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Abstract

In this note we explain a generalization, due to Leon Ehrenpreis, of the clas-
sical Radon transform on hyperplanes. A function f on Rn can be reconstructed
from nonlinear Radon transforms, obtained by integrating f and a �nite num-
ber of multiples x�f over a family of algebraic hypersurfaces of degree m. This
follows by solving a Cauchy problem for the nonlinear Fourier transform of f .
We also give an inversion formula for this Radon transform.

1 Introduction

This expository note is an attempt at explaining the pages from Ehrenpreis�trea-
tise [5] in which he develops the nonlinear Radon and Fourier transforms he had
introduced in his previous papers [1][2][3][4]. The goal is to extend the classical
hyperplane Radon transform R0f (integrals of a function f over all hyperplanes
in Rn) to a family of algebraic submanifolds de�ned by higher degree polynomial
equations. Is the generalized transform R still injective? Can we give an inversion
formula? Unfortunately it is readily seen that R is no more injective (in general):
reconstructing f from Radon transforms needs more than Rf alone.

We shall explain here several results of the following type: there exists a �nite
number of low-degree polynomial functions ak (with a1 = 1) such that f is deter-
mined by the Radon transforms R(akf). Besides, the restriction of the R(akf)�s
to a certain subfamily of algebraic manifolds may even be su¢ cient, provided one
increases the number of polynomials ak.

After a brief reminder of the classical hyperplane transform (this Section) we shall
introduce Ehrenpreis�nonlinear Radon transform and the related nonlinear Fourier
transform, so as to get a projection slice theorem which plays a crucial role in this
study (Section 2). The reconstruction problem boils down to a Cauchy problem for
a system of partial di¤erential equations, solved in a naive way in Section 3 then,
in Section 4, by the more sophisticated tools of harmonic polynomials. In Section 5
we discuss an inversion formula for the nonlinear Radon transform.

In order to motivate the forthcoming construction, let us brie�y recall a few facts
about the classical Radon transform R0. In the Euclidean space Rn it is given by
integration of a compactly supported smooth function f 2 D(Rn) over the family of
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all hyperplanes. A hyperplane being de�ned by the equation ! � x = t where ! is a
unit vector, t a real number and � denotes the scalar product, we consider

R0f(t; !) :=

Z
!�x=t

f;

an integral with respect to the measure induced on the hyperplane by the Euclidean
measure dx of Rn. Note that (t; !) and (�t;�!) de�ne the same hyperplane, thus
R0f(t; !) = R0f(�t;�!). For any � 2 R we haveZ

Rn
ei�!�xf(x)dx =

Z
R
dt

Z
!�x=t

ei�!�xf(x) =

Z
R
ei�tR0f(t; !)dt:

This gives the projection slice theorembf(�!) = dR0f(�; !) (1)

for � 2 R, ! 2 Rn and k!k = 1.
Caution: on the left-hand side of (1) the hat denotes the n-dimensional Fourier
transform on x but on the right-hand side it denotes the 1-dimensional Fourier
transform on t. Both sides are smooth functions on R � Sn�1, rapidly decreasing
with respect to � .

Knowing the integrals of f over all hyperplanes, i.e. R0f , the Fourier transform bf
is therefore known and R0 is easily inverted as follows. Writing the Fourier inversion
formula for f in spherical coordinates we have

f(x) = (2�)�n
Z
k!k=1

d!

Z 1

0
e�i�!�xdR0f(�; !)�n�1d�

where d! is the Euclidean measure on the unit sphere of Rn. In order to use Fourier
analysis in one variable we can replace

R1
0 by

R
R : indeed

dR0f(�; !) = dR0f(��;�!)
and, changing � into �� then ! into �!, we obtain

f(x) = C

Z
k!k=1

d!

Z
R
e�i�!�xdR0f(�; !)j� jn�1d�

with C := 1
2 (2�)

�n. Let F (t; !) be a smooth function on R�Sn�1, rapidly decreasing
with respect to t, and let the operator j@tjn�1 be de�ned by�

j@tjn�1F
�b(�; !) = bF (�; !)j� jn�1:

Thus j@tjn�1 = (�1)k@n�1t if n = 2k+1 is odd; if n is even j@tjn�1 is the composition
of @n�1t and a Hilbert integral operator (see Helgason [7] p. 22). We infer the
following inversion formula

f = CR�0j@tjn�1R0f (2)

where the dual transform R�0 is de�ned by

R�0F (x) :=

Z
k!k=1

F (! � x; !)d!

(integration over the set of all hyperplanes containing x).
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2 A Nonlinear Radon Transform

2.1 Integration on Hypersurfaces

Let ' : 
 ! R be a smooth function on an open subset 
 of the Euclidean space
Rn. A convenient way to introduce our Radon transform is to consider �rst, for
f 2 D(
) (a smooth function with compact support contained in 
) and t 2 R ,

f'(t) :=

Z
'(x)<t

f(x)dx

where dx is the Lebesgue measure of Rn. Let m and M denote the lower and upper
bounds of '(x) for x 2 supp f ; then f'(t) = 0 for t � m and f'(t) =

R

 f(x)dx for

t �M .
The example 
 = R and '(x) = x3 gives f'(t) = F (t1=3) with F (u) =

R u
�1 f(x)dx;

thus f' is not necessarily smooth. However the following result holds true.

Proposition 1 Assume the gradient '0 of ' never vanishes on 
. For f 2 D(
),
f' is then a smooth function on R and we may de�ne

R'f(t) := (f')
0 (t) = @t

Z
'(x)<t

f(x)dx: (3)

(i) R'f is a smooth function on R and suppR'f � [m;M ].
(ii) For any u 2 C1(R)Z

Rn
u('(x))f(x)dx =

Z
R
u(t)R'f(t)dt: (4)

(iii) Let dSt be the Euclidean measure on the hypersurface St := fx 2 
j'(x) = tg.
Then

R'f(t) =

Z
St

f(x)
1

k'0(x)kdSt(x): (5)

Formula (5) gives the geometrical meaning of R'f as an integral of f over the level
hypersurface '(x) = t; we may write it for short as

R'f(t) =

Z
'(x)=t

f: (6)

According to (4) it may also be viewed as R'f(t) = h'��t; fi where '��t is the
pullback by ' of the Dirac measure �t of R at t (see Friedlander [6] Section 7.2 or
Hörmander [8] Section 6.1).
Proof. (i) and (iii) Given a 2 
 we have '0(a) 6= 0 thus (for instance) @n'(a) 6= 0.
By the inverse function theorem there exists an open neighborhood U of a such that
the map x = (x0; xn) 7! y = (x0; '(x)) is a di¤eomorphism of U onto V � I, where
x0 = (x1; :::; xn�1), V is an open neighborhood of (a1; :::; an�1) in Rn�1 and I is
an open interval containing '(a). Let y = (y0; yn) 7! x = (y0;  (y0; yn)) denote the
inverse map. Then dy = j@n'(x)jdx and, assuming supp f � U , we have

f'(t) =

Z
'(x)<t

f(x)dx =

Z
yn<t

f

j@n'j
(y0;  (y0; yn))dy

0dyn:
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The yn integral actually runs over [a; b]\] �1; t[ where [a; b] is compact and con-
tained in I. Thus f' is a smooth function of t 2 R and

R'f(t) = (f')
0 (t) =

Z
V

f

j@n'j
(y0;  (y0; t))dy0 for t 2 I

= 0 for t =2 I

is smooth on R.
Besides, '(y0;  (y0; t)) = t for y0 2 V and t 2 I therefore

@i'(y
0;  (y0; t)) + @n'(y

0;  (y0; t))@i (y
0; t) = 0

for i = 1; :::; n� 1. It follows that k'0k = j@n'j
�
1 +

Pn�1
1 (@i )

2
�1=2

and, for t 2 I,

R'f(t) =

Z
V

f

k'0k(y
0;  (y0; t))

 
1 +

n�1X
1

�
@i (y

0; t)
�2!1=2

dy0

=

Z
St

f

k'0k(x)dSt(x);

the hypersurface integral being computed by means of the parameters y0. The latter
equality also holds for t =2 I (both sides vanish) and this proves (i) and (iii) for
supp f � U . The general case follows by partition of unity.
(ii) Since suppR'f � [m;M ] we haveZ

R
u(t)R'f(t)dt =

Z M

m
u(t) (f')

0 (t)dt = [u(t)f'(t)]
M
m �

Z M

m
u0(t)f'(t)dt

= u(M)

Z


f(x)dx�

Z
'(x)<t<M

u0(t)f(x)dtdx:

The latter integral isZ


f(x)dx

Z M

'(x)
u0(t)dt =

Z


f(x)(u(M)� u('(x)))dx

and (4) follows. �

2.2 Nonlinear Radon and Fourier Transforms

We now wish to extend the classical Radon transform of Section 1, replacing the
hyperplanes ! � x = t by level hypersurfaces of homogeneous polynomials of given
degree m � 1 in Rn. We write such polynomials as

� � p(x) :=
X
j�j=m

��x
�

where x 2 Rn and, in multi-index notation, � = (�1; :::; �n) 2 Nn, j�j =
Pn
1 �i,

x� = x�11 � � �x�nn and �� 2 R.
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It is easily checked that the number of terms in
P
j�j=m is the binomial coe¢ cient

N = N(m;n) = (m+n�1)!
m!(n�1)! . Indeed let us consider

nY
j=1

1

1� txj
=

nY
j=1

�
1 + txj + t

2x2j + � � �
�
:

Expanding the product we see that the coe¢ cient of tm is
P
j�j=m x

�, therefore
equals N(m;n) when all xi�s are 1. Thus N(m;n) is the coe¢ cient of tm in the
expansion of (1� t)�n and the result follows. Note that N > n for n � 2 and m � 2.

Let � 2 RN , � 6= 0, and 
 := fxj� � p(x) 6= 0g. By Euler�s identity for the
homogeneous function '(x) = � � p(x) on Rn the gradient '0 does not vanish on 
.
The level surface � � p(x) = t is thus a smooth hypersurface of Rn for t 2 R, t 6= 0.
The nonlinear Radon transform of a test function f 2 D(
) is then de�ned, in
the notation of (6), by

Rf(t; �) := R'f(t) =

Z
��p(x)=t

f: (7)

For m = 1 we have N = n and R is the classical hyperplane Radon transform R0.

Properties of R.
(i) By Proposition 1, for f 2 D(
) and � 6= 0, Rf(:; �) is a compactly supported
smooth function of t on R. By (4)Z

Rn
F (� � p(x); �) f(x)dx =

Z
R
F (t; �)Rf(t; �)dt

for � 6= 0 and any F continuous on R� RN . In particular, for � 2 R,Z
Rn
ei���p(x)f(x)dx =

Z
R
ei�tRf(t; �)dt = cRf(�; �) = cRf(1; ��) (8)

is the one-dimensional Fourier transform of Rf with respect to the variable t. This
extends the projection slice theorem (1).
(ii) The left-hand side of (8) is well-de�ned for all f 2 D(Rn) (without assuming
supp f � 
), and extends to an entire function of (�; �) on C � CN . This suggests
de�ning cRf(�; 0) = R f , that is Rf(t; 0) = �RRn f(x)dx� �(t) where � is the Dirac
measure at the origin of R.
Actually, the restrictive assumptions supp f � 
, t 6= 0, � 6= 0 may be left out in
the sequel, as we shall work with cRf rather than Rf .
(iii) From (8) it follows that

@��
cRf(�; �) = i�

Z
Rn
ei���p(x)x�f(x)dx = i� \R (x�f)(�; �); (9)

therefore
@��Rf(t; �) = � @tR (x

�f) (t; �) (10)

for f 2 D(
), � 6= 0 and � 2 Nn, j�j = m.
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(iv) Note that, for m even, Rf = 0 whenever f is an odd function: R is not an
injective map and, in this case, f cannot be reconstructed from Rf alone. We shall
see in the next sections how to circumvent this di¢ culty.

Let us introduce the nonlinear Fourier transform of f de�ned, for all f 2
D(Rn), by ef(�; �) := Z

Rn
ei(��x+��p(x))f(x)dx , � 2 Rn , � 2 RN : (11)

It extends to an entire function of (�; �) 2 Cn�CN . As a function on Rn�RN it is
bounded by

R
Rn jf(x)jdx and, for �xed �, it is rapidly decreasing with respect to �.

On the one hand ef(�; 0) = bf(�) is the classical n-dimensional Fourier transform
of f ; on the other hand ef(0; ��) = cRf(�; �) is the 1-dimensional Fourier transform
of Rf : ef(�; �)

. &ef(�; 0) = bf(�) ef(0; �) = cRf(1; �):
Reconstructing ef(�; �) from ef(0; �) would therefore allow to reconstruct f from Rf .
For this we shall consider partial di¤erential equations satis�ed by ef .
2.3 Partial Di¤erential Equations

Taking derivatives of (11) under the integral sign we get, for j = 1; :::; n and � 2 Nn,
j�j = m,

@�j
ef(�; �) = i

Z
Rn
ei(��x+��p(x))xjf(x)dx = i(̂xjf)(�; �) (12)

@��
ef(�; �) = i

Z
Rn
ei(��x+��p(x))x�f(x)dx = i(̂x�f)(�; �): (13)

Thus ef satis�es the system of N linear partial di¤erential equations on Rn � RN

im�1@��
ef = @��

ef for � 2 Nn; j�j = m: (14)

For any �; �; ; � 2 Nn of length m such that x�x� = xx� we infer that, as a
function of �, ef satis�es the Plücker equations�

@��@�� � @�@��
� ef = 0: (15)

Given �; �, all such multi-indices ; � are obtained as  = � � ", � = � + ", where
" = ("1; :::; "n) 2 Zn satis�es ��j � "j � �j for j = 1; :::; n and

Pn
1 "j = 0.

Example. For m = n = 2 we have � � p(x) = �1x
2
1 + �2x

2
2 + �3x1x2 (here N = 3)

and
i@�1

ef = @2�1
ef , i@�2 ef = @2�2

ef , i@�3 ef = @�1@�2
ef:

The identity (x1x2)
2 = x21x

2
2 leads to he hyperbolic equation @

2
�3
ef = @�1@�2

ef .
6



3 A Cauchy Problem

Given f 2 D(Rn) let us now try to reconstruct ef(�; �) from ef(0; �) = cRf(1; �) by
solving a Cauchy problem for the system (14) with data on � = 0. In order to
achieve this goal we shal l of course need more than cRf(1; �) : let us recall thatef(0; �) = 0 for m even and f odd, though ef may be not identically zero. It should
be noted that ef(0; �) satis�es the Plücker equations (15), but this fact will not be
taken into account here (see Remark below however).

Since ef is an entire function we have
ef(�; �) = X

�2Nn
@��
ef(0; �)��

�!
;

an absolutely convergent series for all � 2 Cn and � 2 CN .
To work it out we shall only need the derivatives @�� ef(0; �) for j�j < m; the

higher order derivatives will be given by (14). More precisely, @�� ef = ij�jgx�f for all
� by (12), and equals im�1@�� ef by (14) if j�j = m. For any � 2 Nn we may write
j�j = qm+ r with q; r 2 N, 0 � r < m, and factorize @�� as

@�� = @�1� � � � @�q� @

�

with �1; :::�q;  2 Nn, j�1j = � � � = j�qj = m and jj = r; this factorization is not
unique. It follows that

@��
ef = ij�j�q@��1 � � � @��q (̂x

f)

and ef(�; �) = X
�2Nn

ij�j�q@��1 � � � @��q (̂x
f)(0; �)

��

�!

(with q; �1; :::; �q;  depending on � in the sum).

Remembering (̂xf)(0; �) = \R(xf)(1; �) for � 6= 0, we see that ef is determined
by the nonlinear Radon transforms of all functions xf for  2 Nn and jj < m.
Their number is

Pm�1
k=0 N(k; n) = N(m � 1; n + 1) = m

nN(m;n) (induction on m).
In particular if R(xf) = 0 for all  with jj < m, then f = 0.

Example. For m = n = 2 (Section 2.3), @�1�1 @
�2
�2
factorizes as powers of @2�1 and @

2
�2
,

possibly composed with @�1 or @�2 or @�1@�2 according to the parity of �1 and �2.
Gathering together similar terms the above result reads

ef(�; �) = C(D1)C(D2) ef + S(D1)S(D2)D3 ef+
+ i�1S(D1)C(D2)(̂x1f) + i�2C(D1)S(D2)(̂x2f) (16)

where

D1 = i�21@�1 , D2 = i�22@�2 , D3 = i�1�2@�3

C(z) =

1X
k=0

zk

(2k)!
, S(z) =

1X
k=0

zk

(2k + 1)!
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and, in the right-hand side of (16), ef , (̂x1f), (̂x2f) are evaluated at (0; �). Thus the
knowledge of the three Radon transforms Rf , R (x1f) and R (x2f) determines ef .
Remark. The Plücker equations (15), here @2�3

ef = @�1@�2
ef , haven�t been taken

into account. They imply @2k�3
ef = (@�1@�2)

k ef , @2k+1�3
ef = (@�1@�2)

k @�3
ef for k 2 N,

hence the Taylor expansion

ef(0; �1; �2; �3) =X
k2N

@k�3
ef(0; �1; �2; 0)�k3

k!

= C (E) ef(0; �1; �2; 0) + �3S (E) (@�3 ef)(0; �1; �2; 0) (17)

where E = �23@�1@�2 , and similarly

@�3
ef(0; �1; �2; �3) = �3@�1@�2S (E)

ef(0; �1; �2; 0) + C (E) (@�3 ef)(0; �1; �2; 0): (18)
Combining (16) (17) and (18) it follows that ef can be reconstructed from ef , @�3 ef ,
(̂x1f), @�3 (̂x1f), (̂x2f) and @�3 (̂x2f) at (0; �1; �2; 0) only.

Remembering (13) @�3 ef = i ^(x1x2f), these 6 functions can be replaced by ef , (̂x1f),
(̂x2f), ^(x1x2f), ^�x21x2f� and ^�x1x22f�, that is cRf , \R(x1f),..., \R(x1x22f) evaluated
at (1;�1; �2; 0). In other words the integrals of f , x1f ,..., x1x22f over the conics
�1x

2
1 + �2x

2
2 = t will determine f . A stronger (and more general) result is given in

the next section.

4 Harmonic Polynomials and the Cauchy Problem

Two chapters of [5] are devoted to a general theory of harmonic polynomials which,
when applied to nonlinear Radon transforms, leads to a re�ned version of the results
of Section 3. We shall only present here a simpli�ed approach to the harmonic
polynomials relevant to our problem.
Notation. All polynomials considered here have complex coe¢ cients. Let us order
theN monomials (x�)j�j=m as x

m
1 ; :::; x

m
n �rst, then

�
x�
�
�2B where B is the set of the

N � n remaining multi-indices of length m. In accordance with this we replace our
previous notation � = (��)j�j=m 2 RN by (�; �) 2 Rn � RN�n with � = (�1; :::; �n)
and � = (��)�2B ; the former

P
� ��x

� is replaced by
Pn
j=1 �jx

m
j +

P
�2B ��x

� .

Let (x; p; q) 2 Rn+N denote dual variables to (�; �; �), with x = (x1; :::; xn) 2 Rn,
p = (p1; :::; pn) 2 Rn and q = (q�)�2B 2 R

N�n.
In this new notation the partial di¤erential equations (14) become�
�i@�j

�m ef = �i@�j ef , (�i@�)� ef = �i@�� ef for j = 1; :::; n and � 2 B: (19)

They are dual to

xmj F = pjF , (x� � q�)F = 0 for j = 1; :::; n and � 2 B; (20)

where F is the tempered distribution on Rn+N corresponding to ef via the Fourier
transform on Rn+N (being smooth and bounded, ef is tempered on Rn+N ).
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Let us introduce the following N polynomials on Rn � RN�n = RN :

uj(x; q) := xmj , u�(x; q) := x� � q� for j = 1; :::; n and � 2 B: (21)

The system (20) implies that the support of F is contained in the closed set V of
Rn+N de�ned by the N equations

V =
�
(x; p; q) 2 Rn � Rn � RN�njuj(x; q) = pj ; u�(x; q) = 0 ; 1 � j � n; � 2 B

	
:

Being the graph of a map x 7! (p; q), V is a n-dimensional submanifold of Rn+N .

De�nition 2 A polynomial function h(x; q) on Rn � RN�n is called harmonic if

uj(@x; @q)h = 0 , u�(@x; @q)h = 0 for j = 1; :::; n and � 2 B:

It is called homogeneous of degree d if h(tx; tmq) = tdh(x; q) for all t 2 R (thus
each xj has degree 1 and each q� has degree m).

Proposition 3 Let D :=
P
�2B q�@

�
x . Then u�(@x; @q) = � eD � @q� � e�D.

The space of harmonic polynomials is mn-dimensional. Its elements are given by

h = eDf

where f is an arbitrary polynomial of the following form

f(x) =
X
�2Nn

a�x
� with 0 � �j � m� 1 for j = 1; :::; n and a� 2 C:

Besides h = eDf is homogeneous of degree d (in the sense of De�nition 4) if and
only if f is homogeneous of degree d.

Proof. Since u�(@x; @q) = @�x � @q� we have [D;u�(@x; @q)] = @�x and
h
D; @�x

i
= 0,

thus (adD)2 u�(@x; @q) = 0 and

e�Du�(@x; @q)e
D = e� adDu�(@x; @q) = (1� adD)u�(@x; @q)
= u�(@x; @q)� @�x = � @q� :

[This proof may also be written without any Lie formalism, by computing the deriv-
ative with respect to t of e�tDu�(@x; @q)etD.]
Since eD is a linear isomorphism of the space of polynomials onto itself, a polynomial
h(x; q) is harmonic if and only if

@mxjh = 0 , @q�
�
e�Dh

�
= 0 for j = 1; :::; n and � 2 B:

The latter equations imply h = eDf for some polynomial f in the x variables. Sinceh
D; @mxj

i
= 0 the former equations imply @mxjf = 0 for j = 1; :::; n whence our claim

about f .
The operator D preserves homogeneity in (x; q) and the last statement follows. �
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Examples. Let us write down, as an example, a basis of homogeneous harmonic
polynomials for n = 2 and m = 4. Here N = 5, � = (�1; �2) with 0 � �j � 3,
�1 + �2 = 4, q = (q13; q22; q31) and D =

P
q�1�2@

�1
x1@

�2
x2 . The 16 monomials f(x) =

xa1x
b
2, 0 � a � 3, 0 � b � 3, make up a basis of the relevant polynomials f . Since

the degree of f is 6 at most we have D2f = 0 and the 16 corresponding harmonic
polynomials are h = f +Df , that is1

1 , x1 , x2 , x21 , x1x2 , x
2
2 , x

3
1 , x

2
1x2 , x1x

2
2 , x

3
2 ,

x31x2 + 6q31 , x
2
1x
2
2 + 4q22 , x1x

3
2 + 6q13 ,

x31x
2
2 + 12q22x1 + 12q31x2 , x

2
1x
3
2 + 12q13x1 + 12q22x2 ,

x31x
3
2 + 18q13x

2
1 + 36q22x1x2 + 18q31x

2
2 .

For m = n = 2 (already considered) we have N = 3, q 2 R, and the corresponding
basis of harmonic polynomials is

1 , x1 , x2 , x1x2 + q:

More generally, let A denote the set of all � 2 Nn such that 0 � �j � m� 1 for
j = 1; :::; n. By Proposition 5 the h� := eDx�, � 2 A, make up a basis of the space
of harmonic polynomials.

Proposition 4 For any polynomial P (x; q) on Rn � RN�n there exists a family of
mn polynomials Q�, � 2 A, on RN such that

P (x; q) =
X
�2A

Q�(u1(x; q); :::; uN (x; q))h�(x; q);

where u1; :::; uN denote the polynomials de�ned by (21).

Proof. Let ha; bi = a(@)b(0) be the Fischer inner product on the space of polynomi-
als on Rn�RN�n. Then h is harmonic if and only if uk(@x; @q)h = 0 for k = 1; :::; N ,
i.e. hauk; hi = 0 for all polynomials a. The space of harmonic polynomials is thus
the orthogonal complement of the ideal

nPN
k=1 ak(x; q)uk(x; q)

o
generated by the

uk�s (where the ak�s are arbitrary polynomials).
A given P (x; q) now has a unique decomposition as

P = h+
NX
k=1

akuk

with h harmonic. Separating homogeneous components we may assume P is homo-
geneous of degree d (in the sense of De�nition 2). Since uk is homogeneous, each
homogeneous component of a harmonic polynomial is harmonic. We may therefore
assume h and all akuk homogeneous of degree d, therefore ak is homogeneous of
degree d �m. Writing similar decompositions for each ak the result easily follows.
�

1Cf. [5] p. 312, where the coe¢ cients 16 should be replaced, I think, by 18.
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Example. Form = n = 2 the generators and harmonic polynomials are respectively

u1 = x21 , u2 = x22 , u3 = x1x2 � q
h0 = 1 , h1 = x1 , h2 = x2 , h3 = x1x2 + q

and the �rst non-trivial examples of decomposition in Proposition 4 are:

2x1x2 = u3h0 + h3 , 2q = �u3h0 + h3
x1q = �u3h1 + u1h2 , x2q = �u3h2 + u2h1

q2 = u1u2h0 � u3h3 , 2x1x2q = (2u1u2 � u23)h0 � u3h3:

Replacing xj by �i@�j and q� by �i@�� we infer from Proposition 4 an equality

of di¤erential operators. Applying them to ef we obtain
P (�i@�;�i@�) ef =X

�2A
Q�

��
�i@�j

�m
; (�i@�)� � (�i@�� )

�
h� (�i@�;�i@�) ef

=
X
�2A

Q� (�i@�; 0)h� (�i@�;�i@�) ef
in view of (19) and the commutativity of di¤erential operators. In particular all
derivatives @��@

�
�
ef may be written in this form with polynomials Q� depending on

�; � whence, by Taylor�s formula on the variables (�; �),

ef(�; �; �) =XQ���(�i@�; 0)h� (�i@�;�i@�) ef(0; �; 0)��
�!

��

�!
(22)

where
P

runs over all � 2 Nn, � 2 NN�n and � 2 A. Remembering (12)(13)

�i@�j ef =gxjf , �i@�� ef = gx�f we have h� (�i@�;�i@�) ef = (h�(x; q)f)ewith q� = x�

for � 2 B.

Lemma 5 For all � there exists a positive integer C� such that, when replacing
each q� by x� for � 2 B,

h�(x; q) = h�(x; (x
�)�2B) = C�x

�:

Proof. For � 2 Nn we have

Dx� =
X
�2B

q�@
�
xx

� =
X
�2B

�!

(�� �)!q�x
���

D2x� =
X
�;2B

�!

(�� � � )!q�qx
����

etc (the coe¢ cients being 0 unless � � �, resp. � +  � �). When replacing q� by
x�, q by x etc, the polynomials Dx�, D2x� etc thus become x� times a positive
integer coe¢ cient. The same holds for h� = eDx�, whence the lemma. �
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Going back to (22) we have h� (�i@�;�i@�) ef = C� gx�f and we conclude that,
for (�; �; �) 2 Rn � Rn � RN�n,

ef(�; �; �) = X
�;�;�

C�Q���(�i@�; 0)(̂x�f)(0; �; 0)
��

�!

��

�!
:

Therefore the restriction to all (0; �; 0) of the mn functions gx�f , � 2 A, determines
f . In other words, the Cauchy problem for (19) is well-posed with the Cauchy data
h� (�i@�;�i@�) ef = C� gx�f on the n-plane of Rn+N de�ned by � = � = 0.

In terms of Radon transforms we obtain the following result.

Theorem 6 A function f 2 D(Rn) is uniquely determined by the mn nonlinear
Radon transforms R (x�f) (t; �; 0) (with � 2 Nn, 0 � �j < m, t 2 R, � 2 Rnn f0g),
that is by the integrals of each x�f on the hypersurfaces

�1x
m
1 + � � �+ �nxmn = t:

5 Inversion Formulas

Let us now look for an inversion formula for the nonlinear Radon transform. The
nonlinear Fourier transform ef is greatly overdetermined, with n+N variables (�; �)
instead of n for f . As in Section 3 we shall restrict ef to � = 0 and, assuming
the monomials x� are ordered as xm1 ; :::; x

m
n �rst, followed by the other x��s, it

turns out that (as in the �nal remark of Section 3) we can also restrict to � =
(�1; :::; �n; 0; :::; 0), written as � 2 Rn for short. Then

ef(0; ��) = Z
Rn
ei�

Pn
1 �jx

m
j f(x)dx = cRf(�; �) with � 2 R; � 2 Rn: (23)

5.1 First Case: m odd

Let U denote the dense open subset of Rn de�ned by xj 6= 0 for all j. For m odd
the map  : x 7! y = xm := (xm1 ; :::; x

m
n ) is a di¤eomorphism of U onto itself. Then

cRf(�; �) = Z
Rn
ei���yg(y)dy = bg(��) (24)

with � � y =
Pn
1 �jyj and

g(y) := m�njy1 � � � ynj(1=m)�1f(y1=m) , y 2 Rn:

As above bg denotes the classical n-dimensional Fourier transform and cRf is the
1-dimensional Fourier transform with respect to t.

The change x 7! y thus reduces the nonlinear Radon transform R to the linear
one considered in the introduction: Rf(t; �) = R0g(t; �). But g is not necessarily
smooth, bg(�) = cRf(1; �) is not necessarily rapidly decreasing and the inversion
formula (2) may become invalid here. However g is integrable on Rn and vanishes
outside a compact set, therefore de�nes a tempered distribution. Denoting by F the

12



inverse Fourier transform for tempered distributions on Rn we have g = Fbg hence,
for any u 2 D(U),Z

U
f(x)u(xm)dx =

Z
U
g(y)u(y)dy = hFbg(y); u(y)i

=


( �Fbg) (x); jdet 0(x)ju( (x)�

=


mn(x1 � � �xn)m�1 ( �Fbg) (x); u(xm)� ;

using the pullback by  of the distribution Fbg on U (cf. [6] p. 80). The absolute
value may be skipped here since m � 1 is even and det 0 > 0. Therefore, for
f 2 D(Rn),

f(x) = mn(x1 � � �xn)m�1( �FcRf(1; �))(x); (25)

an equality of distributions on U .

5.2 Second Case: m even

The above map  : x 7! y is no more a bijection: given y with all yj > 0, the

equations y = xm now have 2n solutions x =
�
�y1=m1 ; :::;�y1=mn

�
.

For x; y 2 Rn we write xy := (x1y1; :::; xnyn). Let E := f1;�1gn denote the set
of all " = ("1; :::; "n) with "j = �1 and

Rn+ := fx 2 Rn j xj > 0 for 1 � j � ng :

Viewing the integral (23) as a sum of integrals over the quadrants "Rn+, " 2 E, we
obtain, by the change of variables x 7! y with xj = "jy

1=m
j , yj > 0, on "Rn+,

cRf(�; �) = ef(0; ��) = Z
Rn+
ei���yg(y)dy

with � 2 R, � 2 Rn and, for y 2 Rn+,

g(y) := m�n (y1 � � � yn)(1=m)�1
X
"2E

f("y1=m):

Let H denote the Heaviside function H(y) = 1 if y 2 Rn+, H(y) = 0 otherwise.
Equation (24) is now replaced by

cRf(�; �) = Z
Rn
ei���yH(y)g(y)dy = cHg(��):

Again Hg is integrable and vanishes outside a compact set, hence tempered on Rn,
and as above the Fourier inversion Hg = F cHg implies the following equality of
distributions on Rn+X

"2E
f("x) = mn (x1 � � �xn)m�1 ( �FcRf(1; �))(x): (26)

13



This gives f if its support is contained in some quadrant "Rn+. Otherwise we must
separate the components f("x), which can be achieved by replacing f with x�f for
suitably chosen ��s as follows.

With each " = ("1; :::; "n) 2 E we associate the monomial

p"(x) := xi1 � � �xik

where 1 � i1 < � � � < ik � n is the (ordered) set of indices i such that "i = �1; for
instance, n = 4 and " = (�1; 1;�1; 1) yield p"(x) = x1x3. The map " 7! p" is a
bijection of E onto the set of divisors of x1 � � �xn.

Let "; � 2 E. A minus sign occurs in p"(�x) = p"(�1x1; :::; �nxn) each time there
is a factor xi, that is "i = �1, and the corresponding �i is �1. Therefore

p"(�x) = a";�p"(x) with a";� := (�1)k(";�); (27)

where k("; �) denotes the number of indices i such that "i = �i = �1.
Example. For n = 2 the matrix (a";�) is given by the table:

p" 1 x1 x2 x1x2
" ++ �+ +� ��

�
++ 1 1 1 1
�+ 1 �1 1 �1
+� 1 1 �1 �1
�� 1 �1 �1 1

Our inversion formula for R will be inferred from the following combinatorial
lemma.

Lemma 7 The set E = f1;�1gn being provided with some ordering, the 2n � 2n
matrix A = (a";�)";�2E is symmetric and A

2 = 2nI (where I is the unit matrix).

Proof. The symmetry is clear by the de�nition of k("; �).
For "; �; � 2 E we have k("; ��) = k("; �) + k("; �) since "i = �i�i = �1 is equivalent
to "i = �1 and �i = �1, �i = 1 or (exclusive or) "i = �1 and �i = 1, �i = �1.
Therefore

a";�a";� = a";�� : (28)

Besides, for �xed � 2 E,
nY
i=1

(1 + �ixi) = 1 +
X
i

�ixi +
X
i<j

�i�jxixj + � � �+ �1 � � � �nx1 � � �xn

=
X
"2E

p"(�x) =
X
"2E

a";�p"(x):

Taking x1 = � � � = xn = 1 this gives the sum of elements in each column (or row) of
A: X

"2E
a";� =

nY
i=1

(1 + �i) =

�
2n if � = (1; :::; 1)
0 otherwise.
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Now (28) implies X
"2E

a";�a";� =

�
2n if �� = (1; :::; 1)
0 otherwise.

But �� = (1; :::; 1) is equivalent to �i = �i for all i, that is � = �. Remembering the
symmetry of A, we infer that A2 = 2nI. �

Let us consider Sf(x) :=
P
�2E f(�x). Replacing f by p"f we obtain, in view of

(27),

S(p"f)(x) =
X
�2E

(p"f) (�x) = p"(x)
X
�

a";�f(�x);

which can be inverted by A�1 = 2�nA (Lemma 7) as

f(�x) = 2�n
X
"2E

a";�p"(x)
�1S(p"f)(x)

for each � 2 E. By (26) applied to each p"f we have

S(p"f)(x) = mn (x1 � � �xn)m�1  �(F[Rp"f(1; �))(x)

on Rn+ and the latter equations show that f can be reconstructed in each quadrant of
Rn from the 2n nonlinear Radon transforms Rf , R(xif), R(xixjf),..., R(x1 � � �xnf).

Summarizing we have proved the following theorem. Let us recall our notation:cRf = cRf(1; �) is given by (23) with � 2 Rn, F is the inverse Fourier transform
of tempered distributions on Rn,  � is the pullback of distributions by  (x) =
(xm1 ; :::; x

m
n ), E = f1;�1g

n and p", a";� are de�ned before Lemma 7.

Theorem 8 The nonlinear Radon transform (7) is inverted by the following for-
mulas, where f 2 D(Rn).
(i) if m is odd

f(x) = mn(x1 � � �xn)m�1( �FcRf)(x)
(equality of distributions on the open set x1 6= 0; :::; xn 6= 0);
(ii) if m is even: for � 2 E,

f(�x) =
�m
2

�nX
"2E

a";�p"(x)
�1(x1 � � �xn)m�1( �F[Rp"f)(x)

(equality of distributions on the open set x1 > 0; :::; xn > 0).
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