., v_n) \in \mathbb{R}^n$ is the line

$$\ell = \{x + \operatorname{pr}(tv), t \in \mathbb{R}\} .$$

Since $v \neq 0$ the set of all t such that tv belongs to \mathbb{Z}^n is a discrete subgroup of \mathbb{R} , that is $T\mathbb{Z}$ for some $T \geq 0$. Thus the geodesic ℓ is closed if and only if T > 0. In this case we set $Tv = p = (p_1, ..., p_n) \in \mathbb{Z}^n \setminus \{0\}$, and the p_j 's are relatively prime: a nontrivial common divisor would contradict the definition of T. Thus p belongs to \mathcal{P} .

Now for $p \in \mathcal{P}$ and $t \in \mathbb{R}$ we have

$$tp \in \mathbb{Z}^n \iff t \in \mathbb{Z}$$
.

Indeed the set of such t is a discrete subgroup $\tau \mathbb{Z}$ of \mathbb{R} (for some $\tau \geq 0$), obviously containing 1. Thus $\tau = 1/m$ for some integer m > 0, so that m is a common divisor to all p_j 's, which implies m = 1 and $\tau = 1$.

For $x \in \mathbb{T}^n$ and $p \in \mathcal{P}$ we denote by

$$\ell(x,p) = \{x + \operatorname{pr}(tp), t \in \mathbb{R}\}\$$

the corresponding closed geodesic from x. By the above remark the map $t \mapsto x + \operatorname{pr}(tp)$ induces a bijection from \mathbb{R}/\mathbb{Z} onto $\ell(x,p)$, since $\operatorname{pr}(tp) = \operatorname{pr}(t'p)$ if and only if $(t-t')p \in \mathbb{Z}^n$ that is $t-t' \in \mathbb{Z}$. We shall therefore let t run over [0,1[only in the sequel. The length of $\ell(x,p)$ is $\|p\| = \left(\sum_{j=1}^n p_j^2\right)^{1/2}$.

Lemma 1. Let $x, y \in \mathbb{T}^n$ and $p, q \in \mathcal{P}$. The following are equivalent: (i) $\ell(x, p) = \ell(y, q)$

(ii) $q = \pm p$ and there exists $s \in \mathbb{R}$ such that $y = x + \operatorname{pr}(sp)$.

The set of closed geodesics from x is therefore in one-to-one correspondence with $\mathcal{P}/\{\pm 1\}$. **Proof.** (*ii*) *implies* (*i*) since, for any s,

(1)
$$\ell(x,p) = \ell(x,-p) , \ \ell(x+\operatorname{pr}(sp),p) = \ell(x,p) .$$

(i) implies (ii). Conversely, assume $\ell(x,p) = \ell(y,q)$. Since y belongs to $\ell(x,p)$ there exists $s_0 \in \mathbb{R}$ such that $y = x + \operatorname{pr}(s_0p)$. More generally, for any $t \in \mathbb{R}$ there exists $s \in \mathbb{R}$ such that $y + \operatorname{pr}(tq) = x + \operatorname{pr}(sp)$. Replacing s by $s + s_0$ we have: for any $t \in \mathbb{R}$ there exist $s \in \mathbb{R}$ and $z \in \mathbb{Z}^n$ such that

$$tq = sp + z$$
.

Let us fix $j \in \{1, 2, ..., n\}$ so that $p_j \neq 0$. Fixing $l \neq j$ let

$$k = (k_1, ..., k_n)$$
 with $k_j = p_l$, $k_l = -p_j$ and $k_m = 0$ if $m \neq j, l$.

Then $k \cdot p = 0$, therefore $t(k \cdot q) = k \cdot z$ is an integer for any $t \in \mathbb{R}$. It follows that $k \cdot q = 0$, that is

(2)
$$q_j p_m = p_j q_m$$

for any m = 1, ..., n (including m = j). Applying d we get $d(q_j p) = d(p_j q)$ whence $|q_j|d(p) = |p_j|d(q)$, that is $p_j = \pm q_j$ since $p, q \in \mathcal{P}$. In view of $p_j \neq 0$, (2) gives $p = \pm q$ as claimed.

3. An inversion formula

3.1. Let f be a continuous function on \mathbb{T}^n . We define its X-ray transform Rf as the integral of f over closed geodesics of \mathbb{T}^n , namely

(3)
$$Rf(\ell(x,p)) = \int_0^1 f(x + pr(tp)) dt ,$$

with $x \in \mathbb{T}^n$ and $p \in \mathcal{P}$. As noted in the previous section $x + \operatorname{pr}(tp)$ runs over the whole geodesic $\ell(x, p)$ when t varies from 0 to 1.

The natural dual transform R^* is obtained by summing over all closed geodesics through a given point, that is

$$R^*F(x) = \frac{1}{2}\sum_{p\in\mathcal{P}}F(\ell(x,p)) ,$$

where F is a function on the set of all closed geodesics and the factor 1/2 is introduced because of (1). However such an operator is not even defined on constant functions and we shall rather replace it by a weighted dual transform as follows. By *weight function* on \mathcal{P} we mean

(4)
$$\varphi: \mathcal{P} \to]0, \infty[$$
 such that $\varphi(-p) = \varphi(p)$ and $\sum_{p \in \mathcal{P}} \varphi(p) < \infty$,

for instance the restriction to \mathcal{P} of any strictly positive even function in $l^1(\mathbb{Z}^n)$ such as $\varphi(p) = e^{-\|p\|}$ or $\varphi(p) = (1 + \|p\|)^{-n-1}$. The weighted dual transform R_{φ}^* is then defined as

(5)
$$R_{\varphi}^*F(x) = \frac{1}{2}\sum_{p\in\mathcal{P}}\varphi(p)F(\ell(x,p))$$

and the series converges whenever F is a bounded function on the set of all closed geodesics. The transform R^*_{φ} is dual to R in the following sense

(6)
$$\int_{\mathbb{T}^n} R^*_{\varphi} F(x) f(x) dx = \frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) \int_{\mathbb{T}^n} F(\ell(x, p)) Rf(\ell(x, p)) dx ,$$

valid if f is continuous on \mathbb{T}^n and F is bounded. Indeed, by (1) and (5), $R^*_{\varphi}F(x) = \frac{1}{2}\sum_p \varphi(p)F(\ell(x - \operatorname{pr}(tp), p))$ for any $t \in \mathbb{R}$ and the left-hand side of (6) is

$$\int_{\mathbb{T}^n} R^*_{\varphi} F(x) f(x) dx = \frac{1}{2} \sum_p \varphi(p) \int_{\mathbb{T}^n} F(\ell(x - \operatorname{pr}(tp), p)) f(x) dx$$
$$= \frac{1}{2} \sum_p \varphi(p) \int_{\mathbb{T}^n} F(\ell(x, p)) f(x + \operatorname{pr}(tp)) dx.$$

Then (6) follows by integration with respect to $t \in [0, 1]$. The calculations are valid since, for any t,

$$\sum_{p} \varphi(p) \int_{\mathbb{T}^n} |F(\ell(x,p))| |f(x+\operatorname{pr}(tp))| dx \leq \sum_{p} \varphi(p) \sup |F| \sup |f| < \infty .$$

3.2. Several classical inversion formulas for Radon transforms involve R^*Rf . As noted before the sum defining it does not converge here in general (not even for a constant function f) and we shall use $R^*_{\varphi}Rf$ instead with R^*_{φ} defined by (5). As usual we denote by¹

$$\widehat{f}(k) = \int_{\mathbb{T}^n} f(x) \ e^{-2i\pi k \cdot x} \ dx$$

with $k \in \mathbb{Z}^n$ the Fourier coefficients of f. Let us recall the notation $\mathcal{P}_k = \{p \in \mathcal{P} | k \cdot p = 0\}.$

¹The exponential $e^{-2i\pi k \cdot x}$ is of course unambiguously defined, with $x \in \mathbb{R}^n / \mathbb{Z}^n$ replaced by any representative in \mathbb{R}^n .

Theorem 1. Let φ be a weight function on \mathcal{P} satisfying (4) and, for $k \in \mathbb{Z}^n$,

$$\psi(k) = \frac{1}{2} \sum_{p \in \mathcal{P}_k} \varphi(p) \; .$$

Then ψ is strictly positive on \mathbb{Z}^n , the operator $R^*_{\varphi}R$ is a convolution operator on \mathbb{T}^n $(n \geq 2)$ and, for any continuous function f on \mathbb{T}^n such that $\widehat{f} \in l^1(\mathbb{Z}^n)$, the X-ray transform R is inverted by

$$f(x) = \sum_{k \in \mathbb{Z}^n} \int_{\mathbb{T}^n} \frac{e^{2i\pi k \cdot (x-y)}}{\psi(k)} \left(R_{\varphi}^* Rf \right)(y) \, dy \, , \, x \in \mathbb{T}^n \, .$$

This inversion formula applies in particular to any function $f \in C^n(\mathbb{T}^n)$.

Formally $\sum_k e^{2i\pi k \cdot x} \psi(k)^{-1}$ is thus a convolution inverse for $R^*_{\varphi} R$. However the natural assumption to justify this by permutation of series and integral, namely $\sum_k \psi(k)^{-1} < \infty$, is never true since $\psi(lk) = \psi(k)$ for any strictly positive integer l.

Proof. (i) Our definitions imply, for any continuous f,

$$\begin{aligned} R_{\varphi}^* Rf(y) &= \frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) Rf(\ell(y, p)) = \frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) \int_0^1 f(y + \operatorname{pr}(tp)) dt \\ &= \langle S(x), f(y - x) \rangle \quad, \end{aligned}$$

where S is the distribution on \mathbb{T}^n defined by

$$\langle S, f \rangle = \frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) \int_0^1 f(-\operatorname{pr}(tp)) dt$$

Indeed the estimate $| \langle S, f \rangle | \leq \frac{1}{2} \left(\sum_{p \in \mathcal{P}} \varphi(p) \right) \sup |f|$ shows that S is actually a measure on \mathbb{T}^n . Thus

(7)
$$R_{\omega}^* R f = S * f$$

(convolution on \mathbb{T}^n), and this convolution equation can be easily inverted by means of Fourier coefficients. From (7) we have

$$\widehat{R^*\varphi Rf}(k) = \widehat{S}(k)\widehat{f}(k) \ ,$$

with

$$\widehat{S}(k) = \langle S(x), e^{-2i\pi k \cdot x} \rangle = \frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) \int_0^1 e^{2i\pi t k \cdot p} dt$$

The integral vanishes whenever $k \cdot p \neq 0$, therefore

$$\widehat{S}(k) = \frac{1}{2} \sum_{p \in \mathcal{P}_k} \varphi(p) = \psi(k)$$
 .

(*ii*) Given an arbitrary $k = (k_1, ..., k_n) \in \mathbb{Z}^n$ we claim that $\psi(k) > 0$. Indeed $\varphi > 0$ and the set \mathcal{P}_k is nonempty:

- if $k_j = 0$ for all j, then $\mathcal{P}_k = \mathcal{P}$.
- if $k_j \neq 0$ for some j and $k_l = 0$ for all $l \neq j$, then \mathcal{P}_k is the set of all $p \in \mathcal{P}$ such that $p_j = 0$.
- if $k_j \neq 0$ and $k_l \neq 0$ for some j, l with $j \neq l$, then \mathcal{P}_k contains $p = (p_1, ..., p_n)$ with

$$p_j = \frac{k_l}{d(k_j, k_l)}$$
, $p_l = -\frac{k_j}{d(k_j, k_l)}$, $p_m = 0$ if $m \neq j, l$.

Finally, in view of the assumptions $f \in C(\mathbb{T}^n)$ and $\hat{f} \in l^1(\mathbb{Z}^n)$, the Fourier inversion applies to f whence, by (i),

$$f(x) = \sum_{k \in \mathbb{Z}^n} \widehat{f}(k) \ e^{2i\pi k \cdot x} = \sum_k \frac{1}{\psi(k)} \widehat{R_{\varphi}^* R f}(k) \ e^{2i\pi k \cdot x}$$

for all $x \in \mathbb{T}^n$ and the inversion formula follows.

(*iii*) If f belongs to $C^n(\mathbb{T}^n)$ we have $\widehat{\partial_j^n f}(k) = (2i\pi k_j)^n \widehat{f}(k)$ (with $\partial_j = \partial/\partial x_j$) and $\sum_{k\in\mathbb{Z}^n}k_j^{2n}|\widehat{f}(k)|^2 < \infty$ by Parseval's formula applied to $\partial_j^n f \in L^2(\mathbb{T}^n)$. Therefore

$$\left(\sum_{k\in\mathbb{Z}^n,k\neq 0} |\widehat{f}(k)|\right)^2 \le \sum_{k\in\mathbb{Z}^n,k\neq 0} \left(k_1^{2n} + \dots + k_n^{2n}\right)^{-1} \sum_{k\in\mathbb{Z}^n} \left(k_1^{2n} + \dots + k_n^{2n}\right) |\widehat{f}(k)|^2 < \infty$$

by Cauchy-Schwarz inequality, thus \widehat{f} belongs to $l^1(\mathbb{Z}^n)$.

Variant of the proof. Though natural, the distribution S can be skipped in the first part of the proof of Theorem 1. Given a function F on $\mathbb{T}^n \times \mathcal{P}$ let us write

(8)
$$\widehat{F}(k,p) = \int_{\mathbb{T}^n} F(x,p) e^{-2i\pi k \cdot x} dx$$

We then have the following "Fourier slice theorem", with f continuous on \mathbb{T}^n (and a slight abuse of notation),

(9)
$$\widehat{Rf}(k,p) = \begin{cases} \widehat{f}(k) \text{ if } p \in \mathcal{P}_k \\ 0 \text{ otherwise} \end{cases}$$

emphasizing the important rôle in our problem of the set \mathcal{P}_k of all $(k, p) \in \mathbb{Z}^n \times \mathcal{P}$ such that $k \cdot p = 0$. Indeed

$$\widehat{Rf}(k,p) = \int_0^1 dt \int_{\mathbb{T}^n} f(x + \operatorname{pr}(tp)) e^{-2i\pi k \cdot x} dx$$
$$= \int_{\mathbb{T}^n} f(x) e^{-2i\pi k \cdot x} dx \int_0^1 e^{2i\pi t k \cdot p} dt$$

and (9) follows.

Since $\sum_{p \in \mathcal{P}} \varphi(p) < \infty$ and $|Rf(\ell(x, p))| \le \sup |f|$ the series

$$R_{\varphi}^{*}Rf(x) = rac{1}{2}\sum_{p\in\mathcal{P}} \varphi(p)Rf(\ell(x,p))$$

converges uniformly on \mathbb{T}^n , therefore

$$\widehat{R_{\varphi}^*Rf}(k) = \frac{1}{2} \sum_{p \in \mathcal{P}} \varphi(p) \widehat{Rf}(k, p) = \frac{1}{2} \sum_{p \in \mathcal{P}_k} \varphi(p) \widehat{f}(k) = \psi(k) \widehat{f}(k) ,$$

and the proof ends as before.

Remark 1. For n = 2 and $k \neq 0$ the set \mathcal{P}_k only has two elements:

$$\mathcal{P}_k = \{p(k), -p(k)\}$$
 with $p(k) = \left(\frac{k_2}{d(k_1, k_2)}, -\frac{k_1}{d(k_1, k_2)}\right)$

Indeed $k_1p_1 = -k_2p_2$ with $d(p_1, p_2) = 1$ implies $k_1 = lp_2$ and $k_2 = -lp_1$ for some $l \in \mathbb{Z}$, whence $d(k_1, k_2) = |l|$ and $p = \pm p(k)$.

The finiteness of \mathcal{P}_k in this case was the key to Strichartz' inversion formula for n = 2in [9] p. 422. Writing $e_k(x) = e^{2i\pi k \cdot x}$ he observed that, for $k \neq 0$, $Re_k(\ell(x, p)) = e_k(x)$ if $p \in \mathcal{P}_k$, $Re_k(\ell(x, p)) = 0$ if $p \notin \mathcal{P}_k$ (cf. (9) above), therefore

$$e_k(x) = \frac{1}{2} \sum_{p \in \mathcal{P}} Re_k(\ell(x, p))$$

where the sum only contains two (equal) terms. Multiplying by the Fourier coefficient $\hat{f}(k)$ and summing over all $k \neq 0$ he obtained

$$\sum_{k \neq 0} \widehat{f}(k) e_k(x) = \frac{1}{2} \sum_{p \in \mathcal{P}} R\left(\sum_{k \neq 0} \widehat{f}(k) e_k\right) (x, p) ,$$

that is

$$f(x) - \widehat{f}(0) = \frac{1}{2} \sum_{p \in \mathcal{P}} \left(Rf(\ell(x, p)) - \widehat{f}(0) \right)$$

since Rc = c obviously for any constant c. This is actually an inversion formula for R because

$$\widehat{f}(0) = \int_0^1 \int_0^1 f(x_1, x_2) dx_1 dx_2 = \int_0^1 Rf(\ell(x(s), p_0)) ds$$

with x(s) = (s, 0) and $p_0 = (0, 1)$ for instance.

Remark 2. Strichartz' method does not extend in an obvious way to \mathbb{T}^n for n > 2, the sets \mathcal{P}_k being infinite. Indeed let $n \geq 3$ and $k \in \mathbb{Z}^n$. If $(k_1, k_2) = (0, 0)$, \mathcal{P}_k contains (l, 1, 0, ..., 0) for all $l \in \mathbb{Z}$. If $(k_1, k_2) \neq (0, 0)$ let $k'_j = k_j/d(k_1, k_2)$. By Bezout's theorem there exist $q_1, q_2 \in \mathbb{Z}$ such that $k'_1q_1 + k'_2q_2 + k_3 = 0$, therefore

$$(q_1 + lk'_2, q_2 - lk'_1, d(k_1, k_2), 0, ..., 0)$$

is orthogonal to k for all $l \in \mathbb{Z}$. Dividing the first three components by their highest common divisor we obtain elements of \mathcal{P}_k , easily seen to be distinct when l runs over \mathbb{Z} . **Remark 3.** As noted above we can pick, for any $k \in \mathbb{Z}^n$, an element p(k) of \mathcal{P} such that $k \cdot p(k) = 0$. By (9) we have $\widehat{f}(k) = \widehat{Rf}(k, p(k))$ therefore

$$\int_{\mathbb{T}^n} |f(x)|^2 dx = \sum_{k \in \mathbb{Z}^n} \left| \widehat{f}(k) \right|^2 = \sum_{k \in \mathbb{Z}^n} \left| \widehat{Rf}(k, p(k)) \right|^2 \; .$$

This may be viewed as a Plancherel type theorem, expressing the L^2 norm of f by means of its Radon transform.

4. A RANGE THEOREM

In order to state the next theorem we shall denote by \mathcal{V} the space of all functions F on $\mathbb{T}^n \times \mathcal{P}$ satisfying the following three conditions:

(i) for any $p \in \mathcal{P}$ the map $x \mapsto F(x,p)$ belongs to $C^{\infty}(\mathbb{T}^n)$ and, for any multi-index $\alpha \in \mathbb{N}^n$, there exists a constant C_{α} such that $|\partial_x^{\alpha}F(x,p)| \leq C_{\alpha}$ for all $(x,p) \in \mathbb{T}^n \times \mathcal{P}$ (ii) $\widehat{F}(k,p) = 0$ whenever $k \in \mathbb{Z}^n$, $p \in \mathcal{P}$ and $p \notin \mathcal{P}_k$

(*iii*) $\widehat{F}(k,p) = \widehat{F}(k,q)$ whenever $k \in \mathbb{Z}^n$ and $p,q \in \mathcal{P}_k$.

Properties (ii) and (iii) of \hat{F} defined by (8) are the "moment conditions" relevant to our problem.

Theorem 2. The X-ray transform $f \mapsto F$, with $F(x,p) = Rf(\ell(x,p))$, is a bijection of $C^{\infty}(\mathbb{T}^n)$ onto \mathcal{V} .

Proof. Given $f \in C^{\infty}(\mathbb{T}^n)$ the function $F(x,p) = Rf(\ell(x,p)) = \int_0^1 f(x+\operatorname{pr}(tp))dt$ clearly satisfies (i). And (ii), (iii) follow from (9).

By Theorem 1 the map $f \mapsto F$ is injective ; only the surjectivity remains to be proved. Given $F \in \mathcal{V}$ let

(10)
$$g(k) = \widehat{F}(k, p) \text{ for any } p \in \mathcal{P}_k$$
,

well defined by assumption *(iii)*, and let us consider the Fourier series

(11)
$$f(x) = \sum_{k \in \mathbb{Z}^n} g(k) \ e^{2i\pi k \cdot x} \ .$$

By (i) for any $l \in \mathbb{N}$ there exists a constant C_l such that $|\widehat{F}(k,p)| \leq C_l(1+||k||)^{-l}$ for all $k \in \mathbb{Z}^n$, $p \in \mathcal{P}$. The series (11) therefore defines a C^{∞} function on the torus. Finally let G be the function defined by $G(x,p) = Rf(\ell(x,p))$. Using (9), (11) and (10) successively we have, for $k \cdot p = 0$,

$$\widehat{G}(k,p) = \widehat{f}(k) = g(k) = \widehat{F}(k,p)$$
 .

Besides, by (9) again and (ii), $\widehat{G}(k,p) = 0 = \widehat{F}(k,p)$ for $k \cdot p \neq 0$. Thus \widehat{G} and \widehat{F} coincide and it follows that $Rf(\ell(x,p)) = F(x,p)$, which completes the proof.

Acknowledgement. The authors are grateful to the referee for several helpful remarks.

References

- [1] Abouelaz, A. and Ihsane, A., Diophantine integral geometry, Mediterr. J. Math. 5 (2008), 77-99.
- [2] Abouelaz, A. and Ihsane, A., Integral geometry on discrete Grassmannians $\mathbb{G}(d,n)$ associated to \mathbb{Z}^n , Integral Transforms and Special Functions 21 (2010), 197-220.
- [3] Abouelaz, A., Tarabusi, E.C. and Ihsane, A., Integral geometry on discrete Grassmannians in Zⁿ, Mediterr. J. Math. 6 (2009), 303-316.
- [4] Berenstein, C. and Casadio Tarabusi, E., Inversion formulas for the k-dimensional Radon transform in real hyperbolic spaces, Duke Math. J. 62 (1991), 613-631.
- [5] Helgason, S., The Radon transform, second edition, Birkhäuser 1999.
- [6] Helgason, S., The Abel, Fourier and Radon transforms on symmetric spaces, Indag. Mathem. 16 (2005), 531-551.
- [7] Rouvière, F., Transformation aux rayons X sur un espace symétrique, C. R. Acad. Sci. Paris, Ser. I, 342 (2006), 1-6.
- [8] Rouvière, F., X-ray transform on Damek-Ricci spaces, Inverse Problems and Imaging, 2010 (to appear).
- [9] Strichartz, R., Radon inversion variations on a theme, Amer. Math. Monthly, June-July 1982, 377-384 and 420-423.

Current address, A. Abouelaz: Department of Mathematics and Computer Science, Université Hassan II, Faculté des Sciences Ain Chock, Route d'El Jadida km.8, B.P. 5366 Maarif, 20100 Casablanca, Morocco E-mail address: a.abouelaz@fsac.ac.ma

Current address, F. Rouvière: Laboratoire Dieudonné, Université de Nice, Parc Valrose, 06108 Nice cedex 2, France

E-mail address: frou@unice.fr

URL: http://math.unice.fr/~frou