Hypergeometric integral transforms

François Rouvière

April 15, 2018

The following integral formula plays an essential role in Cormack's 1981 study [1] of the line Radon transform in the plane:

$$
\begin{equation*}
2 \int_{r}^{s} \frac{s T_{n}(p / s)}{\sqrt{s^{2}-p^{2}}} \frac{r T_{n}(p / r)}{\sqrt{p^{2}-r^{2}}} \frac{d p}{p}=\pi, n \in \mathbb{Z}, 0<r<s \tag{1}
\end{equation*}
$$

where T_{n} denotes the Chebyshev polynomial defined by $T_{n}(\cos \theta)=\cos n \theta$. A few years later, Cormack [2] extended his method to the Radon transform on certain hypersurfaces in \mathbb{R}^{n}, using a similar formula with Chebyshev polynomials replaced by Gegenbauer's.

All these polynomials may be viewed as hypergeometric functions. Here we shall prove in Section 2 a more general integral formula (Proposition 3) and an inversion formula for a general hypergeometric integral transform (Theorem 4). These results are applied to Chebyshev polynomials in Section 3.

For the reader's convenience we give self-contained proofs, only sketched in the appendices to Cormack's papers [1] and [2]. No previous knowledge of hypergeometric functions is assumed; the basics are given in Section 1.

1 Hypergeometric functions

Let a, b, c, z denote complex numbers. For $k \in \mathbb{N}$, let

$$
(a)_{k}:=a(a+1) \cdots(a+k-1) \text { if } k \geq 1,(a)_{0}:=1 .
$$

For instance the classical binomial series may be written as

$$
\begin{equation*}
(1-z)^{-a}=\sum_{k \in \mathbb{N}}(a)_{k} \frac{z^{k}}{k!},|z|<1, \tag{2}
\end{equation*}
$$

where $(1-z)^{-a}$ denotes the principal value. It is useful to note that $(a)_{k}=$ $\Gamma(a+k) / \Gamma(a)$ if $a \notin-\mathbb{N}$, where $\Gamma(s):=\int_{0}^{\infty} e^{-x} x^{s-1} d x$ is Euler's Gamma function.

Assuming $c \notin-\mathbb{N}$ from now on, the hypergeometric function is defined by the series

$$
\begin{equation*}
F(a, b ; c ; z):=\sum_{k \in \mathbb{N}} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}, \tag{3}
\end{equation*}
$$

absolutely convergent for $|z|<1$. When dealing with more general hypergeometric functions, it is customary to denote by ${ }_{2} F_{1}(a, b ; c ; z)$ our $F(a, b ; c ; z)$. Some properties of F, such as the symmetry

$$
\begin{equation*}
F(a, b ; c ; z)=F(b, a ; c ; z) \tag{4}
\end{equation*}
$$

are obvious from this definition. Some others follow from Euler's integral representation

$$
\begin{equation*}
F(a, b ; c ; z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t \tag{5}
\end{equation*}
$$

valid for $\operatorname{Re} c>\operatorname{Re} b>0$. Indeed, let us assume $|z|<1$ to begin with. Expanding $(1-t z)^{-a}$ by (2) and remembering Euler's Beta function

$$
\begin{equation*}
B(x, y):=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}, \operatorname{Re} x>0, \operatorname{Re} y>0 \tag{6}
\end{equation*}
$$

it is readily checked that the right-hand side of (5) equals the series (3) for $|z|<1$. Then (5) allows extending F to an analytic function of z on the cut plane $\mathbb{C} \backslash D$ where $D:=[1, \infty[$.

We shall need the following formula, due to Pfaff, with $(1-z)\left(1-z^{\prime}\right)=1$ that is $z^{\prime}:=z /(z-1)$:

$$
\begin{equation*}
F\left(a, b ; c ; z^{\prime}\right)=(1-z)^{a} F(a, c-b ; c ; z), \operatorname{Re} c>\operatorname{Re} b>0, z \in \mathbb{C} \backslash D . \tag{7}
\end{equation*}
$$

To prove (7) note that z^{\prime} belongs to $\mathbb{C} \backslash D$ if and only if z belongs to this set and, setting $t=1-s$ in (5), we obtain

$$
\begin{aligned}
F\left(a, b ; c ; z^{\prime}\right) & =\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)}(1-z)^{a} \int_{0}^{1} s^{c-b-1}(1-s)^{b-1}(1-s z)^{-a} d s \\
& =(1-z)^{a} F(a, c-b ; c ; z) .
\end{aligned}
$$

For $|z|<1$ small enough both sides of (7) can be expanded as convergent power series in z; the identification of their coefficients gives a sequence of equalities between rational functions of a, b, c. It follows that (7) remains valid for all a, b, c (with $c \notin-\mathbb{N}$), provided that $|z|<1$ and $\left|z^{\prime}\right|<1$ (meaning that 0 is closer to z than 1 , i.e. $\operatorname{Re} z<1 / 2)$.

Switching z for z^{\prime} in (7) we have $\left(z^{\prime}\right)^{\prime}=z$ and, remembering $(1-z)\left(1-z^{\prime}\right)=1$ and the symmetry (4),

$$
F(a, b ; c ; z)=\left(1-z^{\prime}\right)^{a} F\left(a, c-b ; c ; z^{\prime}\right)=(1-z)^{-a} F\left(c-b, a ; c ; z^{\prime}\right),
$$

for $|z|<1$ and $\operatorname{Re} z<1 / 2$ at least. By (7) again

$$
F\left(c-b, a ; c ; z^{\prime}\right)=(1-z)^{c-b} F(c-b, c-a ; c ; z),
$$

therefore, using the symmetry,

$$
\begin{equation*}
F(a, b ; c ; z)=(1-z)^{c-a-b} F(c-a, c-b ; c ; z) . \tag{8}
\end{equation*}
$$

The identity (8), due to Euler, thus holds for $|z|<1, \operatorname{Re} z<1 / 2$, and any a, b, c (with $c \notin-\mathbb{N}$). It extends to $|z|<1$ and, if $\operatorname{Re} c>\operatorname{Re} b>0$, to all $z \in \mathbb{C} \backslash D$. Variant. For $\operatorname{Re} c>\operatorname{Re} b>0$, (8) may also be proved directly from (5): assuming $z \in \mathbb{C} \backslash D$ is real, that is $z<1$, the result follows from the change $t=(1-s) /(1-s z), 0<s<1$, then extends analytically to all $z \in \mathbb{C} \backslash D$.

2 Some hypergeometric integral formulas

We begin with an extension of Euler's formula (5) (obtained for $b=c$).
Lemma 1 Let $a, b, c, d \in \mathbb{C}$ with $\operatorname{Re} d>\operatorname{Re} c>0$ and $|z|<1$. Then

$$
\int_{0}^{1} t^{c-1}(1-t)^{d-c-1} F(a, b ; c ; t z) d t=\frac{\Gamma(c) \Gamma(d-c)}{\Gamma(d)} F(a, b ; d ; z) .
$$

Proof. Expanding F by (3) the integral becomes
$\sum_{m \in \mathbb{N}} \frac{(a)_{m}(b)_{m}}{(c)_{m}} \frac{z^{m}}{m!} \int_{0}^{1} t^{c+m-1}(1-t)^{d-c-1} d t=\sum_{m \in \mathbb{N}} \frac{(a)_{m}(b)_{m}}{(c)_{m}} \frac{\Gamma(c+m) \Gamma(d-c)}{\Gamma(d+m)} \frac{z^{m}}{m!}$
by (6). But $\Gamma(c+m)=(c)_{m} \Gamma(c), \Gamma(d+m)=(d)_{m} \Gamma(d)$ and the lemma follows.

Lemma 2 Let $\alpha, \beta, \gamma, k, z \in \mathbb{C}$ with $\operatorname{Re} k>\operatorname{Re} \gamma>0$. Let $z^{\prime}=z /(z-1)$.Then, for $|z|<1$ and $\operatorname{Re} z<1 / 2$,

$$
\begin{aligned}
\int_{0}^{1} t^{k-\gamma-1}(1-t)^{\gamma-1} F\left(\alpha, \beta ; \gamma ;(1-t) z^{\prime}\right) F(k & -\alpha, k-\beta ; k-\gamma ; t z) d t= \\
& =\frac{\Gamma(\gamma) \Gamma(k-\gamma)}{\Gamma(k)}(1-z)^{\alpha+\beta-k}
\end{aligned}
$$

Proof. Since $\left|z^{\prime}\right|<1$ we can expand the first hypergeometric factor by (3) and the integral becomes

$$
\begin{array}{r}
\sum_{m \in \mathbb{N}} \frac{(\alpha)_{m}(\beta)_{m}}{(\gamma)_{m}} \frac{z^{\prime m}}{m!} \int_{0}^{1} t^{k-\gamma-1}(1-t)^{\gamma+m-1} F(k-\alpha, k-\beta ; k-\gamma ; t z) d t= \\
\quad=\sum_{m \in \mathbb{N}} \frac{(\alpha)_{m}(\beta)_{m}}{(\gamma)_{m}} \frac{z^{\prime m}}{m!} \frac{\Gamma(k-\gamma) \Gamma(\gamma+m)}{\Gamma(k+m)} F(k-\alpha, k-\beta ; k+m ; z)
\end{array}
$$

by Lemma 1 with $a=k-\alpha, b=k-\beta, c=k-\gamma, d=k+m$. But $\Gamma(\gamma+m)=$ $(\gamma){ }_{m} \Gamma(\gamma), \Gamma(k+m)=(k)_{m} \Gamma(k)$ and, by (8),

$$
F(k-\alpha, k-\beta ; k+m ; z)=(1-z)^{\alpha+\beta+m-k} F(\alpha+m, \beta+m ; k+m ; z) .
$$

Since $z^{\prime}(1-z)=-z$ our integral is therefore

$$
\frac{\Gamma(\gamma) \Gamma(k-\gamma)}{\Gamma(k)}(1-z)^{\alpha+\beta-k} \sum_{m \in \mathbb{N}} \frac{(\alpha)_{m}(\beta)_{m}}{(k)_{m}} F(\alpha+m, \beta+m ; k+m ; z) \frac{(-z)^{m}}{m!}
$$

To conclude we observe that term by term derivation of $F(\alpha, \beta ; k ; z)$ gives

$$
\frac{(\alpha)_{m}(\beta)_{m}}{(k)_{m}} F(\alpha+m, \beta+m ; k+m ; z)=\left(\frac{d}{d z}\right)^{m} F(\alpha, \beta ; k ; z) .
$$

The above sum \sum_{m} is now, by Taylor's formula,

$$
\sum_{m \in \mathbb{N}}\left(\frac{d}{d z}\right)^{m} F(\alpha, \beta ; k ; z) \frac{(-z)^{m}}{m!}=F(\alpha, \beta ; k ; z-z)=1 .
$$

This implies our claim.

Proposition 3 Assuming $0<x<y<2 x$ and $a, b, c, k \in \mathbb{C}$ with $\operatorname{Re} k>\operatorname{Re} c>$ 0 , we have

$$
\begin{array}{r}
\int_{x}^{y}(y-u)^{c-1}(u-x)^{k-c-1} F\left(a, b ; c ; 1-\frac{u}{y}\right) F\left(-a,-b ; k-c ; 1-\frac{u}{x}\right) u^{-k} d u= \\
=\frac{\Gamma(c) \Gamma(k-c)}{\Gamma(k)} x^{-c} y^{c-k}(y-x)^{k-1}
\end{array}
$$

If $F(-a,-b ; k-c ; z)$ is an analytic function of z in a domain containing $]-\infty, 0]$ (for instance if $\operatorname{Re} k>\operatorname{Re}(c-b)>\operatorname{Re} c>0$), the result remains valid whenever $0<x<y$.

Proof. (i) Let us assume first $0<x<y<2 x$, so that $|1-u / x|<1$ and $|1-u / y|<1$ in the integral. Thanks to Euler's identity (8) applied to both hypergeometric functions:

$$
\begin{aligned}
& F\left(a, b ; c ; 1-\frac{u}{y}\right) F\left(-a,-b ; k-c ; 1-\frac{u}{x}\right)= \\
= & \left(\frac{u}{y}\right)^{c-a-b} F\left(c-a, c-b ; c ; 1-\frac{u}{y}\right)\left(\frac{u}{x}\right)^{k-c+a+b} F\left(k+a-c, k+b-c ; k-c ; 1-\frac{u}{x}\right),
\end{aligned}
$$

the factor u^{-k} disappears in the integral, which becomes

$$
\begin{aligned}
\left(\frac{y}{x}\right)^{a+b-c} x^{-k} \int_{x}^{y}(y-u)^{c-1}(u & -x)^{k-c-1} F\left(c-a, c-b ; c ; 1-\frac{u}{y}\right) \times \\
& \times F\left(k-c+a, k-c+b ; k-c ; 1-\frac{u}{x}\right) d u
\end{aligned}
$$

Setting $u=(1-t) x+t y$ with $0 \leq t \leq 1$ and $\left.z:=1-\frac{y}{x} \in\right]-1,0[$ we have $\left.z^{\prime}=\frac{z}{z-1}=1-\frac{x}{y} \in\right] 0,1 / 2\left[\right.$. Since $1-\frac{u}{y}=(1-t) z^{\prime}$ and $1-\frac{u}{x}=t z$ the integral is now

$$
\begin{array}{r}
\left(\frac{y}{x}\right)^{a+b-c} x^{-k}(y-x)^{k-1} \int_{0}^{1} t^{k-c-1}(1-t)^{c-1} F\left(c-a, c-b ; c ;(1-t) z^{\prime}\right) \times \\
\times F(k-c+a, k-c+b ; k-c ; t z) d t
\end{array}
$$

and the result follows by Lemma 2, applied with $\alpha=c-a, \beta=c-b, \gamma=c$.
(ii) Only assuming $0<x<y$ we have $1-u / x<0$ and $1-u / y \in] 0,1$ [. If $F(-a,-b ; k-c ; z)$ is analytic in a domain containing] $-\infty, 0]$ (e.g. if $\operatorname{Re}(k-c)>$ $\operatorname{Re}(-b)>0)$, the integral is an analytic function of (x, y) in this domain and we can extend the result of (i).

Theorem 4 Let \mathcal{D}^{+}denote the space of functions $f \in C^{\infty}(] 0, \infty[)$ which vanish identically on a neighborhood of $+\infty$. For $a, b, c \in \mathbb{C}$ with $\operatorname{Re} c>0$, the integral tranform $f \mapsto \varphi$ defined by

$$
\varphi(y):=\int_{y}^{\infty}(x-y)^{c-1} F\left(a, b ; c ; 1-\frac{y}{x}\right) f(x) d x, y>0
$$

maps \mathcal{D}^{+}into itself and is inverted by
$f(x)=\frac{(-1)^{k}}{\Gamma(c) \Gamma(k-c)} \int_{x}^{\infty}(y-x)^{k-c-1} F\left(-a,-b ; k-c ; 1-\frac{y}{x}\right) \varphi^{(k)}(y) d y, x>0$,
where $\varphi^{(k)}$ is the k-th derivative of φ. This inversion formula holds true if k is any integer such that $k>\operatorname{Re} c>0$ and $F(-a,-b ; k-c ; z)$ is an analytic function of z in a domain containing] $-\infty, 0]$.

Proof. Let $f \in \mathcal{D}^{+}$with $f(x)=0$ for $x \geq A>0$. Then $\varphi(u)=0$ for $u \geq A$ and, for $0<u \leq A$,

$$
\varphi(u)=\int_{u}^{A}(v-u)^{c-1} F\left(a, b ; c ; 1-\frac{u}{v}\right) f(v) d v
$$

Since $0 \leq 1-\frac{u}{v} \leq 1-\frac{u}{A}<1$ in the integral, it follows that $\varphi \in \mathcal{D}^{+}$.
Let $F_{1}(z):=F(a, b ; c ; z)$ and $F_{2}(z):=F(-a,-b ; k-c ; z)$ for short. Multiplying by $(u-x)^{k-c-1} u^{-k} F_{2}\left(1-\frac{u}{x}\right)$ for $x>0$ and integrating on $u \in[x, \infty[$ we obtain

$$
\begin{align*}
& \int_{x}^{\infty}(u-x)^{k-c-1} u^{-k} F_{2}\left(1-\frac{u}{x}\right) \varphi(u) d u= \\
& =\int_{x}^{\infty} f(v) d v \int_{x}^{v}(v-u)^{c-1}(u-x)^{k-c-1} F_{1}\left(1-\frac{u}{v}\right) F_{2}\left(1-\frac{u}{x}\right) u^{-k} d u \\
& \tag{9}\\
& =\frac{\Gamma(c) \Gamma(k-c)}{\Gamma(k)} x^{-c} \int_{x}^{\infty}(v-x)^{k-1} v^{c-k} f(v) d v
\end{align*}
$$

by Proposition 3.
Let $g(x):=\int_{x}^{\infty}(v-x)^{k-1} v^{c-k} f(v) d v$. It is now easily checked that $g^{(k)}(x)=$ $(-1)^{k}(k-1)!x^{c-k} f(x)$, so that the above integral allows reconstructing f from φ. Indeed (9) is, with $u=t x$,

$$
\begin{aligned}
g(x) & =\frac{\Gamma(k)}{\Gamma(c) \Gamma(k-c)} x^{c} \int_{x}^{\infty}(u-x)^{k-c-1} u^{-k} F_{2}\left(1-\frac{u}{x}\right) \varphi(u) d u \\
& =\frac{\Gamma(k)}{\Gamma(c) \Gamma(k-c)} \int_{1}^{\infty}(t-1)^{k-c-1} t^{-k} F_{2}(1-t) \varphi(t x) d t
\end{aligned}
$$

therefore

$$
(-1)^{k} x^{c-k} f(x)=\frac{1}{\Gamma(c) \Gamma(k-c)} \int_{1}^{\infty}(t-1)^{k-c-1} F_{2}(1-t) \varphi^{(k)}(t x) d t .
$$

The result follows, changing again the variable t for $y=t x$.

3 Application to Chebyshev polynomials

The Chebyshev polynomials T_{n} (defined by $T_{n}(\cos \theta)=\cos n \theta$) may be written as hypergeometric functions. Lemma 5 will serve as a preparation for Lemma 6.

Lemma 5 For $n \in \mathbb{N}, n \geq 1$, and $z \in \mathbb{C}$

$$
T_{n}(z)=F\left(n,-n ; \frac{1}{2} ; \frac{1-z}{2}\right) .
$$

Proof. The Chebyshev polynomials are characterized by the recurrence relation (easily checked for $z=\cos \theta$)

$$
T_{n+1}(z)+T_{n-1}(z)=2 z T_{n}(z) \text { for } n \geq 1, T_{0}(z)=1, T_{1}(z)=z
$$

Let

$$
F_{n}(x):=F\left(n,-n ; \frac{1}{2} ; x\right)=1+\sum_{k \geq 1} \frac{(n)_{k}(-n)_{k}}{(1 / 2)_{k}} \frac{x^{k}}{k!},
$$

a finite sum actually since $(-n)_{k}=0$ for $k>n$. Then $F_{0}(x)=1, F_{1}(x)=1-2 x$ and (setting $z=1-2 x$) we wish to prove that, for $n \geq 1$,

$$
2 F_{n}(x)-F_{n+1}(x)-F_{n-1}(x)=4 x F_{n}(x) .
$$

Setting $z=1-2 x$ it will follow that $F_{n}((1-z) / 2)=F_{n}(x)$ satisfies the same recurrence relation as $T_{n}(z)$, hence $T_{n}(z)=F_{n}((1-z) / 2)$ as claimed.
For $n \geq 1$,

$$
\begin{aligned}
2 F_{n}(x) & -F_{n+1}(x)-F_{n-1}(x)= \\
& =\sum_{k=1}^{n}\left\{\frac{2(n)_{k}(-n)_{k}-(n+1)_{k}(-n-1)_{k}-(n-1)_{k}(-n+1)_{k}}{(1 / 2)_{k}}\right\} \frac{x^{k}}{k!} .
\end{aligned}
$$

But

$$
(a+1)_{k}=(a)_{k} \frac{a+k}{a},(a-1)_{k}=(a)_{k} \frac{a-1}{a+k-1}
$$

and the coefficient of x^{k} / k ! becomes, after some elementary computations,

$$
\{\cdots\}=4 \frac{(n)_{k}}{n+k-1} \frac{(-n)_{k}}{n-k+1} \frac{\frac{1}{2}-k}{(1 / 2)_{k}} k=4 \frac{(n)_{k-1}(-n)_{k-1}}{(1 / 2)_{k-1}} k .
$$

Thus

$$
2 F_{n}(x)-F_{n+1}(x)-F_{n-1}(x)=4 \sum_{k=1}^{n} \frac{(n)_{k-1}(-n)_{k-1}}{(1 / 2)_{k-1}} \frac{x^{k}}{(k-1)!}=4 x F_{n}(x) .
$$

Lemma 6 For $n \in \mathbb{N}$,

$$
\begin{aligned}
T_{n}(t) & =F\left(\frac{n}{2},-\frac{n}{2} ; \frac{1}{2} ; 1-t^{2}\right), t \in \mathbb{R} \\
& =t F\left(\frac{1+n}{2}, \frac{1-n}{2} ; \frac{1}{2} ; 1-t^{2}\right), t>0
\end{aligned}
$$

Proof. This result might be inferred from the previous lemma by means of a quadratic transformation of the hypergeometric function ([3], p. 111, formula (2)). Here is an elementary proof, based on $(1-\cos 2 \theta) / 2=1-\cos ^{2} \theta$.
(i) For $n=2 p, p \in \mathbb{N}$, Lemma 5 with $z=\cos 2 \theta$ gives

$$
T_{2 p}(\cos \theta)=\cos 2 p \theta=T_{p}(\cos 2 \theta)=F\left(p,-p ; \frac{1}{2} ; 1-\cos ^{2} \theta\right)
$$

implying the identity of these polynomials in $t=\cos \theta$.
(ii) For $n=2 p-1, p \geq 1$, the equality $\cos 2 p \theta=T_{p}(\cos 2 \theta)$ implies $-2 p \sin 2 p \theta=$ $-2 T_{p}^{\prime}(\cos 2 \theta) \sin 2 \theta$. Thus

$$
\cos (2 p-1) \theta=\cos \theta \cos 2 p \theta+\sin \theta \sin 2 p \theta
$$

may be written as

$$
\begin{aligned}
T_{2 p-1}(\cos \theta) & =\cos \theta T_{p}(\cos 2 \theta)+\frac{1}{p} \sin \theta \sin 2 \theta T_{p}^{\prime}(\cos 2 \theta) \\
& =\cos \theta\left[T_{p}(\cos 2 \theta)+\frac{1}{p}(1-\cos 2 \theta) T_{p}^{\prime}(\cos 2 \theta)\right] .
\end{aligned}
$$

Considering the factor $[\cdots]$ we note that, by Lemma 5 ,

$$
T_{p}(z)+\frac{1}{p}(1-z) T_{p}^{\prime}(z)=F\left(p,-p ; \frac{1}{2} ; \frac{1-z}{2}\right)-\frac{1}{p} \frac{1-z}{2} F^{\prime}\left(p,-p ; \frac{1}{2} ; \frac{1-z}{2}\right) .
$$

But, for a general hypergeometric series (3),

$$
b F(a, b ; c ; x)+x F^{\prime}(a, b ; c ; x)=b F(a, b+1 ; c ; x)
$$

an immediate consequence of $b(b)_{k}+k(b)_{k}=b(b+1)_{k}$. With $a=p, b=-p$, $c=1 / 2$ we infer the following polynomial identity:

$$
T_{p}(z)+\frac{1}{p}(1-z) T_{p}^{\prime}(z)=F\left(p, 1-p ; \frac{1}{2} ; \frac{1-z}{2}\right) .
$$

With $z=\cos 2 \theta$ we conclude that

$$
T_{2 p-1}(\cos \theta)=\cos \theta F\left(p, 1-p ; \frac{1}{2} ; 1-\cos ^{2} \theta\right)
$$

Replacing $\cos \theta$ by t, the right-hand side therefore extends to an analytic function of $t \in \mathbb{R}$ (actually a polynomial).
(iii) We have thus proved the first result of the lemma for n even, resp. the second for n odd. The second, resp. first, then follows by Euler's formula (8).

Application of Proposition 3. Let $0<r<s$. Setting $x=r^{2}, y=s^{2}$ and $u=p^{2}$ in Proposition 3 with $a=n / 2, b=-n / 2, c=1 / 2, k=1$, Lemma 6 gives $F(a, b ; c ; z)=F(-a,-b ; k-c ; z)=T_{n}(\sqrt{1-z})$, analytic in $\mathbb{C} \backslash[1, \infty[$, and we obtain formula (1):

$$
\begin{aligned}
\int_{r}^{s}\left(s^{2}-p^{2}\right)^{-1 / 2}\left(p^{2}-r^{2}\right)^{-1 / 2} T_{n}\left(\frac{p}{r}\right) T_{n}\left(\frac{p}{s}\right) 2 p^{-1} d p & =(\Gamma(1 / 2))^{2} r^{-1} s^{-1} \\
& =\pi / r s
\end{aligned}
$$

See also Gorenflo and Vessella [4] p. 119 for a direct elementary proof of this equality.

Application of Theorem 4. Cormack's study of the line Radon transform in the plane led him to consider the transform $f \mapsto \varphi$ defined by

$$
\varphi(p)=\int_{p}^{\infty} f(s) T_{n}\left(\frac{p}{s}\right) \frac{2 s d s}{\sqrt{s^{2}-p^{2}}}, p>0
$$

where f, resp. φ, is the n-th coefficient in the Fourier series expansion of a function on \mathbb{R}^{2} in polar coordinates, resp. of its Radon transform on lines. Let $g(x):=f(\sqrt{x})$ and $\psi(y):=\varphi(\sqrt{y})$. Changing s for $t=s^{2}$ we obtain, in view of Lemma 6,

$$
\psi(y)=\int_{y}^{\infty} F\left(\frac{n}{2},-\frac{n}{2} ; \frac{1}{2} ; 1-\frac{y}{x}\right) g(x) \frac{d x}{\sqrt{x-y}}
$$

Theorem 4, with $a=n / 2, b=-n / 2, c=1 / 2, k=1$ yields the inversion formula

$$
g(x)=-\frac{1}{\pi} \int_{t}^{\infty} F\left(-\frac{n}{2}, \frac{n}{2} ; \frac{1}{2} ; 1-\frac{y}{x}\right) \frac{\psi^{\prime}(y) d y}{\sqrt{y-x}}
$$

that is, with $x=r^{2}$ and $y=p^{2}$,

$$
f(r)=g\left(r^{2}\right)=-\frac{1}{\pi} \int_{r}^{\infty} T_{n}\left(\frac{p}{r}\right) \frac{\varphi^{\prime}(p) d p}{\sqrt{p^{2}-r^{2}}} .
$$

More generally, Theorem 4 yields inversion formulas for the Radon transform on certain families of hypersurfaces in \mathbb{R}^{n}, with Fourier series replaced by spherical harmonics expansions and Chebyshev's polynomials by Gegenbauer's; see Cormack [2].

References

[1] CORMACK, A.M., The Radon problem on a family of curves in the plane, Proc. Amer. Math. Soc. 83 (1981), 325-330 and 86 (1982), 293-298.
[2] CORMACK, A.M., Radon's problem for some surfaces in \mathbb{R}^{n}, Proc. Amer. Math. Soc. 99 (1987), 305-312.
[3] ERDÉLYI, A., Higher transcendental functions, volume I, McGraw-Hill 1953.
[4] GORENFLO, R. and VESSELLA, S., Abel integral equations, Lecture Notes in Maths. 1461, Springer-Verlag 1991.

