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The following integral formula plays an essential role in Cormack�s 1981
study [1] of the line Radon transform in the plane:

2

Z s

r

sTn(p=s)p
s2 � p2

rTn(p=r)p
p2 � r2

dp

p
= � , n 2 Z; 0 < r < s; (1)

where Tn denotes the Chebyshev polynomial de�ned by Tn(cos �) = cosn�. A
few years later, Cormack [2] extended his method to the Radon transform on
certain hypersurfaces in Rn, using a similar formula with Chebyshev polynomials
replaced by Gegenbauer�s.
All these polynomials may be viewed as hypergeometric functions. Here we

shall prove in Section 2 a more general integral formula (Proposition 3) and an
inversion formula for a general hypergeometric integral transform (Theorem 4).
These results are applied to Chebyshev polynomials in Section 3.
For the reader�s convenience we give self-contained proofs, only sketched

in the appendices to Cormack�s papers [1] and [2]. No previous knowledge of
hypergeometric functions is assumed; the basics are given in Section 1.

1 Hypergeometric functions

Let a; b; c; z denote complex numbers. For k 2 N, let

(a)k := a(a+ 1) � � � (a+ k � 1) if k � 1 , (a)0 := 1:

For instance the classical binomial series may be written as

(1� z)�a =
X
k2N
(a)k

zk

k!
, jzj < 1; (2)

where (1 � z)�a denotes the principal value. It is useful to note that (a)k =
�(a + k)=�(a) if a =2 �N, where �(s) :=

R1
0
e�xxs�1dx is Euler�s Gamma

function.
Assuming c =2 �N from now on, the hypergeometric function is de�ned

by the series

F (a; b; c; z) :=
X
k2N

(a)k(b)k
(c)k

zk

k!
; (3)

absolutely convergent for jzj < 1. When dealing with more general hyperge-
ometric functions, it is customary to denote by 2F1(a; b; c; z) our F (a; b; c; z).
Some properties of F , such as the symmetry

F (a; b; c; z) = F (b; a; c; z); (4)
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are obvious from this de�nition. Some others follow from Euler�s integral rep-
resentation

F (a; b; c; z) =
�(c)

�(b)�(c� b)

Z 1

0

tb�1(1� t)c�b�1(1� tz)�adt; (5)

valid for Re c > Re b > 0. Indeed, let us assume jzj < 1 to begin with. Expand-
ing (1� tz)�a by (2) and remembering Euler�s Beta function

B(x; y) :=

Z 1

0

tx�1(1� t)y�1dt = �(x)�(y)

�(x+ y)
, Rex > 0;Re y > 0; (6)

it is readily checked that the right-hand side of (5) equals the series (3) for
jzj < 1. Then (5) allows extending F to an analytic function of z on the cut
plane CrD where D := [1;1[.
We shall need the following formula, due to Pfa¤, with (1 � z)(1 � z0) = 1

that is z0 := z=(z � 1):

F (a; b; c; z0) = (1� z)aF (a; c� b; c; z) , Re c > Re b > 0; z 2 CrD: (7)

To prove (7) note that z0 belongs to C rD if and only if z belongs to this set
and, setting t = 1� s in (5), we obtain

F (a; b; c; z0) =
�(c)

�(b)�(c� b) (1� z)
a

Z 1

0

sc�b�1(1� s)b�1(1� sz)�ads

= (1� z)aF (a; c� b; c; z):

For jzj < 1 small enough both sides of (7) can be expanded as convergent
power series in z; the identi�cation of their coe¢ cients gives a sequence of
equalities between rational functions of a; b; c. It follows that (7) remains valid
for all a; b; c (with c =2 �N), provided that jzj < 1 and jz0j < 1 (meaning that 0
is closer to z than 1, i.e. Re z < 1=2).
Switching z for z0 in (7) we have (z0)0 = z and, remembering (1�z)(1�z0) = 1

and the symmetry (4),

F (a; b; c; z) = (1� z0)aF (a; c� b; c; z0) = (1� z)�aF (c� b; a; c; z0);

for jzj < 1 and Re z < 1=2 at least. By (7) again

F (c� b; a; c; z0) = (1� z)c�bF (c� b; c� a; c; z);

therefore, using the symmetry,

F (a; b; c; z) = (1� z)c�a�bF (c� a; c� b; c; z): (8)

The identity (8), due to Euler, thus holds for jzj < 1, Re z < 1=2, and any a; b; c
(with c =2 �N). It extends to jzj < 1 and, if Re c > Re b > 0, to all z 2 CrD.
Variant. For Re c > Re b > 0, (8) may also be proved directly from (5):
assuming z 2 C r D is real, that is z < 1, the result follows from the change
t = (1� s)=(1� sz), 0 < s < 1, then extends analytically to all z 2 CrD.
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2 Some hypergeometric integral formulas

We begin with an extension of Euler�s formula (5) (obtained for b = c).

Lemma 1 Let a; b; c; d 2 C with Re d > Re c > 0 and jzj < 1. ThenZ 1

0

tc�1(1� t)d�c�1F (a; b; c; tz)dt = �(c)�(d� c)
�(d)

F (a; b; d; z):

Proof. Expanding F by (3) the integral becomesX
m2N

(a)m(b)m
(c)m

zm

m!

Z 1

0

tc+m�1(1�t)d�c�1dt =
X
m2N

(a)m(b)m
(c)m

�(c+m)�(d� c)
�(d+m)

zm

m!

by (6). But �(c+m) = (c)m�(c), �(d+m) = (d)m�(d) and the lemma follows.

Lemma 2 Let �; �; ; k; z 2 C with Re k > Re  > 0. Let z0 = z=(z � 1).Then,
for jzj < 1 and Re z < 1=2,Z 1

0

tk��1(1� t)�1F (�; �; ; (1� t)z0)F (k � �; k � �; k � ; tz)dt =

=
�()�(k � )

�(k)
(1� z)�+��k:

Proof. Since jz0j < 1 we can expand the �rst hypergeometric factor by (3) and
the integral becomes

X
m2N

(�)m(�)m
()m

z0m

m!

Z 1

0

tk��1(1� t)+m�1F (k � �; k � �; k � ; tz)dt =

=
X
m2N

(�)m(�)m
()m

z0m

m!

�(k � )�( +m)
�(k +m)

F (k � �; k � �; k +m; z);

by Lemma 1 with a = k� �, b = k� �, c = k� , d = k+m. But �( +m) =
()m�(), �(k +m) = (k)m�(k) and, by (8),

F (k � �; k � �; k +m; z) = (1� z)�+�+m�kF (�+m;� +m; k +m; z):

Since z0(1� z) = �z our integral is therefore

�()�(k � )
�(k)

(1� z)�+��k
X
m2N

(�)m(�)m
(k)m

F (�+m;� +m; k +m; z)
(�z)m
m!

:

To conclude we observe that term by term derivation of F (�; �; k; z) gives

(�)m(�)m
(k)m

F (�+m;� +m; k +m; z) =

�
d

dz

�m
F (�; �; k; z):

The above sum
P

m is now, by Taylor�s formula,X
m2N

�
d

dz

�m
F (�; �; k; z)

(�z)m
m!

= F (�; �; k; z � z) = 1:

This implies our claim.
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Proposition 3 Assuming 0 < x < y < 2x and a; b; c; k 2 C with Re k > Re c >
0, we haveZ y

x

(y�u)c�1(u�x)k�c�1F
�
a; b; c; 1� u

y

�
F
�
�a;�b; k � c; 1� u

x

�
u�kdu =

=
�(c)�(k � c)

�(k)
x�cyc�k(y � x)k�1:

If F (�a;�b; k�c; z) is an analytic function of z in a domain containing ]�1; 0]
(for instance if Re k > Re(c� b) > Re c > 0), the result remains valid whenever
0 < x < y.

Proof. (i) Let us assume �rst 0 < x < y < 2x, so that j1 � u=xj < 1 and
j1 � u=yj < 1 in the integral. Thanks to Euler�s identity (8) applied to both
hypergeometric functions:

F

�
a; b; c; 1� u

y

�
F
�
�a;�b; k � c; 1� u

x

�
=

=

�
u

y

�c�a�b
F

�
c� a; c� b; c; 1� u

y

��u
x

�k�c+a+b
F
�
k + a� c; k + b� c; k � c; 1� u

x

�
;

the factor u�k disappears in the integral, which becomes�y
x

�a+b�c
x�k

Z y

x

(y � u)c�1(u� x)k�c�1F
�
c� a; c� b; c; 1� u

y

�
�

� F
�
k � c+ a; k � c+ b; k � c; 1� u

x

�
du:

Setting u = (1 � t)x + ty with 0 � t � 1 and z := 1 � y
x 2] � 1; 0[ we have

z0 = z
z�1 = 1�

x
y 2]0; 1=2[. Since 1�

u
y = (1� t)z

0 and 1� u
x = tz the integral

is now�y
x

�a+b�c
x�k(y � x)k�1

Z 1

0

tk�c�1(1� t)c�1F (c� a; c� b; c; (1� t)z0)�

� F (k � c+ a; k � c+ b; k � c; tz) dt;

and the result follows by Lemma 2, applied with � = c� a, � = c� b,  = c.
(ii) Only assuming 0 < x < y we have 1 � u=x < 0 and 1 � u=y 2]0; 1[. If
F (�a;�b; k�c; z) is analytic in a domain containing ]�1; 0] (e.g. if Re(k�c) >
Re(�b) > 0), the integral is an analytic function of (x; y) in this domain and we
can extend the result of (i).

Theorem 4 Let D+ denote the space of functions f 2 C1(]0;1[) which vanish
identically on a neighborhood of +1. For a; b; c 2 C with Re c > 0, the integral
tranform f 7! ' de�ned by

'(y) :=

Z 1

y

(x� y)c�1F
�
a; b; c; 1� y

x

�
f(x)dx , y > 0;

maps D+ into itself and is inverted by

f(x) =
(�1)k

�(c)�(k � c)

Z 1

x

(y�x)k�c�1F
�
�a;�b; k � c; 1� y

x

�
'(k)(y)dy , x > 0;
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where '(k) is the k-th derivative of '. This inversion formula holds true if k
is any integer such that k > Re c > 0 and F (�a;�b; k � c; z) is an analytic
function of z in a domain containing ]�1; 0].

Proof. Let f 2 D+ with f(x) = 0 for x � A > 0. Then '(u) = 0 for u � A
and, for 0 < u � A,

'(u) =

Z A

u

(v � u)c�1F
�
a; b; c; 1� u

v

�
f(v)dv:

Since 0 � 1� u
v � 1�

u
A < 1 in the integral, it follows that ' 2 D+.

Let F1(z) := F (a; b; c; z) and F2(z) := F (�a;�b; k� c; z) for short. Multiplying
by (u�x)k�c�1u�kF2

�
1� u

x

�
for x > 0 and integrating on u 2 [x;1[ we obtain

Z 1

x

(u� x)k�c�1u�kF2
�
1� u

x

�
'(u)du =

=

Z 1

x

f(v)dv

Z v

x

(v � u)c�1(u� x)k�c�1F1
�
1� u

v

�
F2

�
1� u

x

�
u�kdu

=
�(c)�(k � c)

�(k)
x�c

Z 1

x

(v � x)k�1vc�kf(v)dv (9)

by Proposition 3.
Let g(x) :=

R1
x
(v � x)k�1vc�kf(v)dv. It is now easily checked that g(k)(x) =

(�1)k(k � 1)!xc�kf(x), so that the above integral allows reconstructing f from
'. Indeed (9) is, with u = tx,

g(x) =
�(k)

�(c)�(k � c)x
c

Z 1

x

(u� x)k�c�1u�kF2
�
1� u

x

�
'(u)du

=
�(k)

�(c)�(k � c)

Z 1

1

(t� 1)k�c�1t�kF2(1� t)'(tx)dt;

therefore

(�1)kxc�kf(x) = 1

�(c)�(k � c)

Z 1

1

(t� 1)k�c�1F2(1� t)'(k)(tx)dt:

The result follows, changing again the variable t for y = tx.

3 Application to Chebyshev polynomials

The Chebyshev polynomials Tn (de�ned by Tn(cos �) = cosn�) may be written
as hypergeometric functions. Lemma 5 will serve as a preparation for Lemma
6.

Lemma 5 For n 2 N, n � 1, and z 2 C

Tn(z) = F

�
n;�n; 1

2
;
1� z
2

�
:
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Proof. The Chebyshev polynomials are characterized by the recurrence relation
(easily checked for z = cos �)

Tn+1(z) + Tn�1(z) = 2zTn(z) for n � 1, T0(z) = 1 , T1(z) = z:

Let

Fn(x) := F

�
n;�n; 1

2
;x

�
= 1 +

X
k�1

(n)k(�n)k
(1=2)k

xk

k!
;

a �nite sum actually since (�n)k = 0 for k > n. Then F0(x) = 1, F1(x) = 1�2x
and (setting z = 1� 2x) we wish to prove that, for n � 1,

2Fn(x)� Fn+1(x)� Fn�1(x) = 4xFn(x):

Setting z = 1 � 2x it will follow that Fn((1 � z)=2) = Fn(x) satis�es the same
recurrence relation as Tn(z), hence Tn(z) = Fn((1� z)=2) as claimed.
For n � 1,

2Fn(x)� Fn+1(x)� Fn�1(x) =

=
nX
k=1

�
2(n)k(�n)k � (n+ 1)k(�n� 1)k � (n� 1)k(�n+ 1)k

(1=2)k

�
xk

k!
:

But

(a+ 1)k = (a)k
a+ k

a
, (a� 1)k = (a)k

a� 1
a+ k � 1

and the coe¢ cient of xk=k! becomes, after some elementary computations,

f� � � g = 4 (n)k
n+ k � 1

(�n)k
n� k + 1

1
2 � k
(1=2)k

k = 4
(n)k�1(�n)k�1
(1=2)k�1

k:

Thus

2Fn(x)� Fn+1(x)� Fn�1(x) = 4
nX
k=1

(n)k�1(�n)k�1
(1=2)k�1

xk

(k � 1)! = 4xFn(x):

Lemma 6 For n 2 N,

Tn(t) = F

�
n

2
;�n
2
;
1

2
; 1� t2

�
, t 2 R

= tF

�
1 + n

2
;
1� n
2

;
1

2
; 1� t2

�
, t > 0:

Proof. This result might be inferred from the previous lemma by means of a
quadratic transformation of the hypergeometric function ([3], p. 111, formula
(2)). Here is an elementary proof, based on (1� cos 2�)=2 = 1� cos2 �.
(i) For n = 2p, p 2 N, Lemma 5 with z = cos 2� gives

T2p(cos �) = cos 2p� = Tp(cos 2�) = F

�
p;�p; 1

2
; 1� cos2 �

�
;
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implying the identity of these polynomials in t = cos �.
(ii) For n = 2p�1, p � 1, the equality cos 2p� = Tp(cos 2�) implies�2p sin 2p� =
�2T 0p(cos 2�) sin 2�. Thus

cos(2p� 1)� = cos � cos 2p� + sin � sin 2p�

may be written as

T2p�1(cos �) = cos � Tp(cos 2�) +
1

p
sin � sin 2� T 0p(cos 2�)

= cos �

�
Tp(cos 2�) +

1

p
(1� cos 2�)T 0p(cos 2�)

�
:

Considering the factor [� � � ] we note that, by Lemma 5,

Tp(z) +
1

p
(1� z)T 0p(z) = F

�
p;�p; 1

2
;
1� z
2

�
� 1
p

1� z
2

F 0
�
p;�p; 1

2
;
1� z
2

�
:

But, for a general hypergeometric series (3),

bF (a; b; c;x) + xF 0(a; b; c;x) = bF (a; b+ 1; c;x);

an immediate consequence of b(b)k + k(b)k = b(b + 1)k. With a = p, b = �p,
c = 1=2 we infer the following polynomial identity:

Tp(z) +
1

p
(1� z)T 0p(z) = F

�
p; 1� p; 1

2
;
1� z
2

�
:

With z = cos 2� we conclude that

T2p�1(cos �) = cos � F

�
p; 1� p; 1

2
; 1� cos2 �

�
:

Replacing cos � by t, the right-hand side therefore extends to an analytic function
of t 2 R (actually a polynomial).
(iii) We have thus proved the �rst result of the lemma for n even, resp. the
second for n odd. The second, resp. �rst, then follows by Euler�s formula (8).

Application of Proposition 3. Let 0 < r < s. Setting x = r2, y = s2 and
u = p2 in Proposition 3 with a = n=2, b = �n=2, c = 1=2, k = 1, Lemma 6
gives F (a; b; c; z) = F (�a;�b; k � c; z) = Tn

�p
1� z

�
, analytic in C r [1;1[,

and we obtain formula (1):Z s

r

�
s2 � p2

��1=2 �
p2 � r2

��1=2
Tn

�p
r

�
Tn

�p
s

�
2p�1dp = (�(1=2))

2
r�1s�1

= �=rs:

See also Goren�o and Vessella [4] p. 119 for a direct elementary proof of this
equality.

Application of Theorem 4. Cormack�s study of the line Radon transform in
the plane led him to consider the transform f 7! ' de�ned by

'(p) =

Z 1

p

f(s)Tn

�p
s

� 2sdsp
s2 � p2

, p > 0;
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where f , resp. ', is the n-th coe¢ cient in the Fourier series expansion of a
function on R2 in polar coordinates, resp. of its Radon transform on lines. Let
g(x) := f(

p
x) and  (y) := '(

p
y). Changing s for t = s2 we obtain, in view of

Lemma 6,

 (y) =

Z 1

y

F

�
n

2
;�n
2
;
1

2
; 1� y

x

�
g(x)

dxp
x� y :

Theorem 4, with a = n=2, b = �n=2, c = 1=2, k = 1 yields the inversion formula

g(x) = � 1
�

Z 1

t

F

�
�n
2
;
n

2
;
1

2
; 1� y

x

�
 0(y)dyp
y � x ;

that is, with x = r2 and y = p2,

f(r) = g(r2) = � 1
�

Z 1

r

Tn

�p
r

� '0(p)dpp
p2 � r2

:

More generally, Theorem 4 yields inversion formulas for the Radon transform
on certain families of hypersurfaces in Rn, with Fourier series replaced by spher-
ical harmonics expansions and Chebyshev�s polynomials by Gegenbauer�s; see
Cormack [2].
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