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Abstract. We consider the Radon transform on the (�at) torus Tn = Rn=Zn de�ned
by integrating a function over all closed geodesics. We prove an inversion formula for this
transform and we give a characterization of the image of the space of smooth functions
on Tn.

1. Introduction

Trying to reconstruct a function on a manifold knowing its integrals over a certain family
of submanifolds is one of the main problems of integral geometry. In the framework of
Riemannian manifolds a natural choice is the family of all geodesics. The simple example of
lines in Euclidean space has suggested naming X-ray transform the corresponding integral
operator, associating to a function f its integrals Rf(l) along all geodesics l of the manifold.
Few explicit formulas are known to invert the X-ray transform. With no attempt to

give an exhaustive list, let us quote Helgason [5] for Euclidean spaces, hyperbolic spaces
and spheres, Berenstein and Casadio Tarabusi [4] for hyperbolic spaces, Helgason [6] or
the second author [7] for more general symmetric spaces, [8] for Damek-Ricci spaces etc.
We consider here the n-dimensional (�at) torus Tn = Rn=Zn and the Radon transform

de�ned by integrating f along all closed geodesics of Tn, that is all lines with rational
slopes. Arithmetic properties will thus enter the picture, as in the case of Radon transforms
on Zn already studied by the �rst author and collaborators (see [1, 2, 3]). Our present
problem was introduced by Strichartz [9], who gave a solution for n = 2. But, relying on a
special property of the two-dimensional case (see Remark 1 at the end of Section 3 below),
his method does not extend in an obvious way to the n-dimensional torus. The inversion
formula proved here for Tn (Theorem 1) makes use of a weighted dual Radon transform
R�', with a weight function ' to ensure convergence.
In Section 2 we describe a suitable set of parameters for the closed geodesics on the

torus. Our main result (Theorem 1) is proved in Section 3. Section 4 is devoted to a
range theorem (Theorem 2), characterizing the space of Radon transforms of all functions
in C1(Tn).

2. Closed geodesics of the torus

The following notation will be used throughout.
Notation. Let x � y = x1y1 + � � �+ xnyn be the canonical scalar product of x; y 2 Rn.
For p = (p1; :::; pn) 2 Znn0 the set I(p) = fk � p ; k 2 Zng is an ideal of Z, not f0g, and
we shall denote by d(p) = d(p1; :::; pn) its smallest strictly positive element. Thus d(p) is
the highest common divisor of p1; :::; pn and I(p) = d(p)Z. Let

P = fp = (p1; :::; pn) 2 Znn f0g j d(p1; :::; pn) = 1g
and, for k 2 Zn,

Pk = fp 2 P j k � p = 0g .
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For n � 2 be the n-dimensional torus Tn = Rn=Zn is equipped with the (�at) Riemannian
metric induced by the canonical Euclidean structure of Rn and the corresponding (trans-
lation invariant) measure dx; thus

R
Tn dx = 1. We denote by pr : R

n ! Tn the canonical
projection.
All functions considered here are complex-valued.

In Tn the geodesic from x = (x1; :::; xn) 2 Tn with (non zero) initial speed v =
(v1; :::; vn) 2 Rn is the line

` = fx+ pr(tv); t 2 Rg .
Since v 6= 0 the set of all t such that tv belongs to Zn is a discrete subgroup of R, that is

TZ for some T � 0. Thus the geodesic ` is closed if and only if T > 0. In this case we set
Tv = p = (p1; :::; pn) 2 Znn f0g, and the pj�s are relatively prime: a nontrivial common
divisor would contradict the de�nition of T . Thus p belongs to P.
Now for p 2 P and t 2 R we have

tp 2 Zn () t 2 Z .

Indeed the set of such t is a discrete subgroup �Z of R (for some � � 0), obviously
containing 1. Thus � = 1=m for some integer m > 0, so that m is a common divisor to all
pj�s, which implies m = 1 and � = 1.
For x 2 Tn and p 2 P we denote by

`(x; p) = fx+ pr(tp); t 2 Rg

the corresponding closed geodesic from x. By the above remark the map t 7! x + pr(tp)
induces a bijection from R=Z onto `(x; p), since pr(tp) = pr(t0p) if and only if (t�t0)p 2 Zn
that is t� t0 2 Z. We shall therefore let t run over [0; 1[ only in the sequel. The length of
`(x; p) is kpk =

�Pn
j=1 p

2
j

�1=2
.

Lemma 1. Let x; y 2 Tn and p; q 2 P. The following are equivalent:
(i) `(x; p) = `(y; q)
(ii) q = �p and there exists s 2 R such that y = x+ pr(sp).

The set of closed geodesics from x is therefore in one-to-one correspondence with P= f�1g.
Proof. (ii) implies (i) since, for any s,

(1) `(x; p) = `(x;�p) , `(x+ pr(sp); p) = `(x; p) .

(i) implies (ii). Conversely, assume `(x; p) = `(y; q). Since y belongs to `(x; p) there exists
s0 2 R such that y = x + pr(s0p). More generally, for any t 2 R there exists s 2 R such
that y + pr(tq) = x + pr(sp). Replacing s by s + s0 we have: for any t 2 R there exist
s 2 R and z 2 Zn such that

tq = sp+ z .

Let us �x j 2 f1; 2; :::; ng so that pj 6= 0. Fixing l 6= j let

k = (k1; :::; kn) with kj = pl , kl = �pj and km = 0 if m 6= j; l .

Then k � p = 0, therefore t(k � q) = k � z is an integer for any t2 R. It follows that k � q = 0,
that is

(2) qjpm = pjqm

for any m = 1; :::; n (including m = j). Applying d we get d(qjp) = d(pjq) whence
jqj jd(p) = jpj jd(q), that is pj = �qj since p; q 2 P. In view of pj 6= 0, (2) gives p = �q as
claimed. �
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3. An inversion formula

3.1. Let f be a continuous function on Tn. We de�ne its X-ray transform Rf as the
integral of f over closed geodesics of Tn, namely

(3) Rf(`(x; p)) =

Z 1

0
f(x+ pr(tp)) dt ,

with x 2 Tn and p 2 P. As noted in the previous section x + pr(tp) runs over the whole
geodesic `(x; p) when t varies from 0 to 1.
The natural dual transform R� is obtained by summing over all closed geodesics through

a given point, that is

R�F (x) =
1

2

X
p2P

F (`(x; p)) ,

where F is a function on the set of all closed geodesics and the factor 1=2 is introduced
because of (1). However such an operator is not even de�ned on constant functions and
we shall rather replace it by a weighted dual transform as follows. By weight function on
P we mean
(4) ' : P !]0;1[ such that '(�p) = '(p) and

X
p2P

'(p) <1 ,

for instance the restriction to P of any strictly positive even function in l1(Zn) such as
'(p) = e�kpk or '(p) = (1 + kpk)�n�1. The weighted dual transform R�' is then de�ned as

(5) R�'F (x) =
1

2

X
p2P

'(p)F (`(x; p))

and the series converges whenever F is a bounded function on the set of all closed geodesics.
The transform R�' is dual to R in the following sense

(6)
Z
Tn
R�'F (x)f(x)dx =

1

2

X
p2P

'(p)

Z
Tn
F (`(x; p))Rf(`(x; p))dx ,

valid if f is continuous on Tn and F is bounded. Indeed, by (1) and (5), R�'F (x) =
1
2

P
p '(p)F (`(x� pr(tp); p)) for any t 2 R and the left-hand side of (6) isZ

Tn
R�'F (x)f(x)dx =

1

2

X
p

'(p)

Z
Tn
F (`(x� pr(tp); p))f(x)dx

=
1

2

X
p

'(p)

Z
Tn
F (`(x; p))f(x+ pr(tp))dx .

Then (6) follows by integration with respect to t 2 [0; 1]. The calculations are valid since,
for any t,X

p

'(p)

Z
Tn
jF (`(x; p))jjf(x+ pr(tp))jdx �

X
p

'(p) sup jF j sup jf j <1 .

3.2. Several classical inversion formulas for Radon transforms involve R�Rf . As noted
before the sum de�ning it does not converge here in general (not even for a constant
function f) and we shall use R�'Rf instead with R

�
' de�ned by (5). As usual we denote

by1 bf(k) = Z
Tn
f(x) e�2i�k�x dx

with k 2 Zn the Fourier coe¢ cients of f . Let us recall the notation Pk = fp 2 Pjk �p = 0g.
1The exponential e�2i�k�x is of course unambiguously de�ned, with x 2 Rn=Zn replaced by any repre-

sentative in Rn.
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Theorem 1. Let ' be a weight function on P satisfying (4) and, for k 2 Zn,

 (k) =
1

2

X
p2Pk

'(p) .

Then  is strictly positive on Zn, the operator R�'R is a convolution operator on Tn (n � 2)
and, for any continuous function f on Tn such that bf 2 l1(Zn), the X-ray transform R is
inverted by

f(x) =
X
k2Zn

Z
Tn

e2i�k�(x�y)

 (k)

�
R�'Rf

�
(y) dy , x 2 Tn .

This inversion formula applies in particular to any function f 2 Cn(Tn).

Formally
P
k e

2i�k�x (k)�1 is thus a convolution inverse for R�'R. However the natural
assumption to justify this by permutation of series and integral, namely

P
k  (k)

�1 <1,
is never true since  (lk) =  (k) for any strictly positive integer l.

Proof. (i) Our de�nitions imply, for any continuous f ,

R�'Rf(y) =
1

2

X
p2P

'(p)Rf(`(y; p)) =
1

2

X
p2P

'(p)

Z 1

0
f(y + pr(tp))dt

= < S(x); f(y � x) > ,

where S is the distribution on Tn de�ned by

< S; f > =
1

2

X
p2P

'(p)

Z 1

0
f(�pr(tp))dt .

Indeed the estimate j < S; f > j � 1
2

�P
p2P '(p)

�
sup jf j shows that S is actually a

measure on Tn. Thus

(7) R�'Rf = S � f

(convolution on Tn), and this convolution equation can be easily inverted by means of
Fourier coe¢ cients. From (7) we have

\R�'Rf(k) = bS(k) bf(k) ,
with bS(k) =< S(x); e�2i�k�x >=

1

2

X
p2P

'(p)

Z 1

0
e2i�tk�pdt .

The integral vanishes whenever k � p 6= 0, therefore

bS(k) = 1

2

X
p2Pk

'(p) =  (k) .

(ii) Given an arbitrary k = (k1; :::; kn) 2 Zn we claim that  (k) > 0. Indeed ' > 0 and
the set Pk is nonempty:

� if kj = 0 for all j, then Pk = P.
� if kj 6= 0 for some j and kl = 0 for all l 6= j, then Pk is the set of all p 2 P such
that pj = 0:

� if kj 6= 0 and kl 6= 0 for some j; l with j 6= l, then Pk contains p = (p1; :::; pn) with

pj =
kl

d(kj ; kl)
, pl = �

kj
d(kj ; kl)

, pm = 0 if m 6= j; l .
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Finally, in view of the assumptions f 2 C(Tn) and bf 2 l1(Zn), the Fourier inversion
applies to f whence, by (i),

f(x) =
X
k2Zn

bf(k) e2i�k�x =X
k

1

 (k)
\R�'Rf(k) e2i�k�x

for all x 2 Tn and the inversion formula follows.
(iii) If f belongs to Cn(Tn) we have d@nj f(k) = (2i�kj)

n bf(k) (with @j = @=@xj) andP
k2Zn k

2n
j j bf(k)j2 <1 by Parseval�s formula applied to @nj f 2 L2(Tn). Therefore0@ X

k2Zn;k 6=0
j bf(k)j

1A2

�
X

k2Zn;k 6=0

�
k2n1 + � � �+ k2nn

��1 X
k2Zn

�
k2n1 + � � �+ k2nn

�
j bf(k)j2 <1

by Cauchy-Schwarz inequality, thus bf belongs to l1(Zn). �
Variant of the proof. Though natural, the distribution S can be skipped in the �rst
part of the proof of Theorem 1. Given a function F on Tn � P let us write

(8) bF (k; p) = Z
Tn
F (x; p)e�2i�k�xdx .

We then have the following "Fourier slice theorem", with f continuous on Tn (and a slight
abuse of notation),

(9) cRf(k; p) = � bf(k) if p 2 Pk
0 otherwise,

emphasizing the important rôle in our problem of the set Pk of all (k; p) 2 Zn � P such
that k � p = 0. Indeed

cRf(k; p) =

Z 1

0
dt

Z
Tn
f(x+ pr(tp))e�2i�k�xdx

=

Z
Tn
f(x)e�2i�k�xdx

Z 1

0
e2i�tk�pdt

and (9) follows.
Since

P
p2P '(p) <1 and jRf(`(x; p))j � sup jf j the series

R�'Rf(x) =
1

2

X
p2P

'(p)Rf(`(x; p))

converges uniformly on Tn, therefore

\R�'Rf(k) =
1

2

X
p2P

'(p)cRf(k; p) = 1

2

X
p2Pk

'(p) bf(k) =  (k) bf(k) ,
and the proof ends as before.

Remark 1. For n = 2 and k 6= 0 the set Pk only has two elements:

Pk = fp(k);�p(k)g with p(k) =
�

k2
d(k1; k2)

;� k1
d(k1; k2)

�
.

Indeed k1p1 = �k2p2 with d(p1; p2) = 1 implies k1 = lp2 and k2 = �lp1 for some l 2 Z,
whence d(k1; k2) = jlj and p = �p(k).
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The �niteness of Pk in this case was the key to Strichartz�inversion formula for n = 2
in [9] p. 422. Writing ek(x) = e2i�k�x he observed that, for k 6= 0, Rek(`(x; p)) = ek(x) if
p 2 Pk, Rek(`(x; p)) = 0 if p =2 Pk (cf. (9) above), therefore

ek(x) =
1

2

X
p2P

Rek(`(x; p))

where the sum only contains two (equal) terms. Multiplying by the Fourier coe¢ cientbf(k) and summing over all k 6= 0 he obtained
X
k 6=0

bf(k)ek(x) = 1

2

X
p2P

R

0@X
k 6=0

bf(k)ek
1A (x; p) ,

that is

f(x)� bf(0) = 1

2

X
p2P

�
Rf(`(x; p))� bf(0)�

since Rc = c obviously for any constant c. This is actually an inversion formula for R
because bf(0) = Z 1

0

Z 1

0
f(x1; x2)dx1dx2 =

Z 1

0
Rf(`(x(s); p0))ds

with x(s) = (s; 0) and p0 = (0; 1) for instance.
Remark 2. Strichartz�method does not extend in an obvious way to Tn for n > 2, the
sets Pk being in�nite. Indeed let n � 3 and k 2 Zn. If (k1; k2) = (0; 0), Pk contains
(l; 1; 0; :::; 0) for all l 2 Z. If (k1; k2) 6= (0; 0) let k0j = kj=d(k1; k2). By Bezout�s theorem
there exist q1; q2 2 Z such that k01q1 + k02q2 + k3 = 0, therefore�

q1 + lk
0
2; q2 � lk01; d(k1; k2); 0; :::; 0

�
is orthogonal to k for all l 2 Z. Dividing the �rst three components by their highest
common divisor we obtain elements of Pk, easily seen to be distinct when l runs over Z.
Remark 3. As noted above we can pick, for any k 2 Zn, an element p(k) of P such that
k � p(k) = 0. By (9) we have bf(k) = cRf(k; p(k)) thereforeZ

Tn
jf(x)j2dx =

X
k2Zn

��� bf(k)���2 = X
k2Zn

���cRf(k; p(k))���2 .
This may be viewed as a Plancherel type theorem, expressing the L2 norm of f by means
of its Radon transform.

4. A range theorem

In order to state the next theorem we shall denote by V the space of all functions F on
Tn � P satisfying the following three conditions:
(i) for any p 2 P the map x 7! F (x; p) belongs to C1(Tn) and, for any multi-index
� 2 Nn, there exists a constant C� such that j@�xF (x; p)j � C� for all (x; p) 2 Tn � P
(ii) bF (k; p) = 0 whenever k 2 Zn, p 2 P and p =2 Pk
(iii) bF (k; p) = bF (k; q) whenever k 2 Zn and p; q 2 Pk.
Properties (ii) and (iii) of bF de�ned by (8) are the "moment conditions" relevant to our
problem.

Theorem 2. The X-ray transform f 7! F , with F (x; p) = Rf(`(x; p)), is a bijection of
C1(Tn) onto V.

Proof. Given f 2 C1(Tn) the function F (x; p) = Rf(`(x; p)) =
R 1
0 f(x+pr(tp))dt clearly

satis�es (i). And (ii), (iii) follow from (9).
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By Theorem 1 the map f 7! F is injective ; only the surjectivity remains to be proved.
Given F 2 V let
(10) g(k) = bF (k; p) for any p 2 Pk ,
well de�ned by assumption (iii), and let us consider the Fourier series

(11) f(x) =
X
k2Zn

g(k) e2i�k�x .

By (i) for any l 2 N there exists a constant Cl such that j bF (k; p)j � Cl(1 + kkk)�l for all
k 2 Zn, p 2 P. The series (11) therefore de�nes a C1 function on the torus. Finally let
G be the function de�ned by G(x; p) = Rf(`(x; p)). Using (9), (11) and (10) successively
we have, for k � p = 0, bG(k; p) = bf(k) = g(k) = bF (k; p) .
Besides, by (9) again and (ii), bG(k; p) = 0 = bF (k; p) for k � p 6= 0. Thus bG and bF coincide
and it follows that Rf(`(x; p)) = F (x; p), which completes the proof. �
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