Nonlinear Radon and Fourier Transforms

François Rouvière

Université de Nice Laboratoire Dieudonné, UMR 7351

May 16, 2015

Abstract

In this note we explain a generalization, due to Leon Ehrenpreis, of the classical Radon transform on hyperplanes. A function f on \mathbb{R}^n can be reconstructed from nonlinear Radon transforms, obtained by integrating f and a finite number of multiples $x^{\alpha}f$ over a family of algebraic hypersurfaces of degree m. This follows by solving a Cauchy problem for the nonlinear Fourier transform of f. We also give an inversion formula for this Radon transform.

1 Introduction

This expository note is an attempt at explaining the pages from Ehrenpreis' treatise [5] in which he develops the nonlinear Radon and Fourier transforms he had introduced in his previous papers [1][2][3][4]. The goal is to extend the classical hyperplane Radon transform $R_0 f$ (integrals of a function f over all hyperplanes in \mathbb{R}^n) to a family of algebraic submanifolds defined by higher degree polynomial equations. Is the generalized transform R still injective? Can we give an inversion formula? Unfortunately it is readily seen that R is no more injective (in general): reconstructing f from Radon transforms needs more than Rf alone.

We shall explain here several results of the following type: there exists a finite number of low-degree polynomial functions a_k (with $a_1 = 1$) such that f is determined by the Radon transforms $R(a_k f)$. Besides, the restriction of the $R(a_k f)$'s to a certain subfamily of algebraic manifolds may even be sufficient, provided one increases the number of polynomials a_k .

After a brief reminder of the classical hyperplane transform (this Section) we shall introduce Ehrenpreis' nonlinear Radon transform and the related nonlinear Fourier transform, so as to get a *projection slice theorem* which plays a crucial role in this study (Section 2). The reconstruction problem boils down to a Cauchy problem for a system of partial differential equations, solved in a naive way in Section 3 then, in Section 4, by the more sophisticated tools of harmonic polynomials. In Section 5 we discuss an inversion formula for the nonlinear Radon transform.

In order to motivate the forthcoming construction, let us briefly recall a few facts about the classical Radon transform R_0 . In the Euclidean space \mathbb{R}^n it is given by integration of a compactly supported smooth function $f \in \mathcal{D}(\mathbb{R}^n)$ over the family of all hyperplanes. A hyperplane being defined by the equation $\omega \cdot x = t$ where ω is a unit vector, t a real number and \cdot denotes the scalar product, we consider

$$R_0f(t,\omega) := \int_{\omega \cdot x = t} f,$$

an integral with respect to the measure induced on the hyperplane by the Euclidean measure dx of \mathbb{R}^n . Note that (t, ω) and $(-t, -\omega)$ define the same hyperplane, thus $R_0 f(t, \omega) = R_0 f(-t, -\omega)$. For any $\tau \in \mathbb{R}$ we have

$$\int_{\mathbb{R}^n} e^{i\tau\omega\cdot x} f(x) dx = \int_{\mathbb{R}} dt \int_{\omega\cdot x=t} e^{i\tau\omega\cdot x} f(x) = \int_{\mathbb{R}} e^{i\tau t} R_0 f(t,\omega) dt.$$

This gives the projection slice theorem

$$\widehat{f}(\tau\omega) = \widehat{R_0 f}(\tau, \omega) \tag{1}$$

for $\tau \in \mathbb{R}$, $\omega \in \mathbb{R}^n$ and $\|\omega\| = 1$.

Caution: on the left-hand side of (1) the hat denotes the *n*-dimensional Fourier transform on x but on the right-hand side it denotes the 1-dimensional Fourier transform on t. Both sides are smooth functions on $\mathbb{R} \times \mathbb{S}^{n-1}$, rapidly decreasing with respect to τ .

Knowing the integrals of f over all hyperplanes, i.e. $R_0 f$, the Fourier transform \hat{f} is therefore known and R_0 is easily inverted as follows. Writing the Fourier inversion formula for f in spherical coordinates we have

$$f(x) = (2\pi)^{-n} \int_{\|\omega\|=1} d\omega \int_0^\infty e^{-i\tau\omega \cdot x} \widehat{R_0 f}(\tau, \omega) \tau^{n-1} d\tau$$

where $d\omega$ is the Euclidean measure on the unit sphere of \mathbb{R}^n . In order to use Fourier analysis in one variable we can replace \int_0^∞ by $\int_{\mathbb{R}}$: indeed $\widehat{R_0f}(\tau,\omega) = \widehat{R_0f}(-\tau,-\omega)$ and, changing τ into $-\tau$ then ω into $-\omega$, we obtain

$$f(x) = C \int_{\|\omega\|=1} d\omega \int_{\mathbb{R}} e^{-i\tau\omega \cdot x} \widehat{R_0 f}(\tau, \omega) |\tau|^{n-1} d\tau$$

with $C := \frac{1}{2} (2\pi)^{-n}$. Let $F(t, \omega)$ be a smooth function on $\mathbb{R} \times \mathbb{S}^{n-1}$, rapidly decreasing with respect to t, and let the operator $|\partial_t|^{n-1}$ be defined by

$$(|\partial_t|^{n-1}F)(\tau,\omega) = \widehat{F}(\tau,\omega)|\tau|^{n-1}.$$

Thus $|\partial_t|^{n-1} = (-1)^k \partial_t^{n-1}$ if n = 2k+1 is odd; if n is even $|\partial_t|^{n-1}$ is the composition of ∂_t^{n-1} and a Hilbert integral operator (see Helgason [7] p. 22). We infer the following inversion formula

$$f = CR_0^* |\partial_t|^{n-1} R_0 f \tag{2}$$

where the *dual transform* R_0^* is defined by

$$R_0^*F(x) := \int_{\|\omega\|=1} F(\omega \cdot x, \omega) d\omega$$

(integration over the set of all hyperplanes containing x).

2 A Nonlinear Radon Transform

2.1 Integration on Hypersurfaces

Let $\varphi : \Omega \to \mathbb{R}$ be a smooth function on an open subset Ω of the Euclidean space \mathbb{R}^n . A convenient way to introduce our Radon transform is to consider first, for $f \in \mathcal{D}(\Omega)$ (a smooth function with compact support contained in Ω) and $t \in \mathbb{R}$,

$$f_{\varphi}(t) := \int_{\varphi(x) < t} f(x) dx$$

where dx is the Lebesgue measure of \mathbb{R}^n . Let m and M denote the lower and upper bounds of $\varphi(x)$ for $x \in \text{supp } f$; then $f_{\varphi}(t) = 0$ for $t \leq m$ and $f_{\varphi}(t) = \int_{\Omega} f(x) dx$ for $t \geq M$.

The example $\Omega = \mathbb{R}$ and $\varphi(x) = x^3$ gives $f_{\varphi}(t) = F(t^{1/3})$ with $F(u) = \int_{-\infty}^u f(x) dx$; thus f_{φ} is not necessarily smooth. However the following result holds true.

Proposition 1 Assume the gradient φ' of φ never vanishes on Ω . For $f \in \mathcal{D}(\Omega)$, f_{φ} is then a smooth function on \mathbb{R} and we may define

$$R_{\varphi}f(t) := (f_{\varphi})'(t) = \partial_t \int_{\varphi(x) < t} f(x)dx.$$
(3)

(i) $R_{\varphi}f$ is a smooth function on \mathbb{R} and $\operatorname{supp} R_{\varphi}f \subset [m, M]$. (ii) For any $u \in C^{\infty}(\mathbb{R})$

$$\int_{\mathbb{R}^n} u(\varphi(x))f(x)dx = \int_{\mathbb{R}} u(t)R_{\varphi}f(t)dt.$$
(4)

(iii) Let dS_t be the Euclidean measure on the hypersurface $S_t := \{x \in \Omega | \varphi(x) = t\}$. Then

$$R_{\varphi}f(t) = \int_{S_t} f(x) \frac{1}{\|\varphi'(x)\|} dS_t(x).$$
(5)

Formula (5) gives the geometrical meaning of $R_{\varphi}f$ as an integral of f over the level hypersurface $\varphi(x) = t$; we may write it for short as

$$R_{\varphi}f(t) = \int_{\varphi(x)=t} f.$$
 (6)

According to (4) it may also be viewed as $R_{\varphi}f(t) = \langle \varphi^* \delta_t, f \rangle$ where $\varphi^* \delta_t$ is the pullback by φ of the Dirac measure δ_t of \mathbb{R} at t (see Friedlander [6] Section 7.2 or Hörmander [8] Section 6.1).

Proof. (i) and (iii) Given $a \in \Omega$ we have $\varphi'(a) \neq 0$ thus (for instance) $\partial_n \varphi(a) \neq 0$. By the inverse function theorem there exists an open neighborhood U of a such that the map $x = (x', x_n) \mapsto y = (x', \varphi(x))$ is a diffeomorphism of U onto $V \times I$, where $x' = (x_1, ..., x_{n-1}), V$ is an open neighborhood of $(a_1, ..., a_{n-1})$ in \mathbb{R}^{n-1} and I is an open interval containing $\varphi(a)$. Let $y = (y', y_n) \mapsto x = (y', \psi(y', y_n))$ denote the inverse map. Then $dy = |\partial_n \varphi(x)| dx$ and, assuming supp $f \subset U$, we have

$$f_{\varphi}(t) = \int_{\varphi(x) < t} f(x) dx = \int_{y_n < t} \frac{f}{|\partial_n \varphi|} (y', \psi(y', y_n)) dy' dy_n.$$

The y_n integral actually runs over $[a, b] \cap] - \infty, t[$ where [a, b] is compact and contained in I. Thus f_{φ} is a smooth function of $t \in \mathbb{R}$ and

$$R_{\varphi}f(t) = (f_{\varphi})'(t) = \int_{V} \frac{f}{|\partial_{n}\varphi|}(y',\psi(y',t))dy' \text{ for } t \in I$$
$$= 0 \text{ for } t \notin I$$

is smooth on \mathbb{R} .

Besides, $\varphi(y', \psi(y', t)) = t$ for $y' \in V$ and $t \in I$ therefore

$$\partial_i \varphi(y', \psi(y', t)) + \partial_n \varphi(y', \psi(y', t)) \partial_i \psi(y', t) = 0$$

for i = 1, ..., n-1. It follows that $\|\varphi'\| = |\partial_n \varphi| \left(1 + \sum_{1}^{n-1} (\partial_i \psi)^2\right)^{1/2}$ and, for $t \in I$,

$$\begin{aligned} R_{\varphi}f(t) &= \int_{V} \frac{f}{\|\varphi'\|} (y', \psi(y', t)) \left(1 + \sum_{1}^{n-1} \left(\partial_{i} \psi(y', t) \right)^{2} \right)^{1/2} dy' \\ &= \int_{S_{t}} \frac{f}{\|\varphi'\|} (x) dS_{t}(x), \end{aligned}$$

the hypersurface integral being computed by means of the parameters y'. The latter equality also holds for $t \notin I$ (both sides vanish) and this proves (i) and (iii) for supp $f \subset U$. The general case follows by partition of unity. (ii) Since supp $R_{\varphi}f \subset [m, M]$ we have

$$\int_{\mathbb{R}} u(t)R_{\varphi}f(t)dt = \int_{m}^{M} u(t)\left(f_{\varphi}\right)'(t)dt = \left[u(t)f_{\varphi}(t)\right]_{m}^{M} - \int_{m}^{M} u'(t)f_{\varphi}(t)dt$$
$$= u(M)\int_{\Omega} f(x)dx - \int_{\varphi(x) < t < M} u'(t)f(x)dtdx.$$

The latter integral is

$$\int_{\Omega} f(x) dx \int_{\varphi(x)}^{M} u'(t) dt = \int_{\Omega} f(x) (u(M) - u(\varphi(x))) dx$$

and (4) follows. \blacksquare

2.2 Nonlinear Radon and Fourier Transforms

We now wish to extend the classical Radon transform of Section 1, replacing the hyperplanes $\omega \cdot x = t$ by level hypersurfaces of homogeneous polynomials of given degree $m \ge 1$ in \mathbb{R}^n . We write such polynomials as

$$\lambda \cdot p(x) := \sum_{|\alpha|=m} \lambda_{\alpha} x^{\alpha}$$

where $x \in \mathbb{R}^n$ and, in multi-index notation, $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}^n$, $|\alpha| = \sum_{i=1}^n \alpha_i$, $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ and $\lambda_{\alpha} \in \mathbb{R}$.

It is easily checked that the number of terms in $\sum_{|\alpha|=m}$ is the binomial coefficient $N = N(m, n) = \frac{(m+n-1)!}{m!(n-1)!}$. Indeed let us consider

$$\prod_{j=1}^{n} \frac{1}{1-tx_j} = \prod_{j=1}^{n} \left(1 + tx_j + t^2 x_j^2 + \cdots \right).$$

Expanding the product we see that the coefficient of t^m is $\sum_{|\alpha|=m} x^{\alpha}$, therefore equals N(m,n) when all x_i 's are 1. Thus N(m,n) is the coefficient of t^m in the expansion of $(1-t)^{-n}$ and the result follows. Note that N > n for $n \ge 2$ and $m \ge 2$.

Let $\lambda \in \mathbb{R}^N$, $\lambda \neq 0$, and $\Omega := \{x | \lambda \cdot p(x) \neq 0\}$. By Euler's identity for the homogeneous function $\varphi(x) = \lambda \cdot p(x)$ on \mathbb{R}^n the gradient φ' does not vanish on Ω . The level surface $\lambda \cdot p(x) = t$ is thus a smooth hypersurface of \mathbb{R}^n for $t \in \mathbb{R}, t \neq 0$. The **nonlinear Radon transform** of a test function $f \in \mathcal{D}(\Omega)$ is then defined, in the notation of (6), by

$$Rf(t,\lambda) := R_{\varphi}f(t) = \int_{\lambda \cdot p(x) = t} f.$$
(7)

For m = 1 we have N = n and R is the classical hyperplane Radon transform R_0 .

Properties of R.

(i) By Proposition 1, for $f \in \mathcal{D}(\Omega)$ and $\lambda \neq 0$, $Rf(.,\lambda)$ is a compactly supported smooth function of t on \mathbb{R} . By (4)

$$\int_{\mathbb{R}^n} F\left(\lambda \cdot p(x), \lambda\right) f(x) dx = \int_{\mathbb{R}} F(t, \lambda) Rf(t, \lambda) dt$$

for $\lambda \neq 0$ and any F continuous on $\mathbb{R} \times \mathbb{R}^N$. In particular, for $\tau \in \mathbb{R}$,

$$\int_{\mathbb{R}^n} e^{i\tau\lambda \cdot p(x)} f(x) dx = \int_{\mathbb{R}} e^{i\tau t} Rf(t,\lambda) dt = \widehat{Rf}(\tau,\lambda) = \widehat{Rf}(1,\tau\lambda)$$
(8)

is the one-dimensional Fourier transform of Rf with respect to the variable t. This extends the projection slice theorem (1).

(*ii*) The left-hand side of (8) is well-defined for all $f \in \mathcal{D}(\mathbb{R}^n)$ (without assuming supp $f \subset \Omega$), and extends to an entire function of (τ, λ) on $\mathbb{C} \times \mathbb{C}^N$. This suggests defining $\widehat{Rf}(\tau, 0) = \int f$, that is $Rf(t, 0) = (\int_{\mathbb{R}^n} f(x) dx) \delta(t)$ where δ is the Dirac measure at the origin of \mathbb{R} .

Actually, the restrictive assumptions $\operatorname{supp} f \subset \Omega$, $t \neq 0$, $\lambda \neq 0$ may be left out in the sequel, as we shall work with \widehat{Rf} rather than Rf. (*iii*) From (8) it follows that

$$\partial_{\lambda_{\alpha}}\widehat{Rf}(\tau,\lambda) = i\tau \int_{\mathbb{R}^n} e^{i\tau\lambda \cdot p(x)} x^{\alpha} f(x) dx = i\tau \widehat{R(x^{\alpha}f)}(\tau,\lambda), \tag{9}$$

therefore

$$\partial_{\lambda_{\alpha}} Rf(t,\lambda) = - \partial_t R\left(x^{\alpha} f\right)(t,\lambda)$$
(10)

for $f \in \mathcal{D}(\Omega)$, $\lambda \neq 0$ and $\alpha \in \mathbb{N}^n$, $|\alpha| = m$.

(iv) Note that, for m even, Rf = 0 whenever f is an odd function: R is not an injective map and, in this case, f cannot be reconstructed from Rf alone. We shall see in the next sections how to circumvent this difficulty.

Let us introduce the nonlinear Fourier transform of f defined, for all $f \in \mathcal{D}(\mathbb{R}^n)$, by

$$\widetilde{f}(\xi,\lambda) := \int_{\mathbb{R}^n} e^{i(\xi \cdot x + \lambda \cdot p(x))} f(x) dx \ , \xi \in \mathbb{R}^n \ , \lambda \in \mathbb{R}^N.$$
(11)

It extends to an entire function of $(\xi, \lambda) \in \mathbb{C}^n \times \mathbb{C}^N$. As a function on $\mathbb{R}^n \times \mathbb{R}^N$ it is bounded by $\int_{\mathbb{R}^n} |f(x)| dx$ and, for fixed λ , it is rapidly decreasing with respect to ξ .

On the one hand $\tilde{f}(\xi, 0) = \hat{f}(\xi)$ is the classical *n*-dimensional Fourier transform of f; on the other hand $\tilde{f}(0, \tau\lambda) = \widehat{Rf}(\tau, \lambda)$ is the 1-dimensional Fourier transform of Rf:

$$\widetilde{f}(\xi,\lambda)$$

$$\swarrow \qquad \searrow$$

$$\widetilde{f}(\xi,0) = \widehat{f}(\xi) \qquad \widetilde{f}(0,\lambda) = \widehat{Rf}(1,\lambda).$$

Reconstructing $\tilde{f}(\xi, \lambda)$ from $\tilde{f}(0, \lambda)$ would therefore allow to reconstruct f from Rf. For this we shall consider partial differential equations satisfied by \tilde{f} .

2.3 Partial Differential Equations

Taking derivatives of (11) under the integral sign we get, for j = 1, ..., n and $\alpha \in \mathbb{N}^n$, $|\alpha| = m$,

$$\partial_{\xi_j} \widetilde{f}(\xi, \lambda) = i \int_{\mathbb{R}^n} e^{i(\xi \cdot x + \lambda \cdot p(x))} x_j f(x) dx = \widetilde{i(x_j f)}(\xi, \lambda)$$
(12)

$$\partial_{\lambda_{\alpha}}\widetilde{f}(\xi,\lambda) = i \int_{\mathbb{R}^n} e^{i(\xi \cdot x + \lambda \cdot p(x))} x^{\alpha} f(x) dx = \widetilde{i(x^{\alpha}f)}(\xi,\lambda).$$
(13)

Thus \widetilde{f} satisfies the system of N linear partial differential equations on $\mathbb{R}^n \times \mathbb{R}^N$

$$i^{m-1}\partial_{\lambda_{\alpha}}\tilde{f} = \partial_{\xi}^{\alpha}\tilde{f} \text{ for } \alpha \in \mathbb{N}^{n}, |\alpha| = m.$$
(14)

For any $\alpha, \beta, \gamma, \delta \in \mathbb{N}^n$ of length m such that $x^{\alpha}x^{\beta} = x^{\gamma}x^{\delta}$ we infer that, as a function of λ , \tilde{f} satisfies the *Plücker equations*

$$\left(\partial_{\lambda_{\alpha}}\partial_{\lambda_{\beta}} - \partial_{\lambda_{\gamma}}\partial_{\lambda_{\delta}}\right)\widetilde{f} = 0.$$
(15)

Given α, β , all such multi-indices γ, δ are obtained as $\gamma = \alpha - \varepsilon$, $\delta = \beta + \varepsilon$, where $\varepsilon = (\varepsilon_1, ..., \varepsilon_n) \in \mathbb{Z}^n$ satisfies $-\beta_j \leq \varepsilon_j \leq \alpha_j$ for j = 1, ..., n and $\sum_{j=1}^n \varepsilon_j = 0$.

Example. For m = n = 2 we have $\lambda \cdot p(x) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_1 x_2$ (here N = 3) and

$$i\partial_{\lambda_1}\widetilde{f} = \partial_{\xi_1}^2\widetilde{f} , i\partial_{\lambda_2}\widetilde{f} = \partial_{\xi_2}^2\widetilde{f} , i\partial_{\lambda_3}\widetilde{f} = \partial_{\xi_1}\partial_{\xi_2}\widetilde{f}.$$

The identity $(x_1x_2)^2 = x_1^2x_2^2$ leads to he hyperbolic equation $\partial_{\lambda_3}^2 \widetilde{f} = \partial_{\lambda_1}\partial_{\lambda_2}\widetilde{f}$.

3 A Cauchy Problem

Given $f \in \mathcal{D}(\mathbb{R}^n)$ let us now try to reconstruct $\tilde{f}(\xi, \lambda)$ from $\tilde{f}(0, \lambda) = \widehat{Rf}(1, \lambda)$ by solving a Cauchy problem for the system (14) with data on $\xi = 0$. In order to achieve this goal we shall of course need more than $\widehat{Rf}(1, \lambda)$: let us recall that $\tilde{f}(0, \lambda) = 0$ for *m* even and *f* odd, though \tilde{f} may be not identically zero. It should be noted that $\tilde{f}(0, \lambda)$ satisfies the Plücker equations (15), but this fact will not be taken into account here (see Remark below however).

Since f is an entire function we have

$$\widetilde{f}(\xi,\lambda) = \sum_{\alpha \in \mathbb{N}^n} \partial_{\xi}^{\alpha} \widetilde{f}(0,\lambda) \frac{\xi^{\alpha}}{\alpha!},$$

an absolutely convergent series for all $\xi \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}^N$.

To work it out we shall only need the derivatives $\partial_{\xi}^{\alpha} \widetilde{f}(0, \lambda)$ for $|\alpha| < m$; the higher order derivatives will be given by (14). More precisely, $\partial_{\xi}^{\alpha} \widetilde{f} = i^{|\alpha|} \widetilde{x^{\alpha} f}$ for all α by (12), and equals $i^{m-1} \partial_{\lambda_{\alpha}} \widetilde{f}$ by (14) if $|\alpha| = m$. For any $\alpha \in \mathbb{N}^n$ we may write $|\alpha| = qm + r$ with $q, r \in \mathbb{N}, 0 \le r < m$, and factorize ∂_{ξ}^{α} as

$$\partial_{\xi}^{\alpha} = \partial_{\xi}^{\beta_1} \cdots \partial_{\xi}^{\beta_q} \partial_{\xi}^{\gamma}$$

with $\beta_1, \dots, \beta_q, \gamma \in \mathbb{N}^n$, $|\beta_1| = \dots = |\beta_q| = m$ and $|\gamma| = r$; this factorization is not unique. It follows that

$$\partial_{\xi}^{\alpha}\widetilde{f} = i^{|\alpha|-q}\partial_{\lambda_{\beta_1}}\cdots\partial_{\lambda_{\beta_q}}\widetilde{(x^{\gamma}f)}$$

and

$$\widetilde{f}(\xi,\lambda) = \sum_{\alpha \in \mathbb{N}^n} i^{|\alpha|-q} \partial_{\lambda_{\beta_1}} \cdots \partial_{\lambda_{\beta_q}} \widetilde{(x^{\gamma}f)}(0,\lambda) \frac{\xi^{\alpha}}{\alpha!}$$

(with $q, \beta_1, ..., \beta_q, \gamma$ depending on α in the sum).

Remembering $(\widetilde{x^{\gamma}f})(0,\lambda) = \widehat{R(x^{\gamma}f)}(1,\lambda)$ for $\lambda \neq 0$, we see that \widetilde{f} is determined by the nonlinear Radon transforms of all functions $x^{\gamma}f$ for $\gamma \in \mathbb{N}^n$ and $|\gamma| < m$. Their number is $\sum_{k=0}^{m-1} N(k,n) = N(m-1,n+1) = \frac{m}{n}N(m,n)$ (induction on m). In particular if $R(x^{\gamma}f) = 0$ for all γ with $|\gamma| < m$, then f = 0.

Example. For m = n = 2 (Section 2.3), $\partial_{\xi_1}^{\alpha_1} \partial_{\xi_2}^{\alpha_2}$ factorizes as powers of $\partial_{\xi_1}^2$ and $\partial_{\xi_2}^2$, possibly composed with ∂_{ξ_1} or ∂_{ξ_2} or $\partial_{\xi_1} \partial_{\xi_2}$ according to the parity of α_1 and α_2 . Gathering together similar terms the above result reads

$$\widetilde{f}(\xi,\lambda) = C(D_1)C(D_2)\widetilde{f} + S(D_1)S(D_2)D_3\widetilde{f} + i\xi_1S(D_1)C(D_2)(x_1f) + i\xi_2C(D_1)S(D_2)(x_2f)$$
(16)

where

$$D_1 = i\xi_1^2 \partial_{\lambda_1} , D_2 = i\xi_2^2 \partial_{\lambda_2} , D_3 = i\xi_1\xi_2 \partial_{\lambda_3}$$
$$C(z) = \sum_{k=0}^{\infty} \frac{z^k}{(2k)!} , S(z) = \sum_{k=0}^{\infty} \frac{z^k}{(2k+1)!}$$

and, in the right-hand side of (16), \tilde{f} , (x_1f) , (x_2f) are evaluated at $(0, \lambda)$. Thus the knowledge of the three Radon transforms Rf, $R(x_1f)$ and $R(x_2f)$ determines \tilde{f} . **Remark.** The Plücker equations (15), here $\partial_{\lambda_3}^2 \tilde{f} = \partial_{\lambda_1} \partial_{\lambda_2} \tilde{f}$, haven't been taken

into account. They imply $\partial_{\lambda_3}^{2k} \tilde{f} = (\partial_{\lambda_1} \partial_{\lambda_2})^k \tilde{f}, \ \partial_{\lambda_3}^{2k+1} \tilde{f} = (\partial_{\lambda_1} \partial_{\lambda_2})^k \partial_{\lambda_3} \tilde{f}$ for $k \in \mathbb{N}$, hence the Taylor expansion

$$\widetilde{f}(0,\lambda_1,\lambda_2,\lambda_3) = \sum_{k \in \mathbb{N}} \partial_{\lambda_3}^k \widetilde{f}(0,\lambda_1,\lambda_2,0) \frac{\lambda_3^k}{k!} = C(E) \widetilde{f}(0,\lambda_1,\lambda_2,0) + \lambda_3 S(E) (\partial_{\lambda_3} \widetilde{f})(0,\lambda_1,\lambda_2,0)$$
(17)

where $E = \lambda_3^2 \partial_{\lambda_1} \partial_{\lambda_2}$, and similarly

$$\partial_{\lambda_3} \widetilde{f}(0,\lambda_1,\lambda_2,\lambda_3) = \lambda_3 \partial_{\lambda_1} \partial_{\lambda_2} S(E) \widetilde{f}(0,\lambda_1,\lambda_2,0) + C(E) (\partial_{\lambda_3} \widetilde{f})(0,\lambda_1,\lambda_2,0).$$
(18)

Combining (16) (17) and (18) it follows that \tilde{f} can be reconstructed from \tilde{f} , $\partial_{\lambda_3}\tilde{f}$, $\widetilde{(x_1f)}$, $\partial_{\lambda_3}(x_1f)$, $\widetilde{(x_2f)}$ and $\partial_{\lambda_3}(x_2f)$ at $(0, \lambda_1, \lambda_2, 0)$ only. Remembering (13) $\partial_{\lambda_3}\tilde{f} = i(x_1x_2f)$, these 6 functions can be replaced by \tilde{f} , $\widetilde{(x_1f)}$, $\widetilde{(x_2f)}$, $\widetilde{(x_1x_2f)}$, $\widetilde{(x_1^2x_2f)}$ and $(x_1x_2^2f)$, that is \widehat{Rf} , $\widehat{R(x_1f)}$,..., $\widehat{R(x_1x_2^2f)}$ evaluated at $(1; \lambda_1, \lambda_2, 0)$. In other words the integrals of f, x_1f ,..., $x_1x_2^2f$ over the conics $\lambda_1x_1^2 + \lambda_2x_2^2 = t$ will determine f. A stronger (and more general) result is given in the next section.

4 Harmonic Polynomials and the Cauchy Problem

Two chapters of [5] are devoted to a general theory of harmonic polynomials which, when applied to nonlinear Radon transforms, leads to a refined version of the results of Section 3. We shall only present here a simplified approach to the harmonic polynomials relevant to our problem.

Notation. All polynomials considered here have complex coefficients. Let us order the N monomials $(x^{\alpha})_{|\alpha|=m}$ as $x_1^m, ..., x_n^m$ first, then $(x^{\beta})_{\beta \in B}$ where B is the set of the N-n remaining multi-indices of length m. In accordance with this we replace our previous notation $\lambda = (\lambda_{\alpha})_{|\alpha|=m} \in \mathbb{R}^N$ by $(\lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^{N-n}$ with $\lambda = (\lambda_1, ..., \lambda_n)$ and $\mu = (\mu_{\beta})_{\beta \in B}$; the former $\sum_{\alpha} \lambda_{\alpha} x^{\alpha}$ is replaced by $\sum_{j=1}^n \lambda_j x_j^m + \sum_{\beta \in B} \mu_{\beta} x^{\beta}$. Let $(x, p, q) \in \mathbb{R}^{n+N}$ denote dual variables to (ξ, λ, μ) , with $x = (x_1, ..., x_n) \in \mathbb{R}^n$, $p = (p_1, ..., p_n) \in \mathbb{R}^n$ and $q = (q_{\beta})_{\beta \in B} \in \mathbb{R}^{N-n}$.

In this new notation the partial differential equations (14) become

$$\left(-i\partial_{\xi_j}\right)^m \widetilde{f} = -i\partial_{\lambda_j}\widetilde{f} , \ \left(-i\partial_{\xi}\right)^\beta \widetilde{f} = -i\partial_{\mu_\beta}\widetilde{f} \text{ for } j = 1, ..., n \text{ and } \mu \in B.$$
(19)

They are dual to

$$x_j^m F = p_j F$$
, $(x^\beta - q_\beta) F = 0$ for $j = 1, ..., n$ and $\mu \in B$, (20)

where F is the tempered distribution on \mathbb{R}^{n+N} corresponding to \tilde{f} via the Fourier transform on \mathbb{R}^{n+N} (being smooth and bounded, \tilde{f} is tempered on \mathbb{R}^{n+N}).

Let us introduce the following N polynomials on $\mathbb{R}^n \times \mathbb{R}^{N-n} = \mathbb{R}^N$:

$$u_j(x,q) := x_j^m$$
, $u_\beta(x,q) := x^\beta - q_\beta$ for $j = 1, ..., n$ and $\beta \in B$. (21)

The system (20) implies that the support of F is contained in the closed set V of \mathbb{R}^{n+N} defined by the N equations

$$V = \left\{ (x, p, q) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^{N-n} | u_j(x, q) = p_j , u_\beta(x, q) = 0 , 1 \le j \le n, \beta \in B \right\}.$$

Being the graph of a map $x \mapsto (p,q)$, V is a n-dimensional submanifold of \mathbb{R}^{n+N} .

Definition 2 A polynomial function h(x,q) on $\mathbb{R}^n \times \mathbb{R}^{N-n}$ is called harmonic if

$$u_j(\partial_x,\partial_q)h=0$$
, $u_\beta(\partial_x,\partial_q)h=0$ for $j=1,...,n$ and $\beta\in B$.

It is called **homogeneous of degree** d if $h(tx, t^m q) = t^d h(x, q)$ for all $t \in \mathbb{R}$ (thus each x_j has degree 1 and each q_β has degree m).

Proposition 3 Let $D := \sum_{\beta \in B} q_{\beta} \partial_x^{\beta}$. Then $u_{\beta}(\partial_x, \partial_q) = -e^D \circ \partial_{q_{\beta}} \circ e^{-D}$. The space of harmonic polynomials is m^n -dimensional. Its elements are given by

$$h = e^D f$$

where f is an arbitrary polynomial of the following form

$$f(x) = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} x^{\alpha} \text{ with } 0 \le \alpha_j \le m - 1 \text{ for } j = 1, ..., n \text{ and } a_{\alpha} \in \mathbb{C}.$$

Besides $h = e^D f$ is homogeneous of degree d (in the sense of Definition 4) if and only if f is homogeneous of degree d.

Proof. Since $u_{\beta}(\partial_x, \partial_q) = \partial_x^{\beta} - \partial_{q_{\beta}}$ we have $[D, u_{\beta}(\partial_x, \partial_q)] = \partial_x^{\beta}$ and $[D, \partial_x^{\beta}] = 0$, thus $(\operatorname{ad} D)^2 u_{\beta}(\partial_x, \partial_q) = 0$ and

$$e^{-D}u_{\beta}(\partial_x, \partial_q)e^D = e^{-\operatorname{ad} D}u_{\beta}(\partial_x, \partial_q) = (1 - \operatorname{ad} D)u_{\beta}(\partial_x, \partial_q)$$
$$= u_{\beta}(\partial_x, \partial_q) - \partial_x^{\beta} = -\partial_{q_{\beta}}.$$

[This proof may also be written without any Lie formalism, by computing the derivative with respect to t of $e^{-tD}u_{\beta}(\partial_x, \partial_q)e^{tD}$.]

Since e^D is a linear isomorphism of the space of polynomials onto itself, a polynomial h(x,q) is harmonic if and only if

$$\partial_{x_j}^m h = 0$$
, $\partial_{q_\beta} \left(e^{-D} h \right) = 0$ for $j = 1, ..., n$ and $\beta \in B$.

The latter equations imply $h = e^D f$ for some polynomial f in the x variables. Since $\begin{bmatrix} D, \partial_{x_j}^m \end{bmatrix} = 0$ the former equations imply $\partial_{x_j}^m f = 0$ for j = 1, ..., n whence our claim about f.

The operator D preserves homogeneity in (x, q) and the last statement follows.

Examples. Let us write down, as an example, a basis of homogeneous harmonic polynomials for n = 2 and m = 4. Here N = 5, $\beta = (\beta_1, \beta_2)$ with $0 \le \beta_j \le 3$, $\beta_1 + \beta_2 = 4$, $q = (q_{13}, q_{22}, q_{31})$ and $D = \sum q_{\beta_1\beta_2}\partial_{x_1}^{\beta_1}\partial_{x_2}^{\beta_2}$. The 16 monomials $f(x) = x_1^a x_2^b$, $0 \le a \le 3$, $0 \le b \le 3$, make up a basis of the relevant polynomials f. Since the degree of f is 6 at most we have $D^2 f = 0$ and the 16 corresponding harmonic polynomials are h = f + Df, that is¹

 $\begin{array}{l}1\;,\;x_{1}\;,\;x_{2}\;,\;x_{1}^{2}\;,\;x_{1}x_{2}\;,\;x_{2}^{2}\;,\;x_{1}^{3}\;,\;x_{1}^{2}x_{2}\;,\;x_{1}x_{2}^{2}\;,\;x_{2}^{3}\;,\\ x_{1}^{3}x_{2}\;+\;6q_{31}\;,\;x_{1}^{2}x_{2}^{2}\;+\;4q_{22}\;,\;x_{1}x_{2}^{3}\;+\;6q_{13}\;,\\ x_{1}^{3}x_{2}^{2}\;+\;12q_{22}x_{1}\;+\;12q_{31}x_{2}\;,\;x_{1}^{2}x_{2}^{3}\;+\;12q_{13}x_{1}\;+\;12q_{22}x_{2}\;,\\ x_{1}^{3}x_{2}^{3}\;+\;18q_{13}x_{1}^{2}\;+\;36q_{22}x_{1}x_{2}\;+\;18q_{31}x_{2}^{2}\;.\end{array}$

For m = n = 2 (already considered) we have $N = 3, q \in \mathbb{R}$, and the corresponding basis of harmonic polynomials is

$$1, x_1, x_2, x_1x_2 + q_1$$

More generally, let A denote the set of all $\alpha \in \mathbb{N}^n$ such that $0 \leq \alpha_j \leq m-1$ for j = 1, ..., n. By Proposition 5 the $h_\alpha := e^D x^\alpha$, $\alpha \in A$, make up a basis of the space of harmonic polynomials.

Proposition 4 For any polynomial P(x,q) on $\mathbb{R}^n \times \mathbb{R}^{N-n}$ there exists a family of m^n polynomials $Q_{\alpha}, \alpha \in A$, on \mathbb{R}^N such that

$$P(x,q) = \sum_{\alpha \in A} Q_{\alpha}(u_1(x,q), \dots, u_N(x,q))h_{\alpha}(x,q),$$

where $u_1, ..., u_N$ denote the polynomials defined by (21).

Proof. Let $\langle a, b \rangle = a(\partial)\overline{b}(0)$ be the Fischer inner product on the space of polynomials on $\mathbb{R}^n \times \mathbb{R}^{N-n}$. Then *h* is harmonic if and only if $u_k(\partial_x, \partial_q)\overline{h} = 0$ for k = 1, ..., N, i.e. $\langle au_k, h \rangle = 0$ for all polynomials *a*. The space of harmonic polynomials is thus the orthogonal complement of the ideal $\left\{ \sum_{k=1}^{N} a_k(x,q)u_k(x,q) \right\}$ generated by the u_k 's (where the a_k 's are arbitrary polynomials).

A given P(x,q) now has a unique decomposition as

$$P = h + \sum_{k=1}^{N} a_k u_k$$

with h harmonic. Separating homogeneous components we may assume P is homogeneous of degree d (in the sense of Definition 2). Since u_k is homogeneous, each homogeneous component of a harmonic polynomial is harmonic. We may therefore assume h and all $a_k u_k$ homogeneous of degree d, therefore a_k is homogeneous of degree d - m. Writing similar decompositions for each a_k the result easily follows.

 $^{^1\}mathrm{Cf.}$ [5] p. 312, where the coefficients 16 should be replaced, I think, by 18.

Example. For m = n = 2 the generators and harmonic polynomials are respectively

$$u_1 = x_1^2$$
, $u_2 = x_2^2$, $u_3 = x_1x_2 - q$
 $h_0 = 1$, $h_1 = x_1$, $h_2 = x_2$, $h_3 = x_1x_2 + q$

and the first non-trivial examples of decomposition in Proposition 4 are:

$$2x_1x_2 = u_3h_0 + h_3 , 2q = -u_3h_0 + h_3$$
$$x_1q = -u_3h_1 + u_1h_2 , x_2q = -u_3h_2 + u_2h_1$$
$$q^2 = u_1u_2h_0 - u_3h_3 , 2x_1x_2q = (2u_1u_2 - u_3^2)h_0 - u_3h_3.$$

Replacing x_j by $-i\partial_{\xi_j}$ and q_β by $-i\partial_{\mu_\beta}$ we infer from Proposition 4 an equality of differential operators. Applying them to \tilde{f} we obtain

$$P(-i\partial_{\xi}, -i\partial_{\mu})\widetilde{f} = \sum_{\alpha \in A} Q_{\alpha} \left(\left(-i\partial_{\xi_{j}} \right)^{m}, \left(-i\partial_{\xi} \right)^{\beta} - \left(-i\partial_{\mu_{\beta}} \right) \right) h_{\alpha} \left(-i\partial_{\xi}, -i\partial_{\mu} \right) \widetilde{f}$$
$$= \sum_{\alpha \in A} Q_{\alpha} \left(-i\partial_{\lambda}, 0 \right) h_{\alpha} \left(-i\partial_{\xi}, -i\partial_{\mu} \right) \widetilde{f}$$

in view of (19) and the commutativity of differential operators. In particular all derivatives $\partial_{\xi}^{\rho}\partial_{\mu}^{\sigma}\tilde{f}$ may be written in this form with polynomials Q_{α} depending on ρ, σ whence, by Taylor's formula on the variables (ξ, μ) ,

$$\widetilde{f}(\xi,\lambda,\mu) = \sum Q_{\alpha\rho\sigma}(-i\partial_{\lambda},0)h_{\alpha}\left(-i\partial_{\xi},-i\partial_{\mu}\right)\widetilde{f}(0,\lambda,0)\frac{\xi^{\rho}}{\rho!}\frac{\mu^{\sigma}}{\sigma!}$$
(22)

where $\sum_{i \in I} \text{ runs over all } \rho \in \mathbb{N}^n$, $\sigma \in \mathbb{N}^{N-n}$ and $\alpha \in A$. Remembering (12)(13) $-i\partial_{\xi_j}\widetilde{f} = \widetilde{x_j f}, -i\partial_{\mu_\beta}\widetilde{f} = \widetilde{x^\beta f}$ we have $h_\alpha (-i\partial_{\xi}, -i\partial_{\mu})\widetilde{f} = (h_\alpha(x,q)f)$ with $q_\beta = x^\beta$ for $\beta \in B$.

Lemma 5 For all α there exists a positive integer C_{α} such that, when replacing each q_{β} by x^{β} for $\beta \in B$,

$$h_{\alpha}(x,q) = h_{\alpha}(x,(x^{\beta})_{\beta \in B}) = C_{\alpha}x^{\alpha}.$$

Proof. For $\alpha \in \mathbb{N}^n$ we have

$$Dx^{\alpha} = \sum_{\beta \in B} q_{\beta} \partial_x^{\beta} x^{\alpha} = \sum_{\beta \in B} \frac{\alpha!}{(\alpha - \beta)!} q_{\beta} x^{\alpha - \beta}$$
$$D^2 x^{\alpha} = \sum_{\beta, \gamma \in B} \frac{\alpha!}{(\alpha - \beta - \gamma)!} q_{\beta} q_{\gamma} x^{\alpha - \beta - \gamma}$$

etc (the coefficients being 0 unless $\beta \leq \alpha$, resp. $\beta + \gamma \leq \alpha$). When replacing q_{β} by x^{β} , q_{γ} by x^{γ} etc, the polynomials Dx^{α} , D^2x^{α} etc thus become x^{α} times a positive integer coefficient. The same holds for $h_{\alpha} = e^D x^{\alpha}$, whence the lemma.

Going back to (22) we have $h_{\alpha}(-i\partial_{\xi}, -i\partial_{\mu})\widetilde{f} = C_{\alpha} \widetilde{x^{\alpha}f}$ and we conclude that, for $(\xi, \lambda, \mu) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^{N-n}$,

$$\widetilde{f}(\xi,\lambda,\mu) = \sum_{\rho,\sigma,\alpha} C_{\alpha} Q_{\alpha\rho\sigma}(-i\partial_{\lambda},0) \widetilde{(x^{\alpha}f)}(0,\lambda,0) \frac{\xi^{\rho}}{\rho!} \frac{\mu^{\sigma}}{\sigma!}.$$

Therefore the restriction to all $(0, \lambda, 0)$ of the m^n functions $\widetilde{x^{\alpha}f}, \alpha \in A$, determines f. In other words, the Cauchy problem for (19) is well-posed with the Cauchy data $h_{\alpha} \left(-i\partial_{\xi}, -i\partial_{\mu}\right) \widetilde{f} = C_{\alpha} \widetilde{x^{\alpha}f}$ on the *n*-plane of \mathbb{R}^{n+N} defined by $\xi = \mu = 0$. In terms of Radon transforms we obtain the following result.

Theorem 6 A function $f \in \mathcal{D}(\mathbb{R}^n)$ is uniquely determined by the m^n nonlinear Radon transforms $R(x^{\alpha}f)(t,\lambda,0)$ (with $\alpha \in \mathbb{N}^n$, $0 \le \alpha_j < m$, $t \in \mathbb{R}$, $\lambda \in \mathbb{R}^n \setminus \{0\}$), that is by the integrals of each $x^{\alpha}f$ on the hypersurfaces

$$\lambda_1 x_1^m + \dots + \lambda_n x_n^m = t.$$

5 Inversion Formulas

Let us now look for an inversion formula for the nonlinear Radon transform. The nonlinear Fourier transform \tilde{f} is greatly overdetermined, with n + N variables (ξ, λ) instead of n for f. As in Section 3 we shall restrict \tilde{f} to $\xi = 0$ and, assuming the monomials x^{α} are ordered as $x_1^m, ..., x_n^m$ first, followed by the other x^{β} 's, it turns out that (as in the final remark of Section 3) we can also restrict to $\lambda = (\lambda_1, ..., \lambda_n, 0, ..., 0)$, written as $\lambda \in \mathbb{R}^n$ for short. Then

$$\widetilde{f}(0,\tau\lambda) = \int_{\mathbb{R}^n} e^{i\tau\sum_1^n \lambda_j x_j^m} f(x) dx = \widehat{Rf}(\tau,\lambda) \text{ with } \tau \in \mathbb{R}, \lambda \in \mathbb{R}^n.$$
(23)

5.1 First Case: m odd

Let U denote the dense open subset of \mathbb{R}^n defined by $x_j \neq 0$ for all j. For m odd the map $\psi: x \mapsto y = x^m := (x_1^m, ..., x_n^m)$ is a diffeomorphism of U onto itself. Then

$$\widehat{Rf}(\tau,\lambda) = \int_{\mathbb{R}^n} e^{i\tau\lambda \cdot y} g(y) dy = \widehat{g}(\tau\lambda)$$
(24)

with $\lambda \cdot y = \sum_{1}^{n} \lambda_{j} y_{j}$ and

$$g(y) := m^{-n} |y_1 \cdots y_n|^{(1/m)-1} f(y^{1/m}) , y \in \mathbb{R}^n.$$

As above \hat{g} denotes the classical *n*-dimensional Fourier transform and \widehat{Rf} is the 1-dimensional Fourier transform with respect to *t*.

The change $x \mapsto y$ thus reduces the nonlinear Radon transform R to the linear one considered in the introduction: $Rf(t,\lambda) = R_0g(t,\lambda)$. But g is not necessarily smooth, $\widehat{g}(\lambda) = \widehat{Rf}(1,\lambda)$ is not necessarily rapidly decreasing and the inversion formula (2) may become invalid here. However g is integrable on \mathbb{R}^n and vanishes outside a compact set, therefore defines a tempered distribution. Denoting by \mathcal{F} the inverse Fourier transform for tempered distributions on \mathbb{R}^n we have $g=\mathcal{F}\widehat{g}$ hence, for any $u \in \mathcal{D}(U)$,

$$\begin{split} \int_{U} f(x)u(x^{m})dx &= \int_{U} g(y)u(y)dy = \langle \mathcal{F}\widehat{g}(y), u(y) \rangle \\ &= \langle (\psi^{*}\mathcal{F}\widehat{g})(x), |\det\psi'(x)|u(\psi(x)) \rangle \\ &= \langle m^{n}(x_{1}\cdots x_{n})^{m-1} (\psi^{*}\mathcal{F}\widehat{g})(x), u(x^{m}) \rangle, \end{split}$$

using the pullback by ψ of the distribution $\mathcal{F}\hat{g}$ on U (cf. [6] p. 80). The absolute value may be skipped here since m-1 is even and det $\psi' > 0$. Therefore, for $f \in \mathcal{D}(\mathbb{R}^n),$

$$f(x) = m^n (x_1 \cdots x_n)^{m-1} (\psi^* \mathcal{F} \widehat{Rf}(1, \cdot))(x), \qquad (25)$$

an equality of distributions on U.

5.2Second Case: m even

The above map $\psi : x \mapsto y$ is no more a bijection: given y with all $y_j > 0$, the equations $y = x^m$ now have 2^n solutions $x = \left(\pm y_1^{1/m}, ..., \pm y_n^{1/m}\right)$. For $x, y \in \mathbb{R}^n$ we write $xy := (x_1y_1, ..., x_ny_n)$. Let $E := \{1, -1\}^n$ denote the set

of all $\varepsilon = (\varepsilon_1, ..., \varepsilon_n)$ with $\varepsilon_j = \pm 1$ and

$$\mathbb{R}^n_+ := \{ x \in \mathbb{R}^n \mid x_j > 0 \text{ for } 1 \le j \le n \}.$$

Viewing the integral (23) as a sum of integrals over the quadrants $\varepsilon \mathbb{R}^n_+$, $\varepsilon \in E$, we obtain, by the change of variables $x \mapsto y$ with $x_j = \varepsilon_j y_j^{1/m}, y_j > 0$, on $\varepsilon \mathbb{R}^n_+$,

$$\widehat{Rf}(au,\lambda) = \widetilde{f}(0, au\lambda) = \int_{\mathbb{R}^n_+} e^{i au\lambda\cdot y} g(y) dy$$

with $\tau \in \mathbb{R}$, $\lambda \in \mathbb{R}^n$ and, for $y \in \mathbb{R}^n_+$,

$$g(y) := m^{-n} (y_1 \cdots y_n)^{(1/m)-1} \sum_{\varepsilon \in E} f(\varepsilon y^{1/m}).$$

Let H denote the Heaviside function H(y) = 1 if $y \in \mathbb{R}^n_+$, H(y) = 0 otherwise. Equation (24) is now replaced by

$$\widehat{Rf}(\tau,\lambda) = \int_{\mathbb{R}^n} e^{i\tau\lambda\cdot y} H(y)g(y)dy = \widehat{Hg}(\tau\lambda).$$

Again Hg is integrable and vanishes outside a compact set, hence tempered on \mathbb{R}^n , and as above the Fourier inversion $Hg = \mathcal{F}\widehat{Hg}$ implies the following equality of distributions on \mathbb{R}^n_+

$$\sum_{\varepsilon \in E} f(\varepsilon x) = m^n \left(x_1 \cdots x_n \right)^{m-1} \left(\psi^* \mathcal{F} \widehat{Rf}(1, \cdot) \right)(x).$$
(26)

This gives f if its support is contained in some quadrant $\varepsilon \mathbb{R}^n_+$. Otherwise we must separate the components $f(\varepsilon x)$, which can be achieved by replacing f with $x^{\alpha}f$ for suitably chosen α 's as follows.

With each $\varepsilon = (\varepsilon_1, ..., \varepsilon_n) \in E$ we associate the monomial

$$p_{\varepsilon}(x) := x_{i_1} \cdots x_{i_k}$$

where $1 \leq i_1 < \cdots < i_k \leq n$ is the (ordered) set of indices *i* such that $\varepsilon_i = -1$; for instance, n = 4 and $\varepsilon = (-1, 1, -1, 1)$ yield $p_{\varepsilon}(x) = x_1 x_3$. The map $\varepsilon \mapsto p_{\varepsilon}$ is a bijection of *E* onto the set of divisors of $x_1 \cdots x_n$.

Let $\varepsilon, \eta \in E$. A minus sign occurs in $p_{\varepsilon}(\eta x) = p_{\varepsilon}(\eta_1 x_1, ..., \eta_n x_n)$ each time there is a factor x_i , that is $\varepsilon_i = -1$, and the corresponding η_i is -1. Therefore

$$p_{\varepsilon}(\eta x) = a_{\varepsilon,\eta} p_{\varepsilon}(x) \text{ with } a_{\varepsilon,\eta} := (-1)^{k(\varepsilon,\eta)},$$
(27)

where $k(\varepsilon, \eta)$ denotes the number of indices *i* such that $\varepsilon_i = \eta_i = -1$. **Example.** For n = 2 the matrix $(a_{\varepsilon,\eta})$ is given by the table:

	p_{ε}	1	x_1	x_2	$x_1 x_2$
	ε	++	-+	+-	
η					
++		1	1	1	1
-+		1	-1	1	-1
+-		1	1	-1	-1
		1	-1	-1	1

Our inversion formula for R will be inferred from the following combinatorial lemma.

Lemma 7 The set $E = \{1, -1\}^n$ being provided with some ordering, the $2^n \times 2^n$ matrix $A = (a_{\varepsilon,\eta})_{\varepsilon,\eta\in E}$ is symmetric and $A^2 = 2^n I$ (where I is the unit matrix).

Proof. The symmetry is clear by the definition of $k(\varepsilon, \eta)$. For $\varepsilon, \eta, \zeta \in E$ we have $k(\varepsilon, \eta\zeta) = k(\varepsilon, \eta) + k(\varepsilon, \zeta)$ since $\varepsilon_i = \eta_i \zeta_i = -1$ is equivalent to $\varepsilon_i = -1$ and $\eta_i = -1$, $\zeta_i = 1$ or (exclusive or) $\varepsilon_i = -1$ and $\eta_i = 1$, $\zeta_i = -1$. Therefore

$$a_{\varepsilon,\eta}a_{\varepsilon,\zeta} = a_{\varepsilon,\eta\zeta}.\tag{28}$$

Besides, for fixed $\eta \in E$,

$$\prod_{i=1}^{n} (1+\eta_i x_i) = 1 + \sum_i \eta_i x_i + \sum_{i
$$= \sum_{\varepsilon \in E} p_{\varepsilon}(\eta x) = \sum_{\varepsilon \in E} a_{\varepsilon,\eta} p_{\varepsilon}(x).$$$$

Taking $x_1 = \cdots = x_n = 1$ this gives the sum of elements in each column (or row) of A:

$$\sum_{\varepsilon \in E} a_{\varepsilon,\eta} = \prod_{i=1}^{n} (1+\eta_i) = \begin{cases} 2^n \text{ if } \eta = (1,...,1) \\ 0 \text{ otherwise.} \end{cases}$$

Now (28) implies

$$\sum_{\varepsilon \in E} a_{\varepsilon,\eta} a_{\varepsilon,\zeta} = \begin{cases} 2^n \text{ if } \eta\zeta = (1,...,1) \\ 0 \text{ otherwise.} \end{cases}$$

But $\eta \zeta = (1, ..., 1)$ is equivalent to $\eta_i = \zeta_i$ for all *i*, that is $\eta = \zeta$. Remembering the symmetry of *A*, we infer that $A^2 = 2^n I$.

Let us consider $Sf(x) := \sum_{\eta \in E} f(\eta x)$. Replacing f by $p_{\varepsilon}f$ we obtain, in view of (27),

$$S(p_{\varepsilon}f)(x) = \sum_{\eta \in E} (p_{\varepsilon}f) (\eta x) = p_{\varepsilon}(x) \sum_{\eta} a_{\varepsilon,\eta} f(\eta x),$$

which can be inverted by $A^{-1} = 2^{-n}A$ (Lemma 7) as

$$f(\eta x) = 2^{-n} \sum_{\varepsilon \in E} a_{\varepsilon,\eta} p_{\varepsilon}(x)^{-1} S(p_{\varepsilon} f)(x)$$

for each $\eta \in E$. By (26) applied to each $p_{\varepsilon}f$ we have

$$S(p_{\varepsilon}f)(x) = m^n \left(x_1 \cdots x_n\right)^{m-1} \psi^* (\mathcal{F}\widehat{Rp_{\varepsilon}f}(1, \cdot))(x)$$

on \mathbb{R}^n_+ and the latter equations show that f can be reconstructed in each quadrant of \mathbb{R}^n from the 2^n nonlinear Radon transforms Rf, $R(x_if)$, $R(x_ix_jf)$,..., $R(x_1\cdots x_nf)$.

Summarizing we have proved the following theorem. Let us recall our notation: $\widehat{Rf} = \widehat{Rf}(1,\lambda)$ is given by (23) with $\lambda \in \mathbb{R}^n$, \mathcal{F} is the inverse Fourier transform of tempered distributions on \mathbb{R}^n , ψ^* is the pullback of distributions by $\psi(x) = (x_1^m, ..., x_n^m)$, $E = \{1, -1\}^n$ and p_{ε} , $a_{\varepsilon,\eta}$ are defined before Lemma 7.

Theorem 8 The nonlinear Radon transform (7) is inverted by the following formulas, where $f \in \mathcal{D}(\mathbb{R}^n)$. (i) if m is odd

$$f(x) = m^n (x_1 \cdots x_n)^{m-1} (\psi^* \mathcal{F} \widehat{Rf})(x)$$

(equality of distributions on the open set $x_1 \neq 0, ..., x_n \neq 0$); (ii) if m is even: for $\eta \in E$,

$$f(\eta x) = \left(\frac{m}{2}\right)^n \sum_{\varepsilon \in E} a_{\varepsilon,\eta} p_{\varepsilon}(x)^{-1} (x_1 \cdots x_n)^{m-1} (\psi^* \mathcal{F}\widehat{Rp_{\varepsilon}f})(x)$$

(equality of distributions on the open set $x_1 > 0, ..., x_n > 0$).

References

- Ehrenpreis, Leon, The Radon Transform and Tensor Products, Contemp. Math. 113 (1990), 57-63.
- [2] Ehrenpreis, Leon, Nonlinear Fourier Transform, Contemp. Math. 140 (1992), 39-48.

- [3] Ehrenpreis, Leon, Parametric and Non Parametric Radon Transform, in 75 Years of Radon Transform, International Press 1994.
- [4] Ehrenpreis, Leon, Some Nonlinear Aspects of the Radon Transform, Lectures in Applied Math. 30 (1994), 69-81.
- [5] Ehrenpreis, Leon, *The Universality of the Radon Transform*, Oxford University Press 2003.
- [6] Friedlander, F., Introduction to the Theory of Distributions, Cambridge University Press 1982.
- [7] Helgason, Sigurður, Integral Geometry and Radon transforms, Springer 2011.
- [8] Hörmander, Lars, The Analysis of Linear Partial Differential Operators I, Springer-Verlag 1983.