Nonlinear Radon and Fourier Transforms

François Rouvière
Université de Nice
Laboratoire Dieudonné, UMR 7351

May 16, 2015

Abstract

In this note we explain a generalization, due to Leon Ehrenpreis, of the classical Radon transform on hyperplanes. A function f on \mathbb{R}^{n} can be reconstructed from nonlinear Radon transforms, obtained by integrating f and a finite number of multiples $x^{\alpha} f$ over a family of algebraic hypersurfaces of degree m. This follows by solving a Cauchy problem for the nonlinear Fourier transform of f. We also give an inversion formula for this Radon transform.

1 Introduction

This expository note is an attempt at explaining the pages from Ehrenpreis' treatise [5] in which he develops the nonlinear Radon and Fourier transforms he had introduced in his previous papers [1][2][3][4]. The goal is to extend the classical hyperplane Radon transform $R_{0} f$ (integrals of a function f over all hyperplanes in \mathbb{R}^{n}) to a family of algebraic submanifolds defined by higher degree polynomial equations. Is the generalized transform R still injective? Can we give an inversion formula? Unfortunately it is readily seen that R is no more injective (in general): reconstructing f from Radon transforms needs more than $R f$ alone.

We shall explain here several results of the following type: there exists a finite number of low-degree polynomial functions a_{k} (with $a_{1}=1$) such that f is determined by the Radon transforms $R\left(a_{k} f\right)$. Besides, the restriction of the $R\left(a_{k} f\right)$'s to a certain subfamily of algebraic manifolds may even be sufficient, provided one increases the number of polynomials a_{k}.

After a brief reminder of the classical hyperplane transform (this Section) we shall introduce Ehrenpreis' nonlinear Radon transform and the related nonlinear Fourier transform, so as to get a projection slice theorem which plays a crucial role in this study (Section 2). The reconstruction problem boils down to a Cauchy problem for a system of partial differential equations, solved in a naive way in Section 3 then, in Section 4, by the more sophisticated tools of harmonic polynomials. In Section 5 we discuss an inversion formula for the nonlinear Radon transform.

In order to motivate the forthcoming construction, let us briefly recall a few facts about the classical Radon transform R_{0}. In the Euclidean space \mathbb{R}^{n} it is given by integration of a compactly supported smooth function $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ over the family of
all hyperplanes. A hyperplane being defined by the equation $\omega \cdot x=t$ where ω is a unit vector, t a real number and • denotes the scalar product, we consider

$$
R_{0} f(t, \omega):=\int_{\omega \cdot x=t} f
$$

an integral with respect to the measure induced on the hyperplane by the Euclidean measure $d x$ of \mathbb{R}^{n}. Note that (t, ω) and $(-t,-\omega)$ define the same hyperplane, thus $R_{0} f(t, \omega)=R_{0} f(-t,-\omega)$. For any $\tau \in \mathbb{R}$ we have

$$
\int_{\mathbb{R}^{n}} e^{i \tau \omega \cdot x} f(x) d x=\int_{\mathbb{R}} d t \int_{\omega \cdot x=t} e^{i \tau \omega \cdot x} f(x)=\int_{\mathbb{R}} e^{i \tau t} R_{0} f(t, \omega) d t
$$

This gives the projection slice theorem

$$
\begin{equation*}
\widehat{f}(\tau \omega)=\widehat{R_{0} f}(\tau, \omega) \tag{1}
\end{equation*}
$$

for $\tau \in \mathbb{R}, \omega \in \mathbb{R}^{n}$ and $\|\omega\|=1$.
Caution: on the left-hand side of (1) the hat denotes the n-dimensional Fourier transform on x but on the right-hand side it denotes the 1-dimensional Fourier transform on t. Both sides are smooth functions on $\mathbb{R} \times \mathbb{S}^{n-1}$, rapidly decreasing with respect to τ.

Knowing the integrals of f over all hyperplanes, i.e. $R_{0} f$, the Fourier transform \hat{f} is therefore known and R_{0} is easily inverted as follows. Writing the Fourier inversion formula for f in spherical coordinates we have

$$
f(x)=(2 \pi)^{-n} \int_{\|\omega\|=1} d \omega \int_{0}^{\infty} e^{-i \tau \omega \cdot x} \widehat{R_{0} f}(\tau, \omega) \tau^{n-1} d \tau
$$

where $d \omega$ is the Euclidean measure on the unit sphere of \mathbb{R}^{n}. In order to use Fourier analysis in one variable we can replace \int_{0}^{∞} by $\int_{\mathbb{R}}$: indeed $\widehat{R_{0} f}(\tau, \omega)=\widehat{R_{0} f}(-\tau,-\omega)$ and, changing τ into $-\tau$ then ω into $-\omega$, we obtain

$$
f(x)=C \int_{\|\omega\|=1} d \omega \int_{\mathbb{R}} e^{-i \tau \omega \cdot x} \widehat{R_{0} f}(\tau, \omega)|\tau|^{n-1} d \tau
$$

with $C:=\frac{1}{2}(2 \pi)^{-n}$. Let $F(t, \omega)$ be a smooth function on $\mathbb{R} \times \mathbb{S}^{n-1}$, rapidly decreasing with respect to t, and let the operator $\left|\partial_{t}\right|^{n-1}$ be defined by

$$
\left.\left(\left|\partial_{t}\right|^{n-1} F\right) \tau \tau, \omega\right)=\widehat{F}(\tau, \omega)|\tau|^{n-1}
$$

Thus $\left|\partial_{t}\right|^{n-1}=(-1)^{k} \partial_{t}^{n-1}$ if $n=2 k+1$ is odd; if n is even $\left|\partial_{t}\right|^{n-1}$ is the composition of ∂_{t}^{n-1} and a Hilbert integral operator (see Helgason [7] p. 22). We infer the following inversion formula

$$
\begin{equation*}
f=C R_{0}^{*}\left|\partial_{t}\right|^{n-1} R_{0} f \tag{2}
\end{equation*}
$$

where the dual transform R_{0}^{*} is defined by

$$
R_{0}^{*} F(x):=\int_{\|\omega\|=1} F(\omega \cdot x, \omega) d \omega
$$

(integration over the set of all hyperplanes containing x).

2 A Nonlinear Radon Transform

2.1 Integration on Hypersurfaces

Let $\varphi: \Omega \rightarrow \mathbb{R}$ be a smooth function on an open subset Ω of the Euclidean space \mathbb{R}^{n}. A convenient way to introduce our Radon transform is to consider first, for $f \in \mathcal{D}(\Omega)$ (a smooth function with compact support contained in Ω) and $t \in \mathbb{R}$,

$$
f_{\varphi}(t):=\int_{\varphi(x)<t} f(x) d x
$$

where $d x$ is the Lebesgue measure of \mathbb{R}^{n}. Let m and M denote the lower and upper bounds of $\varphi(x)$ for $x \in \operatorname{supp} f$; then $f_{\varphi}(t)=0$ for $t \leq m$ and $f_{\varphi}(t)=\int_{\Omega} f(x) d x$ for $t \geq M$.

The example $\Omega=\mathbb{R}$ and $\varphi(x)=x^{3}$ gives $f_{\varphi}(t)=F\left(t^{1 / 3}\right)$ with $F(u)=\int_{-\infty}^{u} f(x) d x ;$ thus f_{φ} is not necessarily smooth. However the following result holds true.

Proposition 1 Assume the gradient φ^{\prime} of φ never vanishes on Ω. For $f \in \mathcal{D}(\Omega)$, f_{φ} is then a smooth function on \mathbb{R} and we may define

$$
\begin{equation*}
R_{\varphi} f(t):=\left(f_{\varphi}\right)^{\prime}(t)=\partial_{t} \int_{\varphi(x)<t} f(x) d x \tag{3}
\end{equation*}
$$

(i) $R_{\varphi} f$ is a smooth function on \mathbb{R} and $\operatorname{supp} R_{\varphi} f \subset[m, M]$.
(ii) For any $u \in C^{\infty}(\mathbb{R})$

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} u(\varphi(x)) f(x) d x=\int_{\mathbb{R}} u(t) R_{\varphi} f(t) d t \tag{4}
\end{equation*}
$$

(iii) Let $d S_{t}$ be the Euclidean measure on the hypersurface $S_{t}:=\{x \in \Omega \mid \varphi(x)=t\}$. Then

$$
\begin{equation*}
R_{\varphi} f(t)=\int_{S_{t}} f(x) \frac{1}{\left\|\varphi^{\prime}(x)\right\|} d S_{t}(x) \tag{5}
\end{equation*}
$$

Formula (5) gives the geometrical meaning of $R_{\varphi} f$ as an integral of f over the level hypersurface $\varphi(x)=t$; we may write it for short as

$$
\begin{equation*}
R_{\varphi} f(t)=\int_{\varphi(x)=t} f \tag{6}
\end{equation*}
$$

According to (4) it may also be viewed as $R_{\varphi} f(t)=\left\langle\varphi^{*} \delta_{t}, f\right\rangle$ where $\varphi^{*} \delta_{t}$ is the pullback by φ of the Dirac measure δ_{t} of \mathbb{R} at t (see Friedlander [6] Section 7.2 or Hörmander [8] Section 6.1).
Proof. (i) and (iii) Given $a \in \Omega$ we have $\varphi^{\prime}(a) \neq 0$ thus (for instance) $\partial_{n} \varphi(a) \neq 0$. By the inverse function theorem there exists an open neighborhood U of a such that the map $x=\left(x^{\prime}, x_{n}\right) \mapsto y=\left(x^{\prime}, \varphi(x)\right)$ is a diffeomorphism of U onto $V \times I$, where $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right), V$ is an open neighborhood of $\left(a_{1}, \ldots, a_{n-1}\right)$ in \mathbb{R}^{n-1} and I is an open interval containing $\varphi(a)$. Let $y=\left(y^{\prime}, y_{n}\right) \mapsto x=\left(y^{\prime}, \psi\left(y^{\prime}, y_{n}\right)\right)$ denote the inverse map. Then $d y=\left|\partial_{n} \varphi(x)\right| d x$ and, assuming supp $f \subset U$, we have

$$
f_{\varphi}(t)=\int_{\varphi(x)<t} f(x) d x=\int_{y_{n}<t} \frac{f}{\left|\partial_{n} \varphi\right|}\left(y^{\prime}, \psi\left(y^{\prime}, y_{n}\right)\right) d y^{\prime} d y_{n}
$$

The y_{n} integral actually runs over $\left.[a, b] \cap\right]-\infty, t[$ where $[a, b]$ is compact and contained in I. Thus f_{φ} is a smooth function of $t \in \mathbb{R}$ and

$$
\begin{aligned}
R_{\varphi} f(t) & =\left(f_{\varphi}\right)^{\prime}(t)=\int_{V} \frac{f}{\left|\partial_{n} \varphi\right|}\left(y^{\prime}, \psi\left(y^{\prime}, t\right)\right) d y^{\prime} \text { for } t \in I \\
& =0 \text { for } t \notin I
\end{aligned}
$$

is smooth on \mathbb{R}.
Besides, $\varphi\left(y^{\prime}, \psi\left(y^{\prime}, t\right)\right)=t$ for $y^{\prime} \in V$ and $t \in I$ therefore

$$
\partial_{i} \varphi\left(y^{\prime}, \psi\left(y^{\prime}, t\right)\right)+\partial_{n} \varphi\left(y^{\prime}, \psi\left(y^{\prime}, t\right)\right) \partial_{i} \psi\left(y^{\prime}, t\right)=0
$$

for $i=1, \ldots, n-1$. It follows that $\left\|\varphi^{\prime}\right\|=\left|\partial_{n} \varphi\right|\left(1+\sum_{1}^{n-1}\left(\partial_{i} \psi\right)^{2}\right)^{1 / 2}$ and, for $t \in I$,

$$
\begin{aligned}
R_{\varphi} f(t) & =\int_{V} \frac{f}{\left\|\varphi^{\prime}\right\|}\left(y^{\prime}, \psi\left(y^{\prime}, t\right)\right)\left(1+\sum_{1}^{n-1}\left(\partial_{i} \psi\left(y^{\prime}, t\right)\right)^{2}\right)^{1 / 2} d y^{\prime} \\
& =\int_{S_{t}} \frac{f}{\left\|\varphi^{\prime}\right\|}(x) d S_{t}(x),
\end{aligned}
$$

the hypersurface integral being computed by means of the parameters y^{\prime}. The latter equality also holds for $t \notin I$ (both sides vanish) and this proves (i) and (iii) for $\operatorname{supp} f \subset U$. The general case follows by partition of unity.
(ii) Since $\operatorname{supp} R_{\varphi} f \subset[m, M]$ we have

$$
\begin{aligned}
\int_{\mathbb{R}} u(t) R_{\varphi} f(t) d t & =\int_{m}^{M} u(t)\left(f_{\varphi}\right)^{\prime}(t) d t=\left[u(t) f_{\varphi}(t)\right]_{m}^{M}-\int_{m}^{M} u^{\prime}(t) f_{\varphi}(t) d t \\
& =u(M) \int_{\Omega} f(x) d x-\int_{\varphi(x)<t<M} u^{\prime}(t) f(x) d t d x .
\end{aligned}
$$

The latter integral is

$$
\int_{\Omega} f(x) d x \int_{\varphi(x)}^{M} u^{\prime}(t) d t=\int_{\Omega} f(x)(u(M)-u(\varphi(x))) d x
$$

and (4) follows.

2.2 Nonlinear Radon and Fourier Transforms

We now wish to extend the classical Radon transform of Section 1, replacing the hyperplanes $\omega \cdot x=t$ by level hypersurfaces of homogeneous polynomials of given degree $m \geq 1$ in \mathbb{R}^{n}. We write such polynomials as

$$
\lambda \cdot p(x):=\sum_{|\alpha|=m} \lambda_{\alpha} x^{\alpha}
$$

where $x \in \mathbb{R}^{n}$ and, in multi-index notation, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n},|\alpha|=\sum_{1}^{n} \alpha_{i}$, $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $\lambda_{\alpha} \in \mathbb{R}$.

It is easily checked that the number of terms in $\sum_{|\alpha|=m}$ is the binomial coefficient $N=N(m, n)=\frac{(m+n-1)!}{m!(n-1)!}$. Indeed let us consider

$$
\prod_{j=1}^{n} \frac{1}{1-t x_{j}}=\prod_{j=1}^{n}\left(1+t x_{j}+t^{2} x_{j}^{2}+\cdots\right)
$$

Expanding the product we see that the coefficient of t^{m} is $\sum_{|\alpha|=m} x^{\alpha}$, therefore equals $N(m, n)$ when all x_{i} 's are 1 . Thus $N(m, n)$ is the coefficient of t^{m} in the expansion of $(1-t)^{-n}$ and the result follows. Note that $N>n$ for $n \geq 2$ and $m \geq 2$.

Let $\lambda \in \mathbb{R}^{N}, \lambda \neq 0$, and $\Omega:=\{x \mid \lambda \cdot p(x) \neq 0\}$. By Euler's identity for the homogeneous function $\varphi(x)=\lambda \cdot p(x)$ on \mathbb{R}^{n} the gradient φ^{\prime} does not vanish on Ω. The level surface $\lambda \cdot p(x)=t$ is thus a smooth hypersurface of \mathbb{R}^{n} for $t \in \mathbb{R}, t \neq 0$. The nonlinear Radon transform of a test function $f \in \mathcal{D}(\Omega)$ is then defined, in the notation of (6), by

$$
\begin{equation*}
R f(t, \lambda):=R_{\varphi} f(t)=\int_{\lambda \cdot p(x)=t} f \tag{7}
\end{equation*}
$$

For $m=1$ we have $N=n$ and R is the classical hyperplane Radon transform R_{0}.

Properties of R.

(i) By Proposition 1 , for $f \in \mathcal{D}(\Omega)$ and $\lambda \neq 0, R f(., \lambda)$ is a compactly supported smooth function of t on \mathbb{R}. By (4)

$$
\int_{\mathbb{R}^{n}} F(\lambda \cdot p(x), \lambda) f(x) d x=\int_{\mathbb{R}} F(t, \lambda) R f(t, \lambda) d t
$$

for $\lambda \neq 0$ and any F continuous on $\mathbb{R} \times \mathbb{R}^{N}$. In particular, for $\tau \in \mathbb{R}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{i \tau \lambda \cdot p(x)} f(x) d x=\int_{\mathbb{R}} e^{i \tau t} R f(t, \lambda) d t=\widehat{R f}(\tau, \lambda)=\widehat{R f}(1, \tau \lambda) \tag{8}
\end{equation*}
$$

is the one-dimensional Fourier transform of $R f$ with respect to the variable t. This extends the projection slice theorem (1).
(ii) The left-hand side of (8) is well-defined for all $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ (without assuming supp $f \subset \Omega)$, and extends to an entire function of (τ, λ) on $\mathbb{C} \times \mathbb{C}^{N}$. This suggests defining $\widehat{R f}(\tau, 0)=\int f$, that is $R f(t, 0)=\left(\int_{\mathbb{R}^{n}} f(x) d x\right) \delta(t)$ where δ is the Dirac measure at the origin of \mathbb{R}.
Actually, the restrictive assumptions supp $f \subset \Omega, t \neq 0, \lambda \neq 0$ may be left out in the sequel, as we shall work with $\widehat{R f}$ rather than $R f$.
(iii) From (8) it follows that

$$
\begin{equation*}
\partial_{\lambda_{\alpha}} \widehat{R f}(\tau, \lambda)=i \tau \int_{\mathbb{R}^{n}} e^{i \tau \lambda \cdot p(x)} x^{\alpha} f(x) d x=i \tau \widehat{R\left(x^{\alpha} f\right)}(\tau, \lambda) \tag{9}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\partial_{\lambda_{\alpha}} R f(t, \lambda)=-\partial_{t} R\left(x^{\alpha} f\right)(t, \lambda) \tag{10}
\end{equation*}
$$

for $f \in \mathcal{D}(\Omega), \lambda \neq 0$ and $\alpha \in \mathbb{N}^{n},|\alpha|=m$.
(iv) Note that, for m even, $R f=0$ whenever f is an odd function: R is not an injective map and, in this case, f cannot be reconstructed from $R f$ alone. We shall see in the next sections how to circumvent this difficulty.

Let us introduce the nonlinear Fourier transform of f defined, for all $f \in$ $\mathcal{D}\left(\mathbb{R}^{n}\right)$, by

$$
\begin{equation*}
\widetilde{f}(\xi, \lambda):=\int_{\mathbb{R}^{n}} e^{i(\xi \cdot x+\lambda \cdot p(x))} f(x) d x, \xi \in \mathbb{R}^{n}, \lambda \in \mathbb{R}^{N} . \tag{11}
\end{equation*}
$$

It extends to an entire function of $(\xi, \lambda) \in \mathbb{C}^{n} \times \mathbb{C}^{N}$. As a function on $\mathbb{R}^{n} \times \mathbb{R}^{N}$ it is bounded by $\int_{\mathbb{R}^{n}}|f(x)| d x$ and, for fixed λ, it is rapidly decreasing with respect to ξ.

On the one hand $\widetilde{f}(\xi, 0)=\widehat{f}(\xi)$ is the classical n-dimensional Fourier transform of f; on the other hand $\tilde{f}(0, \tau \lambda)=\widehat{R f}(\tau, \lambda)$ is the 1-dimensional Fourier transform of $R f$:

$$
\tilde{f}(\xi, 0)=\widehat{f}(\xi) \quad \stackrel{\tilde{f}(\xi, \lambda)}{\swarrow}{ }^{\swarrow}(0, \lambda)=\widehat{R f}(1, \lambda) .
$$

Reconstructing $\widetilde{f}(\xi, \lambda)$ from $\widetilde{f}(0, \lambda)$ would therefore allow to reconstruct f from $R f$. For this we shall consider partial differential equations satisfied by \widetilde{f}.

2.3 Partial Differential Equations

Taking derivatives of (11) under the integral sign we get, for $j=1, \ldots, n$ and $\alpha \in \mathbb{N}^{n}$, $|\alpha|=m$,

$$
\begin{align*}
\partial_{\xi_{j}} \widetilde{f}(\xi, \lambda) & =i \int_{\mathbb{R}^{n}} e^{i(\xi \cdot x+\lambda \cdot p(x))} x_{j} f(x) d x=\widetilde{i\left(x_{j} f\right)}(\xi, \lambda) \tag{12}\\
\partial_{\lambda_{\alpha}} \tilde{f}(\xi, \lambda) & =i \int_{\mathbb{R}^{n}} e^{i(\xi \cdot x+\lambda \cdot p(x))} x^{\alpha} f(x) d x=\widetilde{i\left(x^{\alpha} f\right)}(\xi, \lambda) . \tag{13}
\end{align*}
$$

Thus \tilde{f} satisfies the system of N linear partial differential equations on $\mathbb{R}^{n} \times \mathbb{R}^{N}$

$$
\begin{equation*}
i^{m-1} \partial_{\lambda_{\alpha}} \tilde{f}=\partial_{\xi}^{\alpha} \widetilde{f} \text { for } \alpha \in \mathbb{N}^{n},|\alpha|=m . \tag{14}
\end{equation*}
$$

For any $\alpha, \beta, \gamma, \delta \in \mathbb{N}^{n}$ of length m such that $x^{\alpha} x^{\beta}=x^{\gamma} x^{\delta}$ we infer that, as a function of λ, \tilde{f} satisfies the Plücker equations

$$
\begin{equation*}
\left(\partial_{\lambda_{\alpha}} \partial_{\lambda_{\beta}}-\partial_{\lambda_{\gamma}} \partial_{\lambda_{\delta}}\right) \tilde{f}=0 . \tag{15}
\end{equation*}
$$

Given α, β, all such multi-indices γ, δ are obtained as $\gamma=\alpha-\varepsilon, \delta=\beta+\varepsilon$, where $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \mathbb{Z}^{n}$ satisfies $-\beta_{j} \leq \varepsilon_{j} \leq \alpha_{j}$ for $j=1, \ldots, n$ and $\sum_{1}^{n} \varepsilon_{j}=0$.

Example. For $m=n=2$ we have $\lambda \cdot p(x)=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\lambda_{3} x_{1} x_{2}$ (here $N=3$) and

$$
i \partial_{\lambda_{1}} \widetilde{f}=\partial_{\xi_{1}}^{2} \widetilde{f}, i \partial_{\lambda_{2}} \tilde{f}=\partial_{\xi_{2}}^{2} \tilde{f}, i \partial_{\lambda_{3}} \widetilde{f}=\partial_{\xi_{1}} \partial_{\xi_{2}} \widetilde{f} .
$$

The identity $\left(x_{1} x_{2}\right)^{2}=x_{1}^{2} x_{2}^{2}$ leads to he hyperbolic equation $\partial_{\lambda_{3}}^{2} \tilde{f}=\partial_{\lambda_{1}} \partial_{\lambda_{2}} \tilde{f}$.

3 A Cauchy Problem

Given $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ let us now try to reconstruct $\widetilde{f}(\xi, \lambda)$ from $\widetilde{f}(0, \lambda)=\widehat{R f}(1, \lambda)$ by solving a Cauchy problem for the system (14) with data on $\xi=0$. In order to achieve this goal we shal l of course need more than $\widehat{\sim} \widehat{R f}(1, \lambda)$: let us recall that $\widetilde{f}(0, \lambda)=0$ for $\underset{\sim}{m}$ even and f odd, though \widetilde{f} may be not identically zero. It should be noted that $\widetilde{f}(0, \lambda)$ satisfies the Plücker equations (15), but this fact will not be taken into account here (see Remark below however).

Since \widetilde{f} is an entire function we have

$$
\widetilde{f}(\xi, \lambda)=\sum_{\alpha \in \mathbb{N}^{n}} \partial_{\xi}^{\alpha} \widetilde{f}(0, \lambda) \frac{\xi^{\alpha}}{\alpha!}
$$

an absolutely convergent series for all $\xi \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}^{N}$.
To work it out we shall only need the derivatives $\partial_{\xi}^{\alpha} \tilde{f}(0, \lambda)$ for $|\alpha|<m$; the higher order derivatives will be given by (14). More precisely, $\partial_{\xi}^{\alpha} \widetilde{f}=i^{|\alpha|} \widetilde{x^{\alpha} f}$ for all α by (12), and equals $i^{m-1} \partial_{\lambda_{\alpha}} \widetilde{f}$ by (14) if $|\alpha|=m$. For any $\alpha \in \mathbb{N}^{n}$ we may write $|\alpha|=q m+r$ with $q, r \in \mathbb{N}, 0 \leq r<m$, and factorize ∂_{ξ}^{α} as

$$
\partial_{\xi}^{\alpha}=\partial_{\xi}^{\beta_{1}} \cdots \partial_{\xi}^{\beta_{q}} \partial_{\xi}^{\gamma}
$$

with $\beta_{1}, \ldots \beta_{q}, \gamma \in \mathbb{N}^{n},\left|\beta_{1}\right|=\cdots=\left|\beta_{q}\right|=m$ and $|\gamma|=r$; this factorization is not unique. It follows that

$$
\partial_{\xi}^{\alpha} \widetilde{f}=i^{|\alpha|-q} \partial_{\lambda_{\beta_{1}}} \cdots \partial_{\lambda_{\beta_{q}}} \widetilde{\left(x^{\gamma} f\right)}
$$

and

$$
\widetilde{f}(\xi, \lambda)=\sum_{\alpha \in \mathbb{N}^{n}} i^{|\alpha|-q} \partial_{\lambda_{\beta_{1}}} \cdots \partial_{\lambda_{\beta_{q}}} \widetilde{\left(x^{\gamma} f\right)}(0, \lambda) \frac{\xi^{\alpha}}{\alpha!}
$$

(with $q, \beta_{1}, \ldots, \beta_{q}, \gamma$ depending on α in the sum).
Remembering $\widetilde{\left(x^{\gamma} f\right)}(0, \lambda)=\widehat{R\left(x^{\gamma} f\right)}(1, \lambda)$ for $\lambda \neq 0$, we see that \tilde{f} is determined by the nonlinear Radon transforms of all functions $x^{\gamma} f$ for $\gamma \in \mathbb{N}^{n}$ and $|\gamma|<m$. Their number is $\sum_{k=0}^{m-1} N(k, n)=N(m-1, n+1)=\frac{m}{n} N(m, n)$ (induction on m). In particular if $R\left(x^{\gamma} f\right)=0$ for all γ with $|\gamma|<m$, then $f=0$.

Example. For $m=n=2$ (Section 2.3), $\partial_{\xi_{1}}^{\alpha_{1}} \partial_{\xi_{2}}^{\alpha_{2}}$ factorizes as powers of $\partial_{\xi_{1}}^{2}$ and $\partial_{\xi_{2}}^{2}$, possibly composed with $\partial_{\xi_{1}}$ or $\partial_{\xi_{2}}$ or $\partial_{\xi_{1}} \partial_{\xi_{2}}$ according to the parity of α_{1} and α_{2}. Gathering together similar terms the above result reads

$$
\begin{align*}
\widetilde{f}(\xi, \lambda)=C\left(D_{1}\right) C\left(D_{2}\right) \tilde{f}+ & S\left(D_{1}\right) S\left(D_{2}\right) D_{3} \tilde{f}+ \\
& +i \xi_{1} S\left(D_{1}\right) C\left(D_{2}\right) \widetilde{\left(x_{1} f\right)}+i \xi_{2} C\left(D_{1}\right) S\left(D_{2}\right) \widetilde{\left(x_{2} f\right)} \tag{16}
\end{align*}
$$

where

$$
\begin{aligned}
D_{1} & =i \xi_{1}^{2} \partial_{\lambda_{1}}, D_{2}=i \xi_{2}^{2} \partial_{\lambda_{2}}, D_{3}=i \xi_{1} \xi_{2} \partial_{\lambda_{3}} \\
C(z) & =\sum_{k=0}^{\infty} \frac{z^{k}}{(2 k)!}, S(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{(2 k+1)!}
\end{aligned}
$$

and, in the right-hand side of $(16), \widetilde{f}, \widetilde{\left(x_{1} f\right)}, \widetilde{\left(x_{2} f\right)}$ are evaluated at $(0, \lambda)$. Thus the knowledge of the three Radon transforms $R f, R\left(x_{1} f\right)$ and $R\left(x_{2} f\right)$ determines \widetilde{f}.
Remark. The Plücker equations (15), here $\partial_{\lambda_{3}}^{2} \widetilde{f}=\partial_{\lambda_{1}} \partial_{\lambda_{2}} \widetilde{f}$, haven't been taken into account. They imply $\partial_{\lambda_{3}}^{2 k} \widetilde{f}=\left(\partial_{\lambda_{1}} \partial_{\lambda_{2}}\right)^{k} \widetilde{f}, \partial_{\lambda_{3}}^{2 k+1} \widetilde{f}=\left(\partial_{\lambda_{1}} \partial_{\lambda_{2}}\right)^{k} \partial_{\lambda_{3}} \tilde{f}$ for $k \in \mathbb{N}$, hence the Taylor expansion

$$
\begin{align*}
\widetilde{f}\left(0, \lambda_{1}, \lambda_{2}, \lambda_{3}\right) & =\sum_{k \in \mathbb{N}} \partial_{\lambda_{3}}^{k} \widetilde{f}\left(0, \lambda_{1}, \lambda_{2}, 0\right) \frac{\lambda_{3}^{k}}{k!} \\
& =C(E) \widetilde{f}\left(0, \lambda_{1}, \lambda_{2}, 0\right)+\lambda_{3} S(E)\left(\partial_{\lambda_{3}} \widetilde{f}\right)\left(0, \lambda_{1}, \lambda_{2}, 0\right) \tag{17}
\end{align*}
$$

where $E=\lambda_{3}^{2} \partial_{\lambda_{1}} \partial_{\lambda_{2}}$, and similarly

$$
\begin{equation*}
\partial_{\lambda_{3}} \tilde{f}\left(0, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\lambda_{3} \partial_{\lambda_{1}} \partial_{\lambda_{2}} S(E) \widetilde{f}\left(0, \lambda_{1}, \lambda_{2}, 0\right)+C(E)\left(\partial_{\lambda_{3}} \widetilde{f}\right)\left(0, \lambda_{1}, \lambda_{2}, 0\right) \tag{18}
\end{equation*}
$$

Combining (16) (17) and (18) it follows that \tilde{f} can be reconstructed from $\widetilde{f}, \partial_{\lambda_{3}} \widetilde{f}$, $\widetilde{\left(x_{1} f\right)}, \partial_{\lambda_{3}} \widetilde{\left(x_{1} f\right)}, \widetilde{\left(x_{2} f\right)}$ and $\partial_{\lambda_{3}} \widetilde{\left(x_{2} f\right)}$ at $\left(0, \lambda_{1}, \lambda_{2}, 0\right)$ only.
Remembering (13) $\partial_{\lambda_{3}} \widetilde{f}=i\left(x_{1} x_{2} f\right)$, these 6 functions can be replaced by $\widetilde{f}, \widetilde{\left(x_{1} f\right)}$, $\widehat{\left(x_{2} f\right)},\left(\widehat{x_{1} x_{2} f}\right),\left(\widehat{x_{1}^{2} x_{2} f}\right)$ and $\left(\widetilde{x_{1} x_{2}^{2} f}\right)$, that is $\widehat{R f}, \widehat{R\left(x_{1} f\right)}, \ldots, \quad \widehat{R\left(x_{1} x_{2}^{2} f\right)}$ evaluated at $\left(1 ; \lambda_{1}, \lambda_{2}, 0\right)$. In other words the integrals of $f, x_{1} f, \ldots, x_{1} x_{2}^{2} f$ over the conics $\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}=t$ will determine f. A stronger (and more general) result is given in the next section.

4 Harmonic Polynomials and the Cauchy Problem

Two chapters of [5] are devoted to a general theory of harmonic polynomials which, when applied to nonlinear Radon transforms, leads to a refined version of the results of Section 3. We shall only present here a simplified approach to the harmonic polynomials relevant to our problem.
Notation. All polynomials considered here have complex coefficients. Let us order the N monomials $\left(x^{\alpha}\right)_{|\alpha|=m}$ as $x_{1}^{m}, \ldots, x_{n}^{m}$ first, then $\left(x^{\beta}\right)_{\beta \in B}$ where B is the set of the $N-n$ remaining multi-indices of length m. In accordance with this we replace our previous notation $\lambda=\left(\lambda_{\alpha}\right)_{|\alpha|=m} \in \mathbb{R}^{N}$ by $(\lambda, \mu) \in \mathbb{R}^{n} \times \mathbb{R}^{N-n}$ with $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\mu=\left(\mu_{\beta}\right)_{\beta \in B}$; the former $\sum_{\alpha} \lambda_{\alpha} x^{\alpha}$ is replaced by $\sum_{j=1}^{n} \lambda_{j} x_{j}^{m}+\sum_{\beta \in B} \mu_{\beta} x^{\beta}$. Let $(x, p, q) \in \mathbb{R}^{n+N}$ denote dual variables to (ξ, λ, μ), with $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{n}$ and $q=\left(q_{\beta}\right)_{\beta \in B} \in \mathbb{R}^{N-n}$.

In this new notation the partial differential equations (14) become

$$
\begin{equation*}
\left(-i \partial_{\xi_{j}}\right)^{m} \tilde{f}=-i \partial_{\lambda_{j}} \tilde{f},\left(-i \partial_{\xi}\right)^{\beta} \widetilde{f}=-i \partial_{\mu_{\beta}} \tilde{f} \text { for } j=1, \ldots, n \text { and } \mu \in B \tag{19}
\end{equation*}
$$

They are dual to

$$
\begin{equation*}
x_{j}^{m} F=p_{j} F,\left(x^{\beta}-q_{\beta}\right) F=0 \text { for } j=1, \ldots, n \text { and } \mu \in B, \tag{20}
\end{equation*}
$$

where F is the tempered distribution on \mathbb{R}^{n+N} corresponding to \tilde{f} via the Fourier transform on \mathbb{R}^{n+N} (being smooth and bounded, \tilde{f} is tempered on \mathbb{R}^{n+N}).

Let us introduce the following N polynomials on $\mathbb{R}^{n} \times \mathbb{R}^{N-n}=\mathbb{R}^{N}$:

$$
\begin{equation*}
u_{j}(x, q):=x_{j}^{m}, u_{\beta}(x, q):=x^{\beta}-q_{\beta} \text { for } j=1, \ldots, n \text { and } \beta \in B \tag{21}
\end{equation*}
$$

The system (20) implies that the support of F is contained in the closed set V of \mathbb{R}^{n+N} defined by the N equations

$$
V=\left\{(x, p, q) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{N-n} \mid u_{j}(x, q)=p_{j}, u_{\beta}(x, q)=0,1 \leq j \leq n, \beta \in B\right\}
$$

Being the graph of a map $x \mapsto(p, q), V$ is a n-dimensional submanifold of \mathbb{R}^{n+N}.
Definition 2 A polynomial function $h(x, q)$ on $\mathbb{R}^{n} \times \mathbb{R}^{N-n}$ is called harmonic if

$$
u_{j}\left(\partial_{x}, \partial_{q}\right) h=0, u_{\beta}\left(\partial_{x}, \partial_{q}\right) h=0 \text { for } j=1, \ldots, n \text { and } \beta \in B
$$

It is called homogeneous of degree d if $h\left(t x, t^{m} q\right)=t^{d} h(x, q)$ for all $t \in \mathbb{R}$ (thus each x_{j} has degree 1 and each q_{β} has degree m).

Proposition 3 Let $D:=\sum_{\beta \in B} q_{\beta} \partial_{x}^{\beta}$. Then $u_{\beta}\left(\partial_{x}, \partial_{q}\right)=-e^{D} \circ \partial_{q_{\beta}} \circ e^{-D}$.
The space of harmonic polynomials is m^{n}-dimensional. Its elements are given by

$$
h=e^{D} f
$$

where f is an arbitrary polynomial of the following form

$$
f(x)=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} x^{\alpha} \text { with } 0 \leq \alpha_{j} \leq m-1 \text { for } j=1, \ldots, n \text { and } a_{\alpha} \in \mathbb{C}
$$

Besides $h=e^{D} f$ is homogeneous of degree d (in the sense of Definition 4) if and only if f is homogeneous of degree d.

Proof. Since $u_{\beta}\left(\partial_{x}, \partial_{q}\right)=\partial_{x}^{\beta}-\partial_{q_{\beta}}$ we have $\left[D, u_{\beta}\left(\partial_{x}, \partial_{q}\right)\right]=\partial_{x}^{\beta}$ and $\left[D, \partial_{x}^{\beta}\right]=0$, thus $(\operatorname{ad} D)^{2} u_{\beta}\left(\partial_{x}, \partial_{q}\right)=0$ and

$$
\begin{aligned}
e^{-D} u_{\beta}\left(\partial_{x}, \partial_{q}\right) e^{D} & =e^{-\operatorname{ad} D} u_{\beta}\left(\partial_{x}, \partial_{q}\right)=(1-\operatorname{ad} D) u_{\beta}\left(\partial_{x}, \partial_{q}\right) \\
& =u_{\beta}\left(\partial_{x}, \partial_{q}\right)-\partial_{x}^{\beta}=-\partial_{q_{\beta}}
\end{aligned}
$$

[This proof may also be written without any Lie formalism, by computing the derivative with respect to t of $e^{-t D} u_{\beta}\left(\partial_{x}, \partial_{q}\right) e^{t D}$.]
Since e^{D} is a linear isomorphism of the space of polynomials onto itself, a polynomial $h(x, q)$ is harmonic if and only if

$$
\partial_{x_{j}}^{m} h=0, \partial_{q_{\beta}}\left(e^{-D} h\right)=0 \text { for } j=1, \ldots, n \text { and } \beta \in B
$$

The latter equations imply $h=e^{D} f$ for some polynomial f in the x variables. Since $\left[D, \partial_{x_{j}}^{m}\right]=0$ the former equations imply $\partial_{x_{j}}^{m} f=0$ for $j=1, \ldots, n$ whence our claim about f.
The operator D preserves homogeneity in (x, q) and the last statement follows.

Examples. Let us write down, as an example, a basis of homogeneous harmonic polynomials for $n=2$ and $m=4$. Here $N=5, \beta=\left(\beta_{1}, \beta_{2}\right)$ with $0 \leq \beta_{j} \leq 3$, $\beta_{1}+\beta_{2}=4, q=\left(q_{13}, q_{22}, q_{31}\right)$ and $D=\sum q_{\beta_{1} \beta_{2}} \partial_{x_{1}}^{\beta_{1}} \partial_{x_{2}}^{\beta_{2}}$. The 16 monomials $f(x)=$ $x_{1}^{a} x_{2}^{b}, 0 \leq a \leq 3,0 \leq b \leq 3$, make up a basis of the relevant polynomials f. Since the degree of f is 6 at most we have $D^{2} f=0$ and the 16 corresponding harmonic polynomials are $h=f+D f$, that is ${ }^{1}$

$$
\begin{aligned}
& 1, x_{1}, x_{2}, x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3} \\
& x_{1}^{3} x_{2}+6 q_{31}, x_{1}^{2} x_{2}^{2}+4 q_{22}, x_{1} x_{2}^{3}+6 q_{13} \\
& x_{1}^{3} x_{2}^{2}+12 q_{22} x_{1}+12 q_{31} x_{2}, x_{1}^{2} x_{2}^{3}+12 q_{13} x_{1}+12 q_{22} x_{2} \\
& x_{1}^{3} x_{2}^{3}+18 q_{13} x_{1}^{2}+36 q_{22} x_{1} x_{2}+18 q_{31} x_{2}^{2}
\end{aligned}
$$

For $m=n=2$ (already considered) we have $N=3, q \in \mathbb{R}$, and the corresponding basis of harmonic polynomials is

$$
1, x_{1}, x_{2}, x_{1} x_{2}+q
$$

More generally, let A denote the set of all $\alpha \in \mathbb{N}^{n}$ such that $0 \leq \alpha_{j} \leq m-1$ for $j=1, \ldots, n$. By Proposition 5 the $h_{\alpha}:=e^{D} x^{\alpha}, \alpha \in A$, make up a basis of the space of harmonic polynomials.

Proposition 4 For any polynomial $P(x, q)$ on $\mathbb{R}^{n} \times \mathbb{R}^{N-n}$ there exists a family of m^{n} polynomials $Q_{\alpha}, \alpha \in A$, on \mathbb{R}^{N} such that

$$
P(x, q)=\sum_{\alpha \in A} Q_{\alpha}\left(u_{1}(x, q), \ldots, u_{N}(x, q)\right) h_{\alpha}(x, q)
$$

where u_{1}, \ldots, u_{N} denote the polynomials defined by (21).
Proof. Let $\langle a, b\rangle=a(\partial) \bar{b}(0)$ be the Fischer inner product on the space of polynomials on $\mathbb{R}^{n} \times \mathbb{R}^{N-n}$. Then h is harmonic if and only if $u_{k}\left(\partial_{x}, \partial_{q}\right) \bar{h}=0$ for $k=1, \ldots, N$, i.e. $\left\langle a u_{k}, h\right\rangle=0$ for all polynomials a. The space of harmonic polynomials is thus the orthogonal complement of the ideal $\left\{\sum_{k=1}^{N} a_{k}(x, q) u_{k}(x, q)\right\}$ generated by the u_{k} 's (where the a_{k} 's are arbitrary polynomials).
A given $P(x, q)$ now has a unique decomposition as

$$
P=h+\sum_{k=1}^{N} a_{k} u_{k}
$$

with h harmonic. Separating homogeneous components we may assume P is homogeneous of degree d (in the sense of Definition 2). Since u_{k} is homogeneous, each homogeneous component of a harmonic polynomial is harmonic. We may therefore assume h and all $a_{k} u_{k}$ homogeneous of degree d, therefore a_{k} is homogeneous of degree $d-m$. Writing similar decompositions for each a_{k} the result easily follows.

[^0]Example. For $m=n=2$ the generators and harmonic polynomials are respectively

$$
\begin{gathered}
u_{1}=x_{1}^{2}, u_{2}=x_{2}^{2}, u_{3}=x_{1} x_{2}-q \\
h_{0}=1, h_{1}=x_{1}, h_{2}=x_{2}, h_{3}=x_{1} x_{2}+q
\end{gathered}
$$

and the first non-trivial examples of decomposition in Proposition 4 are:

$$
\begin{gathered}
2 x_{1} x_{2}=u_{3} h_{0}+h_{3}, 2 q=-u_{3} h_{0}+h_{3} \\
x_{1} q=-u_{3} h_{1}+u_{1} h_{2}, x_{2} q=-u_{3} h_{2}+u_{2} h_{1} \\
q^{2}=u_{1} u_{2} h_{0}-u_{3} h_{3}, 2 x_{1} x_{2} q=\left(2 u_{1} u_{2}-u_{3}^{2}\right) h_{0}-u_{3} h_{3} .
\end{gathered}
$$

Replacing x_{j} by $-i \partial_{\xi_{j}}$ and q_{β} by $-i \partial_{\mu_{\beta}}$ we infer from Proposition 4 an equality of differential operators. Applying them to \widetilde{f} we obtain

$$
\begin{aligned}
P\left(-i \partial_{\xi},-i \partial_{\mu}\right) \widetilde{f} & =\sum_{\alpha \in A} Q_{\alpha}\left(\left(-i \partial_{\xi_{j}}\right)^{m},\left(-i \partial_{\xi}\right)^{\beta}-\left(-i \partial_{\mu_{\beta}}\right)\right) h_{\alpha}\left(-i \partial_{\xi},-i \partial_{\mu}\right) \widetilde{f} \\
& =\sum_{\alpha \in A} Q_{\alpha}\left(-i \partial_{\lambda}, 0\right) h_{\alpha}\left(-i \partial_{\xi},-i \partial_{\mu}\right) \widetilde{f}
\end{aligned}
$$

in view of (19) and the commutativity of differential operators. In particular all derivatives $\partial_{\xi}^{\rho} \partial_{\mu}^{\sigma} \widetilde{f}$ may be written in this form with polynomials Q_{α} depending on ρ, σ whence, by Taylor's formula on the variables (ξ, μ),

$$
\begin{equation*}
\widetilde{f}(\xi, \lambda, \mu)=\sum Q_{\alpha \rho \sigma}\left(-i \partial_{\lambda}, 0\right) h_{\alpha}\left(-i \partial_{\xi},-i \partial_{\mu}\right) \widetilde{f}(0, \lambda, 0) \frac{\xi^{\rho}}{\rho!} \frac{\mu^{\sigma}}{\sigma!} \tag{22}
\end{equation*}
$$

where \sum runs over all $\rho \in \mathbb{N}^{n}, \sigma \in \mathbb{N}^{N-n}$ and $\alpha \in A$. Remembering (12)(13) $-i \partial_{\xi_{j}} \tilde{f}=\widetilde{x_{j} f},-i \partial_{\mu_{\beta}} \tilde{f}=\widetilde{x^{\beta} f}$ we have $h_{\alpha}\left(-i \partial_{\xi},-i \partial_{\mu}\right) \tilde{f}=\left(h_{\alpha}(x, q) f\right)^{\sim}$ with $q_{\beta}=x^{\beta}$ for $\beta \in B$.

Lemma 5 For all α there exists a positive integer C_{α} such that, when replacing each q_{β} by x^{β} for $\beta \in B$,

$$
h_{\alpha}(x, q)=h_{\alpha}\left(x,\left(x^{\beta}\right)_{\beta \in B}\right)=C_{\alpha} x^{\alpha} .
$$

Proof. For $\alpha \in \mathbb{N}^{n}$ we have

$$
\begin{aligned}
D x^{\alpha} & =\sum_{\beta \in B} q_{\beta} \partial_{x}^{\beta} x^{\alpha}=\sum_{\beta \in B} \frac{\alpha!}{(\alpha-\beta)!} q_{\beta} x^{\alpha-\beta} \\
D^{2} x^{\alpha} & =\sum_{\beta, \gamma \in B} \frac{\alpha!}{(\alpha-\beta-\gamma)!} q_{\beta} q_{\gamma} x^{\alpha-\beta-\gamma}
\end{aligned}
$$

etc (the coefficients being 0 unless $\beta \leq \alpha$, resp. $\beta+\gamma \leq \alpha$). When replacing q_{β} by x^{β}, q_{γ} by x^{γ} etc, the polynomials $D x^{\alpha}, D^{2} x^{\alpha}$ etc thus become x^{α} times a positive integer coefficient. The same holds for $h_{\alpha}=e^{D} x^{\alpha}$, whence the lemma.

Going back to (22) we have $h_{\alpha}\left(-i \partial_{\xi},-i \partial_{\mu}\right) \widetilde{f}=C_{\alpha} \widetilde{x^{\alpha} f}$ and we conclude that, for $(\xi, \lambda, \mu) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{N-n}$,

$$
\widetilde{f}(\xi, \lambda, \mu)=\sum_{\rho, \sigma, \alpha} C_{\alpha} Q_{\alpha \rho \sigma}\left(-i \partial_{\lambda}, 0\right) \widetilde{\left(x^{\alpha} f\right)}(0, \lambda, 0) \frac{\xi^{\rho}}{\rho!} \frac{\mu^{\sigma}}{\sigma!}
$$

Therefore the restriction to all $(0, \lambda, 0)$ of the m^{n} functions $\widetilde{x^{\alpha} f}, \alpha \in A$, determines f. In other words, the Cauchy problem for (19) is well-posed with the Cauchy data $h_{\alpha}\left(-i \partial_{\xi},-i \partial_{\mu}\right) \widetilde{f}=C_{\alpha} \widetilde{x^{\alpha} f}$ on the n-plane of \mathbb{R}^{n+N} defined by $\xi=\mu=0$.

In terms of Radon transforms we obtain the following result.
Theorem 6 A function $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ is uniquely determined by the m^{n} nonlinear Radon transforms $R\left(x^{\alpha} f\right)(t, \lambda, 0)$ (with $\alpha \in \mathbb{N}^{n}, 0 \leq \alpha_{j}<m, t \in \mathbb{R}, \lambda \in \mathbb{R}^{n} \backslash\{0\}$), that is by the integrals of each $x^{\alpha} f$ on the hypersurfaces

$$
\lambda_{1} x_{1}^{m}+\cdots+\lambda_{n} x_{n}^{m}=t .
$$

5 Inversion Formulas

Let us now look for an inversion formula for the nonlinear Radon transform. The nonlinear Fourier transform \tilde{f} is greatly overdetermined, with $n+N$ variables (ξ, λ) instead of n for f. As in Section 3 we shall restrict \widetilde{f} to $\xi=0$ and, assuming the monomials x^{α} are ordered as $x_{1}^{m}, \ldots, x_{n}^{m}$ first, followed by the other x^{β} 's, it turns out that (as in the final remark of Section 3) we can also restrict to $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{n}, 0, \ldots, 0\right)$, written as $\lambda \in \mathbb{R}^{n}$ for short. Then

$$
\begin{equation*}
\widetilde{f}(0, \tau \lambda)=\int_{\mathbb{R}^{n}} e^{i \tau \sum_{1}^{n} \lambda_{j} x_{j}^{m}} f(x) d x=\widehat{R f}(\tau, \lambda) \text { with } \tau \in \mathbb{R}, \lambda \in \mathbb{R}^{n} \tag{23}
\end{equation*}
$$

5.1 First Case: m odd

Let U denote the dense open subset of \mathbb{R}^{n} defined by $x_{j} \neq 0$ for all j. For m odd the map $\psi: x \mapsto y=x^{m}:=\left(x_{1}^{m}, \ldots, x_{n}^{m}\right)$ is a diffeomorphism of U onto itself. Then

$$
\begin{equation*}
\widehat{R f}(\tau, \lambda)=\int_{\mathbb{R}^{n}} e^{i \tau \lambda \cdot y} g(y) d y=\widehat{g}(\tau \lambda) \tag{24}
\end{equation*}
$$

with $\lambda \cdot y=\sum_{1}^{n} \lambda_{j} y_{j}$ and

$$
g(y):=m^{-n}\left|y_{1} \cdots y_{n}\right|^{(1 / m)-1} f\left(y^{1 / m}\right), y \in \mathbb{R}^{n}
$$

As above \widehat{g} denotes the classical n-dimensional Fourier transform and $\widehat{R f}$ is the 1-dimensional Fourier transform with respect to t.

The change $x \mapsto y$ thus reduces the nonlinear Radon transform R to the linear one considered in the introduction: $R f(t, \lambda)=R_{0} g(t, \lambda)$. But g is not necessarily smooth, $\widehat{g}(\lambda)=\widehat{R f}(1, \lambda)$ is not necessarily rapidly decreasing and the inversion formula (2) may become invalid here. However g is integrable on \mathbb{R}^{n} and vanishes outside a compact set, therefore defines a tempered distribution. Denoting by \mathcal{F} the
inverse Fourier transform for tempered distributions on \mathbb{R}^{n} we have $g=\mathcal{F} \widehat{g}$ hence, for any $u \in \mathcal{D}(U)$,

$$
\begin{aligned}
\int_{U} f(x) u\left(x^{m}\right) d x & =\int_{U} g(y) u(y) d y=\langle\mathcal{F} \widehat{g}(y), u(y)\rangle \\
& =\left\langle\left(\psi^{*} \mathcal{F} \widehat{g}\right)(x),\right| \operatorname{det} \psi^{\prime}(x) \mid u(\psi(x)\rangle \\
& =\left\langle m^{n}\left(x_{1} \cdots x_{n}\right)^{m-1}\left(\psi^{*} \mathcal{F} \widehat{g}\right)(x), u\left(x^{m}\right)\right\rangle
\end{aligned}
$$

using the pullback by ψ of the distribution $\mathcal{F} \widehat{g}$ on U (cf. [6] p. 80). The absolute value may be skipped here since $m-1$ is even and $\operatorname{det} \psi^{\prime}>0$. Therefore, for $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
f(x)=m^{n}\left(x_{1} \cdots x_{n}\right)^{m-1}\left(\psi^{*} \mathcal{F} \widehat{R f}(1, \cdot)\right)(x) \tag{25}
\end{equation*}
$$

an equality of distributions on U.

5.2 Second Case: m even

The above map $\psi: x \mapsto y$ is no more a bijection: given y with all $y_{j}>0$, the equations $y=x^{m}$ now have 2^{n} solutions $x=\left(\pm y_{1}^{1 / m}, \ldots, \pm y_{n}^{1 / m}\right)$.

For $x, y \in \mathbb{R}^{n}$ we write $x y:=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$. Let $E:=\{1,-1\}^{n}$ denote the set of all $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ with $\varepsilon_{j}= \pm 1$ and

$$
\mathbb{R}_{+}^{n}:=\left\{x \in \mathbb{R}^{n} \mid x_{j}>0 \text { for } 1 \leq j \leq n\right\}
$$

Viewing the integral (23) as a sum of integrals over the quadrants $\varepsilon \mathbb{R}_{+}^{n}, \varepsilon \in E$, we obtain, by the change of variables $x \mapsto y$ with $x_{j}=\varepsilon_{j} y_{j}^{1 / m}, y_{j}>0$, on $\varepsilon \mathbb{R}_{+}^{n}$,

$$
\widehat{R f}(\tau, \lambda)=\widetilde{f}(0, \tau \lambda)=\int_{\mathbb{R}_{+}^{n}} e^{i \tau \lambda \cdot y} g(y) d y
$$

with $\tau \in \mathbb{R}, \lambda \in \mathbb{R}^{n}$ and, for $y \in \mathbb{R}_{+}^{n}$,

$$
g(y):=m^{-n}\left(y_{1} \cdots y_{n}\right)^{(1 / m)-1} \sum_{\varepsilon \in E} f\left(\varepsilon y^{1 / m}\right)
$$

Let H denote the Heaviside function $H(y)=1$ if $y \in \mathbb{R}_{+}^{n}, H(y)=0$ otherwise. Equation (24) is now replaced by

$$
\widehat{R f}(\tau, \lambda)=\int_{\mathbb{R}^{n}} e^{i \tau \lambda \cdot y} H(y) g(y) d y=\widehat{H g}(\tau \lambda)
$$

Again $H g$ is integrable and vanishes outside a compact set, hence tempered on \mathbb{R}^{n}, and as above the Fourier inversion $H g=\mathcal{F} \widehat{H g}$ implies the following equality of distributions on \mathbb{R}_{+}^{n}

$$
\begin{equation*}
\sum_{\varepsilon \in E} f(\varepsilon x)=m^{n}\left(x_{1} \cdots x_{n}\right)^{m-1}\left(\psi^{*} \mathcal{F} \widehat{R f}(1, \cdot)\right)(x) \tag{26}
\end{equation*}
$$

This gives f if its support is contained in some quadrant $\varepsilon \mathbb{R}_{+}^{n}$. Otherwise we must separate the components $f(\varepsilon x)$, which can be achieved by replacing f with $x^{\alpha} f$ for suitably chosen α 's as follows.

With each $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in E$ we associate the monomial

$$
p_{\varepsilon}(x):=x_{i_{1}} \cdots x_{i_{k}}
$$

where $1 \leq i_{1}<\cdots<i_{k} \leq n$ is the (ordered) set of indices i such that $\varepsilon_{i}=-1$; for instance, $n=4$ and $\varepsilon=(-1,1,-1,1)$ yield $p_{\varepsilon}(x)=x_{1} x_{3}$. The map $\varepsilon \mapsto p_{\varepsilon}$ is a bijection of E onto the set of divisors of $x_{1} \cdots x_{n}$.

Let $\varepsilon, \eta \in E$. A minus sign occurs in $p_{\varepsilon}(\eta x)=p_{\varepsilon}\left(\eta_{1} x_{1}, \ldots, \eta_{n} x_{n}\right)$ each time there is a factor x_{i}, that is $\varepsilon_{i}=-1$, and the corresponding η_{i} is -1 . Therefore

$$
\begin{equation*}
p_{\varepsilon}(\eta x)=a_{\varepsilon, \eta} p_{\varepsilon}(x) \text { with } a_{\varepsilon, \eta}:=(-1)^{k(\varepsilon, \eta)} \tag{27}
\end{equation*}
$$

where $k(\varepsilon, \eta)$ denotes the number of indices i such that $\varepsilon_{i}=\eta_{i}=-1$.
Example. For $n=2$ the matrix $\left(a_{\varepsilon, \eta}\right)$ is given by the table:

$$
\begin{array}{cccccc}
& p_{\varepsilon} & 1 & x_{1} & x_{2} & x_{1} x_{2} \\
& \varepsilon & ++ & -+ & +- & -- \\
\eta & & & & & \\
++ & & 1 & 1 & 1 & 1 \\
-+ & & 1 & -1 & 1 & -1 \\
+- & & 1 & 1 & -1 & -1 \\
-- & & 1 & -1 & -1 & 1
\end{array}
$$

Our inversion formula for R will be inferred from the following combinatorial lemma.

Lemma 7 The set $E=\{1,-1\}^{n}$ being provided with some ordering, the $2^{n} \times 2^{n}$ matrix $A=\left(a_{\varepsilon, \eta}\right)_{\varepsilon, \eta \in E}$ is symmetric and $A^{2}=2^{n} I$ (where I is the unit matrix).

Proof. The symmetry is clear by the definition of $k(\varepsilon, \eta)$.
For $\varepsilon, \eta, \zeta \in E$ we have $k(\varepsilon, \eta \zeta)=k(\varepsilon, \eta)+k(\varepsilon, \zeta)$ since $\varepsilon_{i}=\eta_{i} \zeta_{i}=-1$ is equivalent to $\varepsilon_{i}=-1$ and $\eta_{i}=-1, \zeta_{i}=1$ or (exclusive or) $\varepsilon_{i}=-1$ and $\eta_{i}=1, \zeta_{i}=-1$. Therefore

$$
\begin{equation*}
a_{\varepsilon, \eta} a_{\varepsilon, \zeta}=a_{\varepsilon, \eta \zeta} \tag{28}
\end{equation*}
$$

Besides, for fixed $\eta \in E$,

$$
\begin{aligned}
\prod_{i=1}^{n}\left(1+\eta_{i} x_{i}\right) & =1+\sum_{i} \eta_{i} x_{i}+\sum_{i<j} \eta_{i} \eta_{j} x_{i} x_{j}+\cdots+\eta_{1} \cdots \eta_{n} x_{1} \cdots x_{n} \\
& =\sum_{\varepsilon \in E} p_{\varepsilon}(\eta x)=\sum_{\varepsilon \in E} a_{\varepsilon, \eta} p_{\varepsilon}(x)
\end{aligned}
$$

Taking $x_{1}=\cdots=x_{n}=1$ this gives the sum of elements in each column (or row) of A:

$$
\sum_{\varepsilon \in E} a_{\varepsilon, \eta}=\prod_{i=1}^{n}\left(1+\eta_{i}\right)=\left\{\begin{array}{c}
2^{n} \text { if } \eta=(1, \ldots, 1) \\
0 \text { otherwise }
\end{array}\right.
$$

Now (28) implies

$$
\sum_{\varepsilon \in E} a_{\varepsilon, \eta} a_{\varepsilon, \zeta}=\left\{\begin{array}{c}
2^{n} \text { if } \eta \zeta=(1, \ldots, 1) \\
0 \text { otherwise }
\end{array}\right.
$$

But $\eta \zeta=(1, \ldots, 1)$ is equivalent to $\eta_{i}=\zeta_{i}$ for all i, that is $\eta=\zeta$. Remembering the symmetry of A, we infer that $A^{2}=2^{n} I$.

Let us consider $S f(x):=\sum_{\eta \in E} f(\eta x)$. Replacing f by $p_{\varepsilon} f$ we obtain, in view of (27),

$$
S\left(p_{\varepsilon} f\right)(x)=\sum_{\eta \in E}\left(p_{\varepsilon} f\right)(\eta x)=p_{\varepsilon}(x) \sum_{\eta} a_{\varepsilon, \eta} f(\eta x),
$$

which can be inverted by $A^{-1}=2^{-n} A$ (Lemma 7) as

$$
f(\eta x)=2^{-n} \sum_{\varepsilon \in E} a_{\varepsilon, \eta} p_{\varepsilon}(x)^{-1} S\left(p_{\varepsilon} f\right)(x)
$$

for each $\eta \in E$. By (26) applied to each $p_{\varepsilon} f$ we have

$$
S\left(p_{\varepsilon} f\right)(x)=m^{n}\left(x_{1} \cdots x_{n}\right)^{m-1} \psi^{*}\left(\widehat{\mathcal{R} p_{\varepsilon} f}(1, \cdot)\right)(x)
$$

on \mathbb{R}_{+}^{n} and the latter equations show that f can be reconstructed in each quadrant of \mathbb{R}^{n} from the 2^{n} nonlinear Radon transforms $R f, R\left(x_{i} f\right), R\left(x_{i} x_{j} f\right), \ldots, R\left(x_{1} \cdots x_{n} f\right)$.

Summarizing we have proved the following theorem. Let us recall our notation: $\widehat{R f}=\widehat{R f}(1, \lambda)$ is given by (23) with $\lambda \in \mathbb{R}^{n}, \mathcal{F}$ is the inverse Fourier transform of tempered distributions on \mathbb{R}^{n}, ψ^{*} is the pullback of distributions by $\psi(x)=$ $\left(x_{1}^{m}, \ldots, x_{n}^{m}\right), E=\{1,-1\}^{n}$ and $p_{\varepsilon}, a_{\varepsilon, \eta}$ are defined before Lemma 7 .

Theorem 8 The nonlinear Radon transform (7) is inverted by the following formulas, where $f \in \mathcal{D}\left(\mathbb{R}^{n}\right)$.
(i) if m is odd

$$
f(x)=m^{n}\left(x_{1} \cdots x_{n}\right)^{m-1}\left(\psi^{*} \mathcal{F} \widehat{R f}\right)(x)
$$

(equality of distributions on the open set $x_{1} \neq 0, \ldots, x_{n} \neq 0$);
(ii) if m is even: for $\eta \in E$,

$$
f(\eta x)=\left(\frac{m}{2}\right)^{n} \sum_{\varepsilon \in E} a_{\varepsilon, \eta} p_{\varepsilon}(x)^{-1}\left(x_{1} \cdots x_{n}\right)^{m-1}\left(\psi^{*} \widehat{\mathcal{F} \widehat{R p_{\varepsilon}} f}\right)(x)
$$

(equality of distributions on the open set $x_{1}>0, \ldots, x_{n}>0$).

References

[1] Ehrenpreis, Leon, The Radon Transform and Tensor Products, Contemp. Math. 113 (1990), 57-63.
[2] Ehrenpreis, Leon, Nonlinear Fourier Transform, Contemp. Math. 140 (1992), 39-48.
[3] Ehrenpreis, Leon, Parametric and Non Parametric Radon Transform, in 75 Years of Radon Transform, International Press 1994.
[4] Ehrenpreis, Leon, Some Nonlinear Aspects of the Radon Transform, Lectures in Applied Math. 30 (1994), 69-81.
[5] Ehrenpreis, Leon, The Universality of the Radon Transform, Oxford University Press 2003.
[6] Friedlander, F., Introduction to the Theory of Distributions, Cambridge University Press 1982.
[7] Helgason, Sigurdur, Integral Geometry and Radon transforms, Springer 2011.
[8] Hörmander, Lars, The Analysis of Linear Partial Differential Operators I, Springer-Verlag 1983.

[^0]: ${ }^{1}$ Cf. [5] p. 312, where the coefficients 16 should be replaced, I think, by 18.

