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Abstract. In the framework of homogeneous spaces of Lie groups, we propose
a synthetic survey and several generalizations of various inversion formulas from the
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simple inversion formulas and solves wave equations.
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1. Introduction

The Radon transform on a manifold X associates to a function u on this manifold its
integrals Ru(y) over a given family Y of submanifolds y (equipped with suitable measures).
One of the main problems of integral geometry is to recover u from Ru by means of an
explicit inversion formula. The dual Radon transform R� then enters the picture in a
natural way: it maps functions on Y into functions on X, by integrating (with respect to
a suitable measure) over all submanifolds y 2 Y which contain a given point x 2 X.
Here we assume that a Lie group G acts transitively on both X and Y , so that they are

homogeneous space X = G=K, Y = G=H where K, H are Lie subgroups of G ; besides
K will be compact throughout the paper. Our main examples for X will be Riemannian
symmetric spaces of the noncompact type, often assumed to have rank one (hyperbolic
spaces). For Y they will be a family of totally geodesic submanifolds of X, or the family
of horocycles.
We �rst look for a left inverse of R of the following form

u(x) = DR�Ru(x) , (*)

whereD is some operator acting on functions onX. In all known examplesD is an integro-
di¤erential operator, sometimes even di¤erential. The purpose of the present paper is to
emphasize three simple ideas leading to such results (or related to them), sometimes
hidden under long calculations dealing with some speci�c example. As a bene�t we can
unify several proofs from the literature, and obtain some generalizations.
a. The �rst idea stems from Proposition 3 (section 3.1) : R�R is always a convolution op-
erator on X, by a K-invariant measure S. Besides S can be easily written down explicitly
on rank one examples (Propositions 4 and 5). The problem is thus to �nd a convolution
inverse D to S. We study it in section 4 for noncompact isotropic spaces (i.e. all Euclidean
or hyperbolic spaces), looking for D as a polynomial of the Laplace-Beltrami operator of
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X with given fundamental solution S. This can be done for the Radon transform on even-
dimensional totally geodesic submanifolds (with an additional assumption, see Theorem
8), or on horocycles of odd-dimensional hyperbolic spaces (Theorem 9).
Another natural approach is to seek the convolution inverse D by means ofK-invariant

harmonic analysis on X. We discuss this in section 5 for the totally geodesic Radon
transform on hyperbolic spaces. Unfortunately it seems di¢ cult to �nd D explicitly by
this method, except under the assumptions of Theorem 8 (proved by simpler tools) or for
the case of X = Hn(R) (already solved by Berenstein and Tarabusi [1]).
b. The second idea goes back to Johann Radon himself, and will be developed here in full
generality. If we replace R� by the shifted dual transform R�t , obtained by integrating over
submanifolds y at distance t (in some sense) from a point x, we may prove new inversion
formulas for R. More precisely for X = G=K, Y = G=H we consider (section 6.1)

Ru(gH) =

Z
H

u(ghK) dh , R�t v(gK) =
Z
K

v(gktH) dk ,

where g, t are elements of G, u is a function on X and v on Y . Of course R�t = R� when
t is the identity. It is then quite elementary to observe (section 6.2) that an inversion
formula of R at the origin xo for K-invariant u, say u(xo) =< T(y); Ru(y) >, implies the
following new result

u(x) =< T(t); R
�
tRu(x) > (**)

for arbitrary u and x. The notation T(t) means that the operator T now acts on the shift
variable t, instead of x as in (*). Applying this method to the horocycle transform on Rie-
mannian symmetric spaces of the noncompact type, we obtain a new proof of Helgason�s
inversion formulas (Theorem 13 and Corollary 20). In Theorem 14 the same method.is
applied to the totally geodesic transform, thus extending to all classical hyperbolic spaces
known results for the real ones.
c. It is now an intriguing question to compare the results (*) and (**) of methods a
and b. For the 2-dimensional totally geodesic transform on X = H3(R), Helgason ([10])
obtained a curious �amusing formula�by equating the right-hand sides of (*) and (**).
In sections 6.4 and 6.5 we give direct proofs of such formulas, for the Laplace operator
�rst (Proposition 16), then for general invariant di¤erential operators (Theorem 17).
The content of these results is easily understood on the example of the Radon transform

on all hyperplanes of X = R2k+1 (see section 6.4 for more details). Here the inversion
formulas (*), resp. (**), are

Cu(x) = LkxR
�Ru(x) , resp. Cu(x) = @2kt R�tRu(x)

��
t=0

,

where C is a constant factor and L is the Euclidean Laplacian. Passing from one to the
other is thus an immediate consequence of the wave equation

LxR
�
t v(x) = @2tR

�
t v(x)

for v = Ru and all x and t. In Proposition 16 and Theorem 17 we construct solutions
of some generalized wave equations, some of them only valid when t is the identity (but
this su¢ ces for our purpose). Such results may have independent interest, providing
explicit solutions of certain multitemporal wave equations by means of shifted dual Radon
transforms, which appear as integrals of elementary �plane�waves (Proposition 19, for
horocycles).
One last remark : explicit inversion formulas for the totally geodesic Radon transform

seem rather di¢ cult to obtain, and most of them in the literature are only given for spaces
of constant curvature. We obtain here some results for X = Hn(F), with F = R, C or
H, provided that the tangent spaces to the geodesic submanifolds under consideration are
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F-vector spaces (section 4.3.c, Theorem 14, Proposition 16). This seems to be the simplest
case after Rn and Hn(R).

Acknowledgements. This work is clearly and strongly in�uenced by Sigur�ur Helga-
son�s books and papers, and I take this opportunity of expressing all my debt to him. I
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6.3.

Notations.
a. General notations. As usual R;C;H respectively denote the �elds of real numbers,
complex numbers and quaternions. When considering vector spaces on H, the scalars will
act on the right.
IfX is a (real C1) manifold, C(X) is the space of complex-valued continuous functions

on X, Cc(X) the subspace of compactly supported functions and D(X) the subspace of
compactly supported C1 functions; D0(X) is the space of distributions and E 0(X) the
subspace of compactly supported distributions.
If T is an operator (e.g. di¤erential) on a space of functions on X, a notation like

T(x)f(x; y) means that T acts on the variable x, not y.
If G is a (real) Lie group, let e, g, exp, Ad, ad respectively denote its origin, Lie

algebra, exponential mapping, adjoint representations of G and g. When G acts on X, we
shall write g � x, or sometimes �(g)x or even �X(g)x, for the point obtained when g 2 G
acts on the point x 2 X. In particular, for V 2 g, it is convenient to write g � V for
Ad(g)V . In this context, D(X) is the algebra of linear di¤erential operators on X which
commute to the action of G, and D(G) refers to the special case when G acts onto itself
by left translations.
If X is a Riemannian manifold, �(x; r) will denote the sphere with center x 2 X and

radius r � 0. Also !n = 2�n=2=�(n=2) is the area of the unit sphere in the Euclidean
space Rn.
b. Riemannian homogeneous spaces. Let G be a Lie group, K a compact subgroup
and g, k their Lie algebras. The homogeneous manifold X = G=K can be provided with a
G-invariant Riemannian structure. Indeed a scalar product can be taken on g, invariant
under the compact group AdG(K) ; then g = k� p where p, the orthogonal complement
of k in g, is a K-invariant (i.e. stable under AdG(K)) vector subspace which can be
identi�ed with the tangent space to X at the origin xo = K. Carrying by the action of
G the K-invariant scalar product on p we thus obtain a Riemannian structure on X, and
elements of G are isometries.
We shall also consider Y = G=H, where H is another Lie subgroup of G.

c. Riemannian symmetric spaces (see [8] chap.IV or [15] chap. XI for their basic
properties). A special case of the previous one, they are the homogeneous spaces X =
G=K, where G is a connected Lie group provided with an involutive automorphism � and
K is a compact subgroup which lies between the group of all �xed points of � in G and
its identity component. The di¤erential of � at e induces a Lie algebra automorphism of
g and the eigenspace decomposition g = k� p (same notations as before).
The exponential mapping of the symmetric space is Exp : p ! X, related to exp :

g! G by ExpV = (expV )K for V 2 p. The curve ExpRV is the geodesic of X which is
tangent to the vector V at the origin xo = K.
d. Riemannian symmetric spaces of the noncompact type. Assuming further
that G is a connected non compact real semisimple Lie group with �nite center and K
a maximal compact subgroup, we obtain the subclass of Riemannian symmetric spaces
of the noncompact type, particularly interesting because of their rich (and well-known)
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structure arising from the theory of root systems. The map Exp : p! X is then a global
di¤eomorphism onto.
We brie�y recall some classical semisimple notations, as used for instance in Helgason�s

books. Let a be a maximal abelian subspace of p. Related to the restricted root system
of the pair (g; a) are the eigenspaces g�, the Iwasawa decomposition g = k� a� n of the
Lie algebra and G = KAN for the group (unique decomposition of each element of G
into a product of factors in the respective subgroups); the subgroups A, resp. N , of G
are abelian, resp. nilpotent. The half sum of positive roots (counted with multiplicities)
is a linear form � on a ; we write a� = e�(log a) for a 2 A. Let M , resp. M 0, denote the
centralizer, resp. normalizer, of A in K. Then W = M 0=M is a �nite group called the
Weyl group.
Let yo denote the orbit N � xo � X. The horocycles of X are the submanifolds g � yo,

for g 2 G. Since g � yo = yo (globally) if and only if g 2 MN , the space of all horocycles
is Y = G=MN .
e. Isotropic Riemannian symmetric spaces. A Riemannian manifold X is called
isotropic if, for every x 2 X and every pair of unit tangent vectors V , W to X at x,
there exists an isometry of X leaving x �xed and mapping V to W . The connected
isotropic Riemannian manifolds are the Euclidean spaces Rn, the hyperbolic spaces i.e.
the Riemannian symmetric spaces of the noncompact type and of rank one (dim a = 1),
and their compact analogues, spheres and projective spaces. The compact spaces will not
be considered in this paper, so that most of our examples will be taken from the list

Rn;Hn(R);Hn(C);Hn(H);H16(O) .

Among them we shall often restrict ourselves to the classical hyperbolic spaces Hn(F),
with F = R, C or H.

2. Geometric setting

2.1. Double �brations of homogeneous spaces. The general group-theoretic set-
ting for Radon transforms, introduced by Helgason in the sixties, is motivated by the
well-known example of points and hyperplanes in the Euclidean space Rn. The set of
points and the set of hyperplanes are both homogeneous spaces of the isometry group
of Rn, and it turns out that the fundamental �incidence� relation (a point x belongs to
a hyperplane y), as well as the de�ning integral of the Radon transform, have simple
expressions in terms of Lie groups and invariant measures. This observation suggests
considering the following general situation.
Let X and Y be two manifolds, with given origins xo 2 X and yo 2 Y , and assume a

real Lie group G acts transitively on both manifolds X and Y . Two elements x 2 X and
y 2 Y are said to be incident if there exists some g 2 G such that x = g �xo and y = g �yo.
Roughly speaking, if we think of g as a motion, this means that x and y have the same
relative position as the origins xo and yo.
A more convenient formulation is obtained in terms of the isotropy subgroups K, resp.

H, of xo, resp. yo, in G. They are closed Lie subgroups of G, and the manifolds X, Y
can be identi�ed with the homogeneous spaces of left cosets G=K, G=H respectively; in
particular we may write xo = K, yo = H, g � xo = gK, etc. The points x = g0K 2 X and
y = g00H 2 Y are then incident if and only if there exists g 2 G such that g0K = g�xo = gK
and g00H = g � yo = gH, in other words if the left cosets g0K and g00H, as subsets of G,
are not disjoint (they meet at g).
Given y = g00H, we see that x is incident to y if and only if x = g00hK for some h 2 H.

Given x = g0K, the point y is incident to x if and only if y = g0kH for some k 2 K.
In the above example X, resp. Y , is the set of points, resp. hyperplanes, of Rn

and G is the group of all isometries. But hyperplanes can also be viewed as subsets of
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X = Rn, and the incidence relation boils down to the familiar �the point x belongs to the
hyperplane y�if and only if the chosen origin xo belongs to the chosen origin yo. Lemma
1 below extends this fact to Riemannian manifolds. More general incidence relations can
be considered, however, and will be helpful in section 6.
Clearly, the group G acts transitively on the subset Z of X � Y consisting of all

incident couples (x; y) = (g � xo; g � yo), with K \H as the isotropy subgroup of the origin
(xo; yo) 2 Z. Thus Z = G=(K \ H) can be endowed with a structure of manifold, and
the present setting can be summarized by the following double �bration of homogeneous
spaces

Z = G=(K \H) � X � Y
# &

X = G=K Y = G=H ,

where the arrows denote the natural projections.
Radon transforms can be studied with more general double �brations of manifolds

X, Y , Z (without groups), as introduced by Gelfand et al. [4]. We refer to Guillemin
and Sternberg [6] p.340, 370 for their basic properties; this theory has been developed in
several papers by Boman, Quinto, and others.

2.2. Group-theoretic Radon transforms. Let G be a real Lie group and K a
(closed) Lie subgroup, equipped with left-invariant Haar measures dg, dk respectively. If
the homogeneous space G=K admits a G-invariant measure d(gK), the measures can then
be normalized so that Z

G

f(g) dg =

Z
G=K

d(gK)

Z
K

f(gk) dk ,

for any f 2 Cc(G). This applies in particular if K is compact (on invariant measures, see
[9] chap. I §1).
Throughout the paper G will be a Lie group, K a compact subgroup, and H a (closed)

Lie subgroup of G with left-invariant measure dh. The Haar measure dk of K will be
normalized by

R
K
dk = 1.

Let u be a (complex-valued) function on X = G=K. Its Radon transform is the
function Ru on Y = G=H de�ned by

Ru(gH) =

Z
H

u(ghK) dh ,

for g 2 G, whenever this makes sense (e.g. if u 2 Cc(X)). The left invariance of dh implies
that the integral only depends on the left coset gH of g. Given y = gH in Y = G=H, the
value Ru(y) is an integral of u over all x incident to y. A more precise statement can be
given in the following important example.

Example. Let X be a connected Riemannian manifold, G a transitive Lie group of
isometries of X and K the isotropy subgroup of some origin xo 2 X ; then K is compact
([8] p.204) and X = G=K. Let yo be a given closed submanifold of X, containing xo, and
let Y be the set of all submanifolds y = g � yo of X, with g 2 G.
The set H of all h 2 G such that h � yo = yo (i.e. the submanifold yo is globally

invariant under h) is a closed Lie subgroup of G. Indeed if hn 2 H converges to h in G,
for any x 2 yo the point limhn � x = h � x belongs to yo; similarly h�1 � x 2 yo, so that
h � yo = yo. Thus Y = G=H can be endowed with a structure of manifold and we obtain
a double �bration of homogeneous spaces.
The following lemma allows computing the Radon transform without knowing H ex-

plicitly.
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Lemma 1. Keeping the notation of this example, assume furthermore that yo = G0 � xo
is a closed orbit of the origin xo = K under some Lie subgroup G0 of G.
Then G0 � H � G0K and yo = H � xo. The incidence relation between X = G=K and
Y = G=H is simply x 2 y. Besides, the left-invariant Haar measures dh; dg0 of the groups
H;G0 can be normalized so that

Ru(y) =

Z
H

u(gh � xo) dh =
Z
G0
u(gg0 � xo) dg0

=

Z
y

u(x) dmy(x) ,

where dmy is the Riemannian measure induced by X on its submanifold y = g � yo.

The subgroup H can of course be strictly bigger than G0. This occurs for instance if yo
is a line in X = Rn and G0 is the group of translations along this line, or a horocycle
in a Riemannian symmetric space X of the noncompact type (for which G0 = N and
H =MN = NM in the usual semisimple notations).
Proof. If yo = G0 � xo, then H obviously contains G0 and it follows that

yo = G0 � xo � H � xo � yo ,

whence H � xo = G0 � xo and H � G0K.
A point x 2 X is incident to y = g � yo 2 Y if and only if there exists h 2 H such that

x = gh � xo, i.e. x 2 gH � xo = g � yo = y.
An isometry g transforms the Riemannian measure of yo into the Riemannian measure

of y = g � yo, and it su¢ ces to prove the integral formula for g = e. Now yo = H � xo can
be identi�ed to the homogeneous space H=(H \K), and dmyo (which is invariant under
all isometries of yo) to an H-invariant measure on this space. The Haar measure dh can
therefore be normalized so that the corresponding measure on H=(H \K) satis�esZ

yo

u(x) dmyo(x) =

Z
H=(H\K)

u(h � xo) d(h(H \K))

=

Z
H

u(h � xo) dh = Ru(yo) .

The proof is similar for
R
G0 , whence the lemma.

Going back to general double �brations, the Radon dual transform of a (continuous,
say) function v on Y = G=H is the function on X = G=K de�ned by

R�v(gK) =

Z
K

v(gkH) dk ,

for g 2 G, an integral of v over all y incident to x = gK. The word �dual� is of course
motivated by the classical projective duality between points and hyperplanes in the basic
example, but it stems from the following proposition too.

Proposition 2. Let X = G=K with K compact, and assume that Y = G=H has a
G-invariant measure. Let u 2 Cc(X), v 2 C(Y ). Then Ru 2 Cc(Y ), R�v 2 C(X) andZ

X

u(x)R�v(x) dx =

Z
Y

Ru(y) v(y) dy =

Z
Z

u(x) v(y) dz

where dx; dy; dz are the respective G-invariant measures on X;Y and Z = G=(K \H).
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In the latter integral u(x)v(y) is considered as a function of z = (x; y) on Z (section 2.1).
We omit the proof, a classical exercise on invariant integrals (cf. [9] p.144 and [11] p.41);
all groups are assumed unimodular there, but the proof only uses the invariant measures
on the homogeneous spaces, thus extends to the present situation.
Proposition 2 allows a natural extension of the transforms R and R� to distributions.

Given u 2 E 0(X), the distribution Ru 2 E 0(Y ) is de�ned by

< Ru; v >=< u;R�v >

for all test functions v 2 C1(Y ). Similarly, given v 2 D0(Y ), the distribution R�v 2
D0(X) is de�ned by

< R�v; u >=< v;Ru >

for all u 2 D(X). Again we refer to Helgason [11] p.42 for details, based on the compact-
ness of K. These de�nitions do extend the Radon integrals for functions, as Proposition
2 shows, when identifying a function u with the distribution u(x) dx, and similarly for v.

3. Convolution on X and inversion of R

3.1. A convolution formula. Again G is a Lie group, K a compact subgroup, X =
G=K and �(g) denotes the natural action of G on X, i.e. �(g)x = g � x.

a. A general result. Let S1; S2 2 D0(X) be two distributions onX, with S2 assumedK-
invariant. By analogy with the group case (ifK were the trivial subgroup), the convolution
S1 � S2 2 D0(X) can be de�ned by

< S1 � S2; ' >=< S1(g1K); < S2(g2K); '(g1g2K) >> (1)

= < S1(g1K); < S2; ' � �(g1) >>

for any ' 2 D(X). Indeed, the K-invariance of S2 implies that < S2; ' � �(g1) > is a
right K-invariant function of g1 2 G, hence de�nes a function of g1K 2 X to which S1
can be applied (assuming that S1 or S2 has compact support). A more classical de�nition
([9] p.290) of S1 � S2 arises from the convolution on the group G itself, by means of the
projection G! G=K; it is easily checked that both de�nitions agree, but (1) will be more
convenient here (and could be used even if K were not compact).

Proposition 3. Let X = G=K with K compact, and assume that Y = G=H has a
G-invariant measure. For any u 2 Cc(X) we have

R�Ru = u � S ,

a convolution on X. Here, denoting by � the Dirac measure at the origin xo = K of X,
the distribution S = R�R� is the K-invariant measure on X given by

< S; u >= R�Ru(xo) =

Z
K�H

u(kh � xo) dk dh = RuK(yo) ,

with uK(x) =
R
K
u(k � x) dk and yo = H.

Proof. The de�nition of the Radon transforms R and R� clearly show they intertwine
the actions of G on X and Y (here denoted by �X(g), resp. �Y (g), for g 2 G) :

R(u � �X(g)) = (Ru) � �Y (g) , R�(v � �Y (g)) = (R�v) � �X(g) .
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Therefore R�R commutes with �X(g), hence is a right convolution operator. Indeed, let
' 2 D(X) be a test function. The distribution S de�ned by < S;' >= R�R'(xo) extends
to a K-invariant positive linear form on Cc(X), i.e. a measure, and

< u � S; ' >=< u(g � xo); < S; ' � �X(g) >> by (1)

= < u(g � xo); R�R(' � �X(g))(xo) >
= < u(g � xo); (R�R')(g � xo) >
= < u;R�R' >=< R�Ru;' > .

The last equality follows from the duality between R and R� (Proposition 2).

b. Totally geodesic transform on isotropic spaces. The following variant of Propo-
sition 3 gives a more precise statement in a speci�c situation. Unifying and extending
several results from the literature on totally geodesic Radon transforms on two-point ho-
mogeneous spaces (Helgason [9] p.104, 124 and 160, Berenstein and Casadio Tarabusi
[1] p.618), it will lead to inversion formulas. Let X = G=K be an isotropic connected
non compact Riemannian manifold with distance d, where G is a transitive Lie group
of isometries of X and K is the isotropy subgroup of some origin xo 2 X. Let yo be a
totally geodesic submanifold of X, containing xo, and let Y be the set of all submanifolds
y = g � yo of X, with g 2 G. We denote by A(r), resp. Ao(r), the Riemannian measure
(area) of a sphere of radius r in X, resp. in yo.
As explained in section 4.1.a below, Lemma 1 applies to this situation and the Radon

transform can be written as

Ru(y) =

Z
y

u(x) dmy(x) , u 2 Cc(X) , y 2 Y ,

where dmy is the Riemannian measure induced by X on its submanifold y, and

R�v(g � xo) =
Z
K

v(gk � yo) dk , v 2 C(Y ) , g 2 G .

Note that we will not need here the groupH nor an invariant measure on G=H, as opposed
to Proposition 3.

Proposition 4. With the above notation we have, for any u 2 Cc(X),

R�Ru = u � S

(convolution on X), where S is the K-invariant function on X de�ned by

S(x) = Ao(r)=A(r) , r = d(xo; x) .

An explicit formula (5) for S will be given in section 4.1, after we introduce the relevant
notations.
Proof. Fix z = g � xo 2 X. The measure dmy on y = gk � yo corresponds to the measure
dmo on yo by the isometry x 7! gk � x, whence

R�Ru(z) =

Z
yo

�Z
K

u(gk � x) dk
�
dmo(x) .

Now, X being isotropic, K-orbits are spheres centered at xo. Since
R
K
dk = 1, the above

integral over K is the mean value (Mru) (z) of u over the sphere �(z; r) with center z and
radius r = d(xo; x). ThereforeZ

K

u(gk � x) dk = (Mru) (z) =
1

A(r)

Z
�(z;r)

u d� ,
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where d� is the Riemannian measure on �(z; r), and

R�Ru(z) =

Z
yo

(Mru) (z) dmo(x) .

But, yo being totally geodesic, the distance r = d(xo; x) between two points of yo is the
same in X and in yo, and the latter integral can thus be computed in geodesic polar
coordinates on yo (with center xo), as

R�Ru(z) =

Z 1

0

(Mru) (z)Ao(r) dr

=

Z 1

0

(Mru) (z)A(r)f(r) dr

with f(r) = Ao(r)=A(r). This in turn can be viewed as an integral over X computed in
polar coordinates (with center z), namely

R�Ru(z) =

Z 1

0

f(r) dr

Z
�(z;r)

u d� =

Z
X

u(x) f(d(z; x)) dx .

Setting z = g � xo, x = g0 � xo it follows that, for any test function ' 2 D(X),Z
X

R�Ru(z)'(z) dz =

Z
G�G

u(g0 � xo) f(d(g � xo; g0 � xo))'(g � xo) dg0dg .

Changing the variable g into g = g0g00 (with �xed g0) in
R
dg, we obtain from the left

invariance of dgZ
X

R�Ru(z)'(z) dz =

Z
G�G

u(g0 � xo) f(d(g00 � xo; xo))'(g0g00 � xo) dg0dg00

= < u � S; ' > ,

according to (1) and the de�nition of S in the proposition.

c. Horocycle transform on rank one spaces. Let X = G=K be a Riemannian
symmetric space of the noncompact type, G = KAN an Iwasawa decomposition (cf.
Notations, d) and Y = G=MN the space of all horocycles in X. The corresponding dual
Radon transforms are

Ru(gMN) =

Z
N

u(gnK) dn , R�v(gK) =
Z
K

v(gkN) dk

for u 2 Cc(X), v 2 C(Y ) ; MN has been replaced by N in the right-hand sides because
K contains M ..
We now specialize to rank one spaces, with positive roots � and (possibly) 2�. Let H

be the basis vector of a such that �(H) = 1. Multiplying the Killing form scalar product
on g by a suitable factor, it will be convenient to assume that the corresponding norm on
p satis�es kHk = 1.
The exponential mapping exp : n = g� � g2� ! N is a di¤eomorphism onto, with

jacobian 1 ; the Haar measure dn on N can therefore be chosen so thatZ
N

f(n) dn =

Z
g��g2�

f(exp(Z + T )) dZdT ,

where dZ, resp. dT , is the Lebesgue measure on g�, resp. g2�, corresponding to the norm
k:k.
Let p = dim g�, q = dim g2�, � = (p=2) + q, n = p + q + 1 = dimX, and !n =

2�n=2=�(n=2). With the above normalizations we now have the following analogue of
Proposition 4.
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Proposition 5. For the horocycle Radon transform on X, a rank one Riemannian sym-
metric space of the noncompact type, and u 2 Cc(X) we have

R�Ru = u � S ,

(convolution on X). Here S is the radial function on X given by

S(r) = 2(n�1)=2
!n�1
!n

(sinh r)�1 2F1

�
�� 1
2

;
�

2
;
n� 1
2

;� sinh2 r
�
,

with r > 0. For X = Hn(R), i.e. q = 0, this reduces to

S(r) = 2(n�1)=2
!n�1
!n

(sinh r)�1
�
cosh

r

2

�3�n
.

Proof. We �rst assume q = 0.
The groups G and MN being unimodular, the space Y = G=MN has a G-invariant

measure ([11] p.100). By Proposition 3 it follows that R�Ru = u � S, with

< S; u >=

Z
N

u(n � xo) dn =
Z
g�

u(expZ � xo) dZ

for any K-invariant function u on X (this will su¢ ce to �nd the K-invariant function S).
By classical rank one computations ([8] p.414), the radial component exp(rH) of expZ

is given by
expZ � xo = k exp(rH) � xo ,

with k 2 K, r � 0 and kZk = 2
p
2 sinh(r=2). Using spherical coordinates in g� = Rn�1

it follows that, for K-invariant u,Z
N

u(n � xo) dn =

Z 1

0

u(Exp rH) f(r) dr ,

with f(r) = 2(3=2)(n�1)�1!n�1

�
sinh

r

2

�n�2
cosh

r

2
.

On the other hand, using the di¤eomorphism Exp and spherical coordinates on p we haveZ
X

u(x) dx =

Z 1

0

u(Exp rH)A(r) dr , with A(r) = !n(sinh r)
n�1

(cf. section 4.1.b for more details). If S(r) = f(r)=A(r) we thus have, for K-invariant u,Z
N

u(n � xo) dn =
Z 1

0

u(Exp rH)S(r)A(r) dr =

Z
X

u(x)S(x) dx ,

as claimed.
The case q � 1 will not be used in the sequel; we sketch its proof, similar to the case

q = 0. First

< S; u >=

Z
N

u(n � xo) dn =
Z
g��g2�

u(exp(Z + T ) � xo) dZ dT .

Then, by rank one computations ([8] p.414),

exp(Z + T ) � xo = k exp(rH) � xo , k 2 K ,

cosh2 r =

�
1 +

1

4
kZk2

�2
+
1

2
kTk2 , r � 0 .
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Let x = kZk2 =4, y = kTk2 =2. Using spherical coordinates in g� = Rp and g2� = Rq we
obtainZ

N

u(n � xo) dn = 2p�2+(q=2)!p!q

Z 1

0

Z 1

0

u(exp(rH) � xo)x(p=2)�1y(q=2)�1dx dy

=

Z 1

0

u(exp(rH) � xo) f(r) dr .

The latter expression follows from the change of variables (x; r) 7! (x; y), with jacobian
sinh 2r; here

f(r) = 2p�2+(q=2)!p!q sinh 2r

Z cosh r�1

0

x(p=2)�1
�
cosh2 r � (1 + x)2

�(q=2)�1
dx .

Setting x = t(cosh r � 1) we �nd

f(r) = 2(3p+q)=2!n�1 (sinh r)
q�1

�
sinh

r

2

�p
cosh r�

� �((p+ q)=2)

�(p=2)�(q=2)

Z 1

0

t(p=2)�1(1� t)(q=2)�1
�
1 + t tanh2

r

2

�(q=2)�1
dt

= 2(3p+q)=2!n�1 (sinh r)
q�1

�
sinh

r

2

�p
cosh r � 2F1

�
p

2
; 1� q

2
;
p+ q

2
;� tanh2 r

2

�
,

by Euler�s integral formula for the hypergeometric function. From a quadratic transfor-
mation formula for 2F1 ([3] p.113, formula (35)) we �nally obtain

f(r) = 2(n�1)=2!n�1(sinh r)
n�2(cosh r)q 2F1

�
�� 1
2

;
�

2
;
n� 1
2

;� sinh2 r
�
.

Thus, for K-invariant u,Z
N

u(n � xo) dn =
Z 1

0

u (exp(rH) � xo) S(r)A(r) dr =
Z
X

u(x)S(x) dx ,

where A(r) = !n(sinh r)
n�1(cosh r)q and S(r) = f(r)=A(r).

3.2. Radon inversion by convolution. Radon inversion formulas will follow from
section 3.1 if we can solve for u the convolution equation u � S = R�Ru, in the form

u = DR�Ru . (2)

To recover u(x) from Ru the recipe will be to integrate Ru(y) over all y incident to x,
and to apply the operator D on the x variable.
As noted in the proof of Proposition 3, R�R commutes with the action of G on X,

and it is natural to look for a D with the same property, i.e. a convolution operator : if
T is a distribution on X such that S � T = �, then

u = (R�Ru) � T .

Though the question can be tackled by harmonic analysis on X (cf. section 5), a G-
invariant linear di¤erential operatorD can sometimes be found directly, such thatDS = �.
Then (2) follows from the equality u = u �DS = D(u � S). Indeed, for any test function
',

< D(u � S); ' >=< u � S;tD' >
= < u(g � xo); < S; (tD') � �(g) >> by (1)

= < u(g � xo); < S;tD(' � �(g)) >> ,
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since the transpose operator tD is G-invariant too, as follows from the existence of a
G-invariant measure on X. Finally,

< D(u � S); ' >=< u(g � xo); < DS;' � �(g) >>
= < u �DS;' > ,

as claimed; assuming G unimodular (as in [9] p.291) is thus unnecessary here.
The method applies whenever we can �nd a G-invariant di¤erential operator D on X

with given fundamental solution S. We shall now investigate this question on the basis of
Propositions 4 and 5.

4. Radon transforms on isotropic spaces

Throughout this section X will be an isotropic connected noncompact Riemannian man-
ifold, that is a Euclidean space or a Riemannian globally symmetric space of rank one:

X = Rn or Hm(R);H2m(C);H4m(H);H16(O) ,

where all superscripts denote the real dimension of these real, complex, quaternionic or
Cayley hyperbolic spaces (cf. Wolf [18] §8.12). We �rst try to invert the d-geodesic Radon
transform on X, de�ned by integrating over a family of d-dimensional totally geodesic
submanifolds of X. At the end of this section we shall see that the same tools provide an
inversion formula for the horocycle Radon transform on H2k+1(R).

4.1. Totally geodesic submanifolds. Our �rst goal is to describe these submani-
folds and the corresponding functions S in Proposition 4.

a. Let X = G=K be a Riemannian symmetric space of the noncompact type (of arbitrary
rank), where G is a connected semisimple Lie group and K a maximal compact subgroup
(see Notations, c and d).
At the Lie algebra level, a totally geodesic submanifold of X is de�ned by a Lie triple

system, i.e. a vector subspace s of p such that [s; [s; s]] � s. Then Exp s is totally geodesic
in X and contains the origin xo. Besides k0 = [s; s] � k and g0 = k0� s are Lie subalgebras
of g. Let G0 be the (closed) Lie subgroup with Lie algebra g0, and K 0 (with Lie algebra
k0) be the isotropy subgroup of xo in G0. Then

Exp s = G0=K 0 = G0 � xo ,

a closed symmetric subspace of X ([8] p.224-226, or [15] p. 234 sq.).
Now let Y be the set of all d-dimensional totally geodesic submanifolds y = g � yo of

X, with g 2 G and yo = Exp s = G0 � xo. Lemma 1 applies : if H is the subgroup of all
h 2 G such that h � yo = yo, then yo = H � xo, Y = G=H and the incidence relation is
x 2 y.
It will be useful to note that the Lie algebra h of H satis�es

h = (h \ k)� s , h \ k � [s; s] , h \ p = s . (3)

Indeed the de�nition of H shows its invariance under the Cartan involution of G, whence
the direct sum decomposition of h. Besides h contains g0 = [s; s]� s by Lemma 1 and, for
V 2 h \ p, the point expV � xo = ExpV belongs to H � xo = Exp s, thus V 2 s by the
injectivity of Exp on p.
By Lemma 1 the Radon transform of u 2 Cc(X) is given by

Ru(y) =

Z
y

u(x) dmy(x) =

Z
Exp s

u(g � x) dmyo(x) ,
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where dmyo is the Riemannian measure induced by X on its submanifold yo = Exp s.

b. Rank one case. We now restrict to the rank one case (hyperbolic spaces). Let H 2 s
be a �xed non zero vector. The line a = RH is a maximal abelian subspace of p and s,
and Exp s is again a symmetric space of rank one. The classical decomposition

p = a� p� � p2�

into eigenspaces of (adH)2, with respective eigenvalues 0; (�(H))2; (2�(H))2 (where �
and 2� are the positive roots of the pair (g; a)), implies a similar decomposition of the
invariant subspace s :

s = a� s� � s2� ,
with s� = s \ p� and s2� = s \ p2�. We set

p = dim p� , q = dim p2� , n = dimX = p+ q + 1

p0 = dim s� , q0 = dim s2� , d = dim s = p0 + q0 + 1 ,

with q = q0 = 0 when 2� is not a root (case of real hyperbolic spaces).
Let us normalize the vector H by the condition �(H) = 1. Multiplying if necessary

the Riemannian metric of X by a constant factor, we may assume that the corresponding
Euclidean norm on p satis�es kHk = 1. Since Exp is a di¤eomorphism of p onto X, the
integral of a function u 2 Cc(X) can be computed asZ

X

u(x) dx =

Z
p

u(ExpZ)J(Z) dZ ,

where J(Z) = detp(sinh adZ= adZ) is the jacobian of Exp, a K-invariant function on p.
If u is K-invariant on X, we simply write u(r) for u(ExpZ) = u(Exp rH) with r = kZk
whence, computing with spherical coordinates on p,Z

X

u(x) dx =

Z 1

0

u(r)A(r) dr ,

where A(r) = !nr
n�1 detp(sinh ad rH= ad rH) is the area of the sphere with center xo

and radius r in X, and !n = 2�n=2=�(n=2) is the area of the unit sphere in Rn. Taking
account of the eigenvalues of (adH)2 we obtain, with a parameter " explained in the next
remark,

A(r) = !n

�
sinh "r

"

�p�
sinh 2"r

2"

�q
= !n

�
sinh "r

"

�n�1
(cosh "r)q . (4)

A similar expression gives Ao(r) for the submanifold yo (with d; p0; q0 instead of n; p; q).
The distribution S in Proposition 4 is thus de�ned by the radial function

S(r) = Ao(r)=A(r) = (!d=!n)

�
sinh "r

"

�d�n
(cosh "r)

q0�q . (5)

Remark. Here " = 1 for spaces of the noncompact type, but (4) and (5) remain valid
in the Euclidean case too, setting " = 0 and (sinh "r)=" = r : when X = Rn the geodesic
submanifolds are the a¢ ne d-planes, 1 � d � n� 1, and

S(r) = (!d=!n) r
d�n .

The compact cases (projective spaces) might be dealt with similarly. One should then
normalize H by �(H) = i and replace " by i. Integrals with respect to r should run from
0 to the diameter ` of X, i.e. the �rst number ` > 0 such that A(`) = 0.
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4.2. An inversion formula. The G-invariant di¤erential operators on an isotropic
space X are the polynomials of its Laplace-Beltrami operator L ([9] p.288). In order to
invert the d-geodesic Radon transform on X, section 3.2 suggests looking for a polynomial
P such that the above distribution S is a fundamental solution of P (L).
Motivated by (4) and (5), we introduce the family of radial functions fa;b on X de�ned

by

fa;b(r) =

�
sinh "r

"

�a
(cosh "r)

b
=

�
sinh "r

"

�a�b�
sinh 2"r

2"

�b
,

where a and b are real constants and r is the distance from the origin xo; in particular
fa;b(r) = ra for " = 0. Thus

A(r) = !n fn�1;q , S(r) = (!d=!n) fd�n;q0�q

with q, q0, n and d as de�ned above.

Proposition 6. Assume " = 0 (Euclidean case), or " = 1 and b = 0, or else " = 1 and
b = 1 � q (hyperbolic cases). Then, for any integer k � 1, the function f2k�n;b de�nes a
K-invariant distribution F2k�n;b on X such that

Pk(L)F2k�n;b = !n2
k�1(k � 1)!(2� n)(4� n) � � � (2k � n) � ,

where � is the Dirac distribution at the origin xo and Pk is the polynomial

Pk(x) =

kY
j=1

�
x+ "2(n� 2j � b)(2j + b+ q � 1)

�
.

The case b = 0, n = 2k + 2 was given by Schimming and Schlichtkrull [17] Theorem 6.1,
as an example in their beautiful study of Hadamard�s method and Helmholtz operators
on harmonic manifolds.
Proof. By [9] p.313 the radial part of L is

� = @2r +
A0(r)

A(r)
@r = A(r)�1 � @r �A(r) � @r

= @2r + ((n� 1)" coth "r + q" tanh "r) @r
= @2r + (p" coth "r + 2q" coth 2"r) @r .

The proof of the proposition breaks up into a few easy facts. First we have for any
a; b 2 R the following equality of functions of r > 0�

�� "2(a+ b)(a+ n+ b+ q � 1)
�
fa;b

= a(a+ n� 2)fa�2;b � "2b(b+ q � 1)fa;b�2 , (6)

which is immediate from �f = A�1(Af 0)0 and the identities

f 0a;b = afa�1;b+1 + "
2bfa+1;b�1 , fa;b = fa;b�2 + "

2fa+2;b�2 .

Lemma 7. For a + n � 2, " = 0 or 1, the locally integrable function fa;b de�nes a
K-invariant distribution Fa;b on X such that�

L� "2(a+ b)(a+ n+ b+ q � 1)
�
Fa;b

=

�
a(a+ n� 2)Fa�2;b � "2b(b+ q � 1)Fa;b�2 if a+ n > 2
!na � � "2b(b+ q � 1)Fa;b�2 if a+ n = 2

(equality of distributions on X).
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For example, taking b = 0, resp. b = 1�q, the lemma provides the following fundamental
solutions (which coincide for q = 1)

�
L+ "2(n� 2)(q + 1)

�� sinh "r
"

�2�n
= !n(2� n)�

�
L+ 2"2(n+ q � 3)

�� sinh "r
"

�2�n
(cosh "r)

1�q
= !n(2� n)� .

In the �at case " = 0 they both reduce to Lr2�n = !n(2� n)�, a classical result for Rn.

Proof. Due to the K-invariance of fa;b and L we need only consider K-invariant test
functions u 2 D(X). The integralZ

X

fa;b � u dx =
Z 1

0

fa;b(r)u(r)A(r) dr = !n

Z 1

0

fa+n�1;b+q(r)u(r) dr ,

absolutely convergent if a + n > 0, de�nes a distribution Fa;b on X. In view of the
symmetry and K-invariance of the Laplace operator we have

< LFa;b; u >=< Fa;b; Lu >

=

Z 1

0

fa;b(r)�u(r)A(r) dr =

Z 1

0

fa;b(Au
0)0 dr

=
�
Af 0a;bu

�
(0)� (Afa;bu0) (0) +

Z 1

0

(Af 0a;b)
0u dr .

If a+ n > 2 the function Afa;b vanishes at order a+ n� 1 at the origin, and Af 0a;b at
order a+n� 2. Since u(r) is smooth (this notation stands for u(Exp rH) with kHk = 1),
it follows that

< LFa;b; u >=

Z 1

0

�fa;b(r)u(r)A(r) dr ,

whence the result by (6).
The case a+ n = 2 is similar, in view of (Af 0a;b)(0) = !na.

Proposition 6 now follows easily : letting

La = L� "2(a+ b)(a+ n+ b+ q � 1)

we have, by Lemma 7,

LaFa;b =

�
a(a+ n� 2)Fa�2;b if a+ n > 2
!na � if a+ n = 2

whenever "2b(b+ q � 1) = 0. Since

Pk(L) = L2�nL4�n � � �L2k�n ,

the proposition follows by induction on k.

Theorem 8. The d-geodesic Radon transform on a n-dimensional noncompact Riemannian
isotropic space X can be inverted by means of a polynomial of its Laplace-Beltrami op-
erator L, under the following assumptions (i) and (ii) :
(i) d is even : d = 2k with k � 1
(ii) X = Rn, or dim s2� = dim p2�, or else dim s2� = 1.
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Then
Cu = Pk(L)R

�Ru

for any u 2 D(X), where Pk is the polynomial from Proposition 6 (with " = 1, q = dim p2�
and b+ q = dim s2� if X is hyperbolic, or " = 0 if X = Rn) and

C = !d(�1)k2k�1(k � 1)!(n� 2)(n� 4) � � � (n� 2k) .

Proof. By (5) one has S = (!d=!n) fa;b, with a = d�n and b = dim s2��dim p2� = q0�q
(section 4.1.b). The theorem follows from Proposition 6 and section 3.2.
Theorem 8 encompasses Helgason�s Theorems 4.5 and 4.17 in [9] chapter I (with dif-

ferent normalizations from ours), as well as some generalizations (next section). See also
Grinberg [5] for the case of projective spaces, where the polynomial Pk is related to rep-
resentation theory.

4.3. Examples. According to assumption (ii), three types of totally geodesic Radon
transforms can be inverted by Theorem 8. Putting aside the case of even-dimensional
planes in the Euclidean space X = Rn, we now describe some examples of the latter two.
The space X = G=K is then one of the hyperbolic spaces, and the dual space Y

consists of all geodesic submanifolds g � Exp s, g 2 G, where s � p is an even-dimensional
Lie triple system. Let a = RH be any line in p, and p = a�p��p2� be the corresponding
root space decomposition.

a. A simple example is s = a � p2�, assuming p2� 6= 0. Classical bracket relations (e.g.
[8] p.335) imply that s is a Lie triple system and, reading dim p2� from the classi�cation
of rank one spaces, dim s is 2, 4 or 8 ; here s� = 0 and s2� = p2�.

b. Another example is s = p�, assuming this space is even-dimensional. Bracket relations
show s is a Lie triple system. To obtain compatible root space decompositions of s and
p we replace H by an H 0 2 s, whence the new root space decompositions with respect to
a0 = RH 0

p = a0 � p0� � p02� , s = a0 � s0� � s02� .
It follows again from the classi�cation that p02� and s

0
2� have the same dimension in all

cases, therefore coincide (Helgason [7] p.171, or [9] p.168). This example is motivated by
the Radon transform on antipodal manifolds of compact symmetric spaces of rank one
(loc. cit.).

c. Totally geodesic transform on classical hyperbolic spaces. Let X = Hm(F)
with F = R, C, or H, be one of the classical hyperbolic spaces. Then X = G=K with
G = U(1;m;F), K = U(1;F)�U(m;F), and the Cartan decomposition is g = k�p where
p, the space of all matrices

V =

0BBB@
0 V1 � � � Vm
V1
... (0)
Vm

1CCCA , Vi 2 F ,

can be identi�ed with Fm.
Let V �W =

Pm
i=1 ViWi. For U; V;W 2 p = Fm, easy computations lead to

[U; [V;W ]] = U
�
V �W �W � V

�
� V (W � U) +W (V � U) (7)

(Fm being considered as a F-vector space, with scalars acting on the right). It follows
that any F-subspace s of p is a Lie triple system. Similarly, the natural inclusions Rm �
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Cm � Hm show that any R-subspace of p \ Rm, or any C-subspace of p \ Cm, is a Lie
triple system.
Let H 6= 0 be an element of p. The eigenspaces of (adH)2 can be obtained from (7),

whence the decomposition

p = a� p� � p2� , a = RH ,

p� = fV 2 p j H � V = 0g , p2� = fH� j � 2 F; �+ � = 0g ,

with respective eigenvalues 0, H �H and 4
�
H �H

�
. A similar decomposition holds for s,

if H is chosen in s. The spaces a� p2� = HF and p� are F-subspaces of p, therefore Lie
triple systems (as mentioned in a and b above). More generally, Theorem 8 applies to
the following four families of totally geodesic submanifolds Exp s ; all superscripts in the
table are real dimensions, with k; l;m strictly positive integers.

X dim p� dim p2� s dim s� dim s2� yo = Exp s
Hm(R) m� 1 0 (1) 2k � 1 0 H2k(R)
H2m(C) 2m� 2 1 (2) 2k � 2 1 H2k(C)
H4m(H) 4m� 4 3 (3) 2k � 2 1 H2k(C)
H4m(H) 4m� 4 3 (4) 4l � 4 3 H4l(H)

Case (1) : s is any R-subspace of p = Rm, with dimR s = 2k � m.
Case (2) : s is any C-subspace of p = Cm, with dimC s = k � m.
Case (3) : s is any C-subspace of Cm � p = Hm, with dimC s = k � m.
Case (4) : s is any H-subspace of p = Hm, with dimH s = l � m.

d. Horocycle transform on real hyperbolic spaces. Proposition 6 also applies to
this case, because of the similarity between the functions S obtained in Propositions 4
and 5.
Indeed, following the same steps as for geodesic submanifolds, one can �nd a polyno-

mial of the Laplacian with fundamental solution S (case q = 0 in Proposition 5). Indeed
S(r) is now, up to a constant factor, f�1;2�n(r=2) in the notation of section 4.2 with
" = 1. Let

�p;q = @2r + (p coth r + 2q coth 2r) @r

be the radial part of the Laplacian and g(r) = f(r=2). Then

4 (�p;0 g) (r) = (�0;p f) (r=2) ;

note that the roles of p and q have been interchanged. The next theorem now follows
from Propositions 5 and 6, with n = 2k + 1, " = 1 and b = 1� p = 2� n.

Theorem 9. (Helgason) The horocycle Radon transform on the odd-dimensional hyper-
bolic space X = H2k+1(R), k � 1, is inverted by

Cu = Qk(L)R
�Ru ,

where u 2 D(X), L is the Laplace-Beltrami operator of X,

C =
�
��
2

�k (2k � 1)!
(k � 1)! , Qk(x) =

kY
j=1

(x+ j(2k � j)) .

In [11] p.210, the normalization of the Riemannian metric on X di¤ers from ours.
The result extends to the horocycle transform on a Riemannian symmetric space

X = G=K of the noncompact type, provided that the Lie algebra g has only one conjugacy
class of Cartan subalgebras (see Corollary 20 below). The spaces H2k+1(R) in Theorem
9 are the rank one spaces among those.
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5. Harmonic analysis on X and inversion of R

As noted in section 3.2, an inversion formula for the Radon transform onX = G=K follows
from a convolution inverse T of the distribution S in Propositions 3 or 4: if S � T = �,
then u = (R�Ru) � T . Since S is K-invariant it is natural to search for a K-invariant T
by means of harmonic analysis of radial functions on X, i.e. solving the equation

eS(�) eT (�) = 1
whereedenotes the spherical transform. We keep to the notations of section 4.1.b, dealing
with the d-geodesic transform on a n-dimensional hyperbolic space X.
The spherical function '� on X is the radial eigenfunction of the laplacian L de�ned

by
L'� = �

�
�2 + �2

�
'� , '�(xo) = 1 ,

where � = (p=2)+q and � is a real parameter. Writing down the radial part of L it follows
that ([9] p.484)

'�(r) = 2F1

�
�+ i�

2
;
�� i�
2

;
n

2
;� sinh2 r

�
(8)

where 2F1 is the classical hypergeometric function. The spherical transform of a radial
function S is then

eS(�) = Z
X

'�(x)S(x) dx =

Z 1

0

'�(r)S(r)A(r) dr (9)

and, in view of the relevant expressions (4) and (5) of A and S (section 4.1 with " = 1),
we shall need the following lemma.

Lemma 10. Let a; b; �; �;  be complex numbers, with 0 < Re a < Re , Re(a+b) < Re�
and Re(a+ b) < Re�. ThenZ 1

0
2F1(�; �; ;�s) sa�1(1 + s)bds

=
�()�(a)

�( � a)
�(�� a� b)�(� � a� b)

�(�� b)�(� � b) 3F2(a;�b; �+ � �  � b;�� b; � � b; 1) .

Here 3F2 denotes the generalized hypergeometric series

3F2(a; b; c; d; e; z) =
X
n�0

(a)n(b)n(c)n
(d)n(e)n

zn

n!
,

with (a)o = 1, (a)n = a(a+ 1) � � � (a+ n � 1) = �(a+ n)=�(a). The lemma follows from
the change s = t=(1 � t), some classical identities for 2F1 and term by term integration
under

R 1
0
(� � � ) dt of the power series expansion of 2F1. We skip the details of the proof.

Among various equivalent expressions which could be obtained similarly, the above one
was chosen because of its obvious symmetry with respect to � and �.
Let � = (1� q0 + �+ i�) =2. Changing s into � sinh2 r in Lemma 10 we obtain, in

view of (4), (5), (8) and (9),

eS(�) = �d=2�
�
n
2

�
�
�
n�d
2

� ������
�
�� d

2

�
� (�)

�����
2

� 3F2
�
d

2
;
1� q0
2

;
q � q0
2

;�; �; 1

�
, � 2 R , (10)

assuming � 2 R, 0 < d < n and d < 1� q0 + � ; recall that q = dim p2�, q0 = dim s2�.
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Finding T such that eS(�) eT (�) = 1 seems intractable however, unless the 3F2 factor is
trivial. We are thus led to assume from now on (as in section 4.2)

q0 = q or q0 = 1 , (11)

so that 3F2(� � � ) = 1. The conditions on d then reduce to 0 < d < 1� q0+ �, ensuring the
convergence of the integral eS(�).
If d = 2k is an even integer, then eS(�) is the reciprocal of the polynomial

1eS(�) = C
kY
j=1

�
��2 � �2 + (n� 2j � q0 + q)(2j + q0 � 1)

�
,

where C is a constant factor, in agreement with Theorem 8 (with ��2��2 corresponding
to L under the spherical transform).
If d = p0 + q0 + 1 is odd, then p0 = dim s� and q0 = dim s2� must have the same parity

which, according to the classi�cation of rank one symmetric spaces, can only occur for
q0 = 0 and p0 even. Condition (11) now requires q = 0, and X must be a real hyperbolic
space Hn(R). This is the case studied by Berenstein and Tarabusi [1]; see also [14] p.101
for X = H2(R) and d = 1. To �nd the convolution inverse T the strategy is to consider

fa;b(r) = (sinh r)
a
(cosh r)

b ,

where a; b are chosen so that gfa;b(�) has (by Lemma 10 again) an expression similar to
(10) with trivial hypergeometric factor, and so that cross simpli�cations occur between
the j�(� � � )j2 factors in the product eS(�)gfa;b(�). This product is then the reciprocal of a
polynomial in �2 (as in the case d even), and the corresponding inversion formula is

u = P (L) ((R�Ru) � fa;b) ,

where P is a polynomial. We refer to [1] for details.
Unfortunately the method of spherical transforms sketched above seems to provide

explicit inversion formulas for the d-geodesic Radon transform on X only when q0 = q
or q0 = 1 on the one hand (to get rid of 3F2) and d even or X = Hn(R) on the other
hand. The only reachable results so far are thus the formulas already obtained in [1] for
Hn(R) and a new proof of the above Theorem 8. The method might however yield some
new results in the wider class of Damek-Ricci spaces (or harmonic NA groups), where the
dimension q can be an arbitrary integer.

6. Shifted Radon transforms, waves, and the amusing formula

On page 146 of [10], S. Helgason notes the �amusing formula�

LR�Ru(x) = � @

@�
R�t(�)Ru(x)

����
�=1

(12)

for the 2-geodesic Radon transform R on the hyperbolic space X = H3(R), where L is the
Laplace-Beltrami operator of X and x 2 X. In this formula, R�t is the generalized dual
transform obtained by integrating over all 2-dimensional totally geodesic submanifolds
at distance t from a point x, and t = t(�) denotes the positive solution of the equation
cosh t = 1=� . In [10], or [11] p. 55, equation (12) is indirectly obtained by bringing
together two di¤erent inversion formulas for R.
In this section we study general shifted transforms, a concept going back to Radon

himself [16] for the line transform in R2, and we use them to derive inversion formulas.
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They also provide solutions of wave-type equations; formula (12) can actually be seen
as a wave equation at time t = 0. We shall give a direct proof of some generalized
�amusing formulas�, thus solving wave equations (called multitemporal when the time
variable is multidimensional), and we use them to relate two di¤erent types of Radon
inversion formulas (with or without shifts).

6.1. Shifts. As before, let X = G=K and Y = G=H be two homogeneous spaces, with
K compact, and

Ru(g � yo) =
Z
H

u(gh � xo) dh

be the corresponding Radon transform of u 2 Cc(X).
Let t 2 G be a �shift�, �xed at �rst. Replacing the origin yo = H in Y by the

shifted origin yt = t � yo, with stabilizer subgroup Ht = tHt�1 � G, we obtain the
new identi�cation Y = G=Ht, and a new incidence relation between X and Y . A point
x = g � xo 2 X is now incident to y 2 Y if and only if there exists  2 G such that

x =  � xo and y =  � yt = t � yo ,

i.e.
y = gkt � yo

for some k 2 K. The corresponding shifted dual transform of v 2 C(Y ) is

R�t v(g � xo) =
Z
K

v(gkt � yo) dk .

Remark. We now have two double �brations

Z = G=(K \H) Zt = G=(K \Ht)

# & # &
X = G=K Y = G=H , X = G=K Y = G=Ht ,

and we are dealing with the Radon transform R given by the �rst and the dual transform
R�t given by the second. The transform Rt associated with the second diagram is

Rtu(g � yo) =
Z
H

u(ght�1 � xo) dh ;

but, excepting the proof of Proposition 12, it will not be used in the sequel.

Lemma 11. Let u 2 Cc(X) and g; t 2 G. Then

(R�tRu)(g � xo) = (Rug)(t � yo) ,

where ug is the K-invariant function on X de�ned by

ug(x) =

Z
K

u(gk � x) dk .

Proof. Immediate, since

(R�tRu)(g � xo) =
Z
K�H

u(gkth � xo) dk dh =
Z
H

ug(th � xo) dh .

Before proceeding we mention the following extension of Proposition 3 to shifted trans-
forms. This result will not be used in the sequel.
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Proposition 12. Let G and H be unimodular, K compact, X = G=K and Y = G=H.
For any u 2 Cc(X) and t 2 G we have

R�tRu = u � St

(convolution on X). Here St is the K-invariant distribution on X de�ned by S = R�tR�,
and � is the Dirac distribution at the origin xo = K of X, i.e.

< St; u >= R�Rtu(xo) =

Z
K�H

u(kht�1 � xo) dk dh .

Proof. The proof of Proposition 3 can be repeated here, with R�Rt as the dual of R�tR.
The claim can also be checked directly, writing, for ' 2 D(X),

< R�tRu;' >=

Z
G�H

u(gth � xo)'(g � xo) dg dh ,

and changing variables into h0 = h�1, g0 = gth ; the result follows easily, G and H being
unimodular groups. Details are left to the reader.

6.2. Radon inversion by shifts. The elementary Lemma 11 can be used in the
following way. Assume the transform R can be inverted at the origin for K-invariant
functions on X, say

u(xo) =< T(y); Ru(y) > , (13)

where T is some linear form on a space of functions on Y . Then, replacing u by the
K-invariant function ug in the lemma, we obtain

u(g � xo) = ug(xo) =< T;Rug > .

The roles of g and t can now be interchanged by Lemma 11, whence

u(x) =< T(t); R
�
tRu(x) > (14)

for arbitrary u 2 D(X) and x 2 X . The notation T(t) means that T now acts on the
shift variable t, or t � yo to be precise. Since R�kthRu(x) = R�tRu(x) for k 2 K and h 2 H,
this variable may actually be taken in KnG=H.
The general inversion formula (14) for R thus follows from the special case (13) of

K-invariant functions at the origin, thanks to the shifted dual transform.
If X is an isotropic space, the above trick (replace u by ug) simply means replacing

u(x) by its mean value over the sphere with center g � xo and radius d(xo; x).

6.3. Examples. a. Horocycle transform. We �rst consider the horocycle Radon
transform on X = G=K, a Riemannian symmetric space of the noncompact type. Using
the classical semisimple notations related to an Iwasawa decomposition G = KAN (see
Notations, d), we take the point xo = K, resp. the horocycle yo = N � xo, as the origin in
X, resp. in Y = G=MN . Then

Ru(g � yo) =
Z
N

u(gn � xo) dn

(integrating over M is unnecessary here) and the dual transform shifted by a 2 A is

R�av(g � xo) =
Z
K

v(gka � yo) dk .
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For K-invariant u the decomposition g = kan gives

Ru(g � yo) = Ru(a � yo) =
Z
N

u(an � xo) dn = a��Au(a) ;

the Abel transform A is de�ned by this equality.
For K-invariant u 2 D(X) we have Au 2 D(A). Let a� be the dual space of a. It is

known from spherical harmonic analysis on X that the classical Fourier transform

cAu(�) = Z
A

a�i�Au(a) da , � 2 a� ,

coincides with the spherical transform of u, with the inversion formula ([9] p.454)

u(xo) = C

Z
a�

cAu(�) jc(�)j�2 d� , (15)

where C is a positive constant and c(�) is Harish-Chandra�s function. Since C �jc(�)j�2 has
polynomial growth on a� its Fourier transform is a tempered distribution T on A = exp a
such that

u(xo) =< T;Au >=< T(a); a
�Ru(a � yo) > .

Thus T inverts the Abel transform at the origin. By (14) we obtain the next theorem.

Theorem 13. Let X be a Riemannian symmetric space of the noncompact type. Its
horocycle Radon transform R can be inverted by

u(x) =< T(a); a
�R�aRu(x) > , x 2 X ,

for u 2 D(X). The distribution T(a) (acting on the variable a 2 A) is, up to a constant
factor, the Fourier transform of jc(�)j�2.

Remarks. (i)This extends a result by Berenstein and Tarabusi [2] for X = Hn(R),
obtained by direct calculations.
(ii) Helgason�s original inversion formula ([11] p.116)

u(x) = R���Ru(x)

follows easily from Theorem 13. Indeed Helgason�s operator �� is de�ned as follows ([11]
p.111). Given v 2 D(Y ) and g = kan 2 G, multiply v(g � yo) = v(ka � yo) by a�, take the
Fourier transform with respect to a 2 A, multiply it by C � jc(�)j�2 (an even function of
�), take the inverse Fourier transform, and multiply by a��; the result is ��v(g � yo). In
other words

��v(g � yo) = ��v(ka � yo) = a�� (T � (a�v)) (ka � yo) ,
where � is the convolution on A with respect to a. Let b denote a variable in A; since T
is even we have

��v(g � yo) = a�� < T(b); (ab)
�v(kab � yo) >

= < T(b); b
�v(kab � yo) >=< T(b); b

�v(gb � yo) > .

Replacing v by Ru, g by gk and integrating with respect to k 2 K we obtain

R���Ru(g � xo) =

Z
K

< T(b); b
�Ru(gkb � yo) > dk

= < T(b); b
�

Z
K

Ru(gkb � yo) dk >=< T(b); b
�R�bRu(g � xo) > .
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By Theorem 13 this is u(g � xo), as claimed.
(iii) Note that T is supported at the origin if and only if jc(�)j�2 is a polynomial, i.e. if
the Lie algebra g has only one conjugacy class of Cartan subalgebras (see Corollary 20
below).

b. Totally geodesic transform on classical hyperbolic spaces. We retain the
notation of section 4.3.c.

Theorem 14. Let X = Hm(F), F = R;C or H, be one of the classical hyperbolic spaces,
let s be any F-vector subspace of p = Fm, and T any unit vector orthogonal to s in p.
For the Radon transform de�ned by the totally geodesic submanifolds y = g � Exp s,

of (real) dimension d, we have the following inversion formulas by means of shifted dual
transforms, for u 2 D(X) and x 2 X,
(i) If d = 2k + 1 is odd, k � 0,

2k�k+1u(x) =
�
��1@�

�k+1 Z �

0

�
R�exp t(�)TRu(x)

�
(�2 � �2)�1=2d�

����
�=1

,

where t(�) denotes the positive solution of the equation cosh t = 1=� .
(ii) If d = 2k is even, k � 1, there exists a polynomial of degree k

Qk(�) =
2kk!

(2k)!
�k + � � �+ (q0 + 1)(q0 + 3) � � � (q0 + 2k � 1) ,

with rational coe¢ cients (depending on k and q0 = dim s2�), such that

(�2�)ku(x) = Qk(@
2
t )
�
R�exp tTRu(x)

�
t=0

.

Remarks. This extends a result proved by Helgason ([10] p.144, or [14] p.97) for F = R.
In case (i), a look at the proof below shows that an arbitrary positive integer ` may be
added to the exponents of ��1@� and �2 � �2; Helgason�s result is obtained for ` = k.
From the proof of case (ii) we obtain for k = 1; 2

Q1(@
2
t ) = @2t + q

0 + 1

Q2(@
2
t ) =

1

3
@4t +

�
2q0 +

14

3

�
@2t + (q

0 + 1)(q0 + 3) .

Our d is of course even whenever F = C or H. A comparison with section 4.3.c shows
that (except for F = R) the present assumption on s is stronger than in Theorem 8.
Proof of Theorem14. In order to use spherical coordinates on totally geodesic sub-
manifolds of X, we need a lemma. As in section 4.3.c, the matrices in p can be identi�ed
to vectors V = (V1; : : : ; Vm) 2 Fm, and the scalar product of T; V 2 p is

(T; V ) = Re
�
T � V

�
, with T � V =

mX
i=1

TiVi .

Let k k be the corresponding norm.

Lemma 15. Let X = Hm(F) be a classical hyperbolic space.
(i) Let T; V 2 p. In the geodesic triangle with vertices xo (the origin of X), ExpT and
expT � ExpV , the Riemannian lengths of the sides are t = kTk, r = kV k and w given by

cosh2 w =

�
cosh t cosh r +

sinh t

t

sinh r

r
(T; V )

�2
+

�
sinh t

t

sinh r

r
jT � V � (T; V )j

�2
.

(ii) Let s � p be a Lie triple system. If T 2 p is orthogonal to s, the totally geodesic
submanifold expT � Exp s is at distance t = kTk from the origin.
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Proof. (i) The Riemannian distance from xo to ExpT is kTk = t. Transforming xo
and ExpV by the isometry expT 2 G shows that the second side of the triangle has
length r. The third side is w = kWk, where W is the unique W 2 p such that ExpW =
expT � ExpV , in other words

expW = (expT expV ) k

for some k 2 K. The map g 7! g�(g)�1, where � is the Cartan involution of G, transforms
this equality into

exp 2W = expT exp 2V expT .

By elementary matrix computations T 3 = t2T , and the exponential is

expT = I +
sinh t

t
T +

cosh t� 1
t2

T 2 ,

where I is the unit matrix. Now trT = 0 and trT 2 = 2t2 is real, so that taking the traces
we obtain

tr (exp 2W ) = Re tr(exp 2W ) = Re tr(exp 2T exp 2V ) ;

indeed Re tr(gg0) = Re tr(g0g) for g; g0 2 G, even when F = H. Taking account of

Re trTV = 2(T; V ) , trT 2V = trTV 2 = 0 ,

Re trT 2V 2 = t2r2 + jT � V j2 ,

the expression of coshw follows after some elementary calculations.
(ii) Let y = expT � Exp s. By (i) with V 2 s and (T; V ) = 0, the distance w of the origin
to the point ExpW = expT � ExpV of y is given by

cosh2 w = (cosh t cosh r)
2
+

�
sinh t

t

sinh r

r
jT � V j

�2
.

Therefore w � t, with equality if and only if V = 0, and ExpT is the unique point of y
closest to xo (geodesic orthogonal projection of the origin on y).

Going back to Theorem 14, let g 2 G and let y = g �Exp s be an arbitrary given totally
geodesic submanifold, element of Y . The minimum distance between y and the origin xo
is obtained at a point ExpT 2 y, with T 2 p. In particular there exists V 2 s such that
ExpT = g �ExpV , i.e. (expT )k = g expV for some k 2 K. But Exp s is globally invariant
under the action of expV , so that y = (expT )k � Exp s = expT � Exp(k � s). Changing
notation, we may write s for k � s and y = expT � Exp s.
Let V 2 s. On the geodesic expT � Exp sV , s 2 R, contained in y, the minimum

distance to xo is obtained for s = 0. By Lemma 15 (i) with sV instead of V , this implies
(T; V ) = 0 so that T is orthogonal to s and Lemma 15 (ii) applies.
Besides, if we assume s is a F-vector subspace of p therefore a Lie triple system (section

4.3.c), the vector T must be orthogonal to all V �, V 2 s, � 2 F, whence T � V = 0. By
Lemma 15 the distance w = w(t; r) between xo and an arbitrary point x = expT � ExpV
of y is simply given by

coshw(t; r) = cosh t cosh r , t = kTk , r = kV k , (16)

the same expression as for real hyperbolic spaces.
According to (13) and (14) we only need to invert R at the origin for a K-invariant

function u. As shown in section 4.1.a, Lemma 1 applies and Ru(y) =
R
y
u(x) dmy(x).
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When u is radial the integral can be obtained in spherical coordinates on y with origin
ExpT , as

Ru(y) =

Z 1

0

u(w(t; r))Ao(r) dr (17)

where Ao(r) = !d(sinh r)
d�1(cosh r)q

0
is the area of spheres of radius r in y. By (16) and

(17) Ru may be viewed as a smooth even function Ru(t) of t 2 R.
The end of the proof is now similar to the case of Hn(R), as given in [11] p.53 or [14]

p.97. Let � = (cosh t)�1, and let t = t(�) � 0 denote the inverse function. Introducing
the functions

'(�) = ��d�q
0
u(t(�)) ,  (�) = ��1�q

0
Ru(t(�)) ,

which are C1 on ]0; 1], (17) becomes

 (�) = !d

Z �

0

'(�)
�
�2 � �2

�(d=2)�1
d� .

Proof of (i). The Abel type integral equation (18) can be inverted as usual : it implies
that, for any a > 0, � > 0,

�

�
d

2
+ a

�Z �

0

 (�)(�2 � �2)a�1�d� = �d=2�(a)

Z �

0

'(�)
�
�2 � �2

�(d=2)+a�1
d�

and, choosing a > 0 such that N = (d=2)+ a is a strictly positive integer, it follows easily
that

2N�1�d=2�(a)'(�) = �
�
��1@�

�N �Z �

0

 (�)(�2 � �2)a�1�d�
�
.

If d = 2k + 1 is odd, k � 0, the smallest such a is 1=2 so that N = k + 1 and

2k�k+1'(�) = �
�
��1@�

�k+1�Z �

0

 (�)(�2 � �2)�1=2�d�
�
, � > 0 ;

the derivatives cannot be taken here under the integral. Besides d can only be odd for
F = R according to the assumption on s, and q0 = 0 in that case. Going back to u and
Ru we thus obtain for � = 1

2k�k+1u(xo) =
�
��1@�

�k+1 Z �

0

Ru(t(�))(�2 � �2)�1=2d�
����
�=1

,

for any K-invariant u 2 D(X). The claim follows by section 6.2.
Proof of (ii). If d = 2k is even, k � 1, the integral equation (18) can be directly solved as

(2�)k'(�) = �
�
��1@�

�k
 (�) , � > 0 .

In particular, at the origin,

(2�)ku(xo) =
�
��1@�

�k �
��1�q

0
Ru(t(�))

�
�=1

=
�
@k� + � � �+ (�1)k(q0 + 1)(q0 + 3) � � � (q0 + 2k � 1)

�
Ru(t(�))

��
�=1

.

To switch over to derivatives with respect to t we note that, if g(�) = f(t) with � =
(cosh t)�1 = 1� t2

2 + � � � , identi�cation of Taylor expansions at � = 1, resp. t = 0, leads
to �

�1
2

�k
g(k)(1)

k!
=
f (2k)(0)

(2k)!
+ � � �+ akf 00(0) ,
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where dots are a sum of even derivatives of f multiplied by some rational coe¢ cients (like
ak). Therefore

(�2�)ku(xo) =
�
2kk!

(2k)!
@2kt + � � �+ (q0 + 1)(q0 + 3) � � � (q0 + 2k � 1)

�
Ru(t)

����
t=0

,

for any K-invariant u 2 D(X), whence the claim by section 6.2.

6.4. The amusing formula generalized. To motivate the forthcoming generaliza-
tions of the amusing formula (12) and their applications to Radon inversion, we brie�y
recall the classical example of points and hyperplanes in the Euclidean space X = Rn.
Let (!; p) be parameters for the hyperplane de�ned by the equation ! � x = p, where !
is a unit vector, p is a real number and � is the scalar product. Given t 2 R and a point
x 2 Rn, the parameters (!; p) = (!; t+ ! � x) de�ne a hyperplane at distance jtj from x,
and

R�t v(x) =

Z
Sn�1

v(!; t+ ! � x) d!

is the corresponding shifted dual Radon transform, where v(!; p) = v(�!;�p) is an
arbitrary smooth even function on Sn�1 � R. Changing ! into �! in the integral shows
that R�t v(x) is an even function of t.
Since

P
!2i = 1 it is easily checked that�

@2t ��x
�
v(!; t+ ! � x) = 0 ,

where �x is the Euclidean Laplace operator acting on x. Thus R�t v(x), as a function of
(x; t) in Rn�R, is a solution of the wave equation, being an integral of the elementary
plane waves v(!; t+ ! � x). More generally, for any positive integer k,�

@2kt ��kx
�
R�t v(x) = 0 . (19)

For odd n we have, by Theorem 8 with n = 2k + 1, d = 2k and " = 0, the following
inversion formula for the Radon transform on hyperplanes

Cu(x) = �kxR
�Ru(x) . (20)

Putting v = Ru in (19) and observing that R� = R�0, we thus obtain a new inversion
formula by means of the shifted dual transform

Cu(x) = @n�1t R�tRu(x)
��
t=0

. (21)

Formula (21) might also be proved directly by the method of section 6.2.

To extend formula (12) we �rst deal with the Laplace operator; general invariant
operators will be considered in the next section.
Let G be a Lie group, K a compact subgroup and let L be the Laplace operator of

the Riemannian manifold X = G=K (cf. Notations, b). The operator L can be expressed
by means of any orthonormal basis X1,..., Xn of p as

Lf(gK) =
nX
j=1

@2sf (g exp (sXj)K)
��
s=0

,

with f 2 C2(G=K), g 2 G ; indeed both sides are G-invariant operators on X which
coincide at g = e.
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Now let Y = G=H where H is a Lie subgroup of G and, as before,

R�v(gK) =

Z
K

v(gkH) dk , R�t v(gK) =
Z
K

v(gktH) dk

for v 2 C2(Y ) and g; t 2 G. Then

LR�v(gK) =

Z
K

0@X
j

@2sv (g exp (sXj) kH)
��
s=0

1A dk . (22)

But
P
X2
j is a K-invariant element in the symmetric algebra of p and it follows that, for

any ' 2 C2(p), k 2 K,X
j

@2s' (sXj)
��
s=0

=
X
j

@2s' (s (k �Xj))
��
s=0

.

Therefore k can be moved to the left of exp sXj in (22) and we obtain

LR�v(x) =
X
j

@2sR
�
exp sXj

v(x)
���
s=0

(23)

for v 2 C2(Y ), x 2 X. If h \ p is a nontrivial subspace of p and the basis (Xj) contains
a basis of this subspace, the sum in (23) only runs over an orthonormal basis of the
orthogonal subspace (h \ p)?, due to the right H-invariance of v.
We now give a more speci�c result for the geodesic Radon transform, in the notation

of section 4.1. If s is a d-dimensional Lie triple system contained in p and yo = Exp s
the corresponding totally geodesic submanifold of X, we take as Y the set of all g � yo for
g 2 G. Then Y = G=H, where H is the subgroup of all h 2 G globally preserving yo.

Proposition 16. Let X be one of the classical hyperbolic spaces Hn(F), F = R, C or H.
Assume s is a F-vector subspace of p and let T 2 p be any unit vector orthogonal to s.
For v 2 C2(Y ), the shifted dual geodesic transform R�exp tT v is then an even function of
t 2 R and, for x 2 X,

LR�v(x) = (n� d) @2tR�exp tT v(x)
��
t=0

where n and d denote the real dimensions of X and s respectively.

In other words, the function (x; t) 7! R�exp tT v(x) is a solution at time t = 0 of the wave
operator L� (n� d)@2t on X � R.
Applying the proposition to H3(R) with d = 2 we obtain formula (12). Indeed, if '(t)
is an even function of t, let  be de�ned by  (�) = '(t) with cosh t = 1=� ; then
� 0(1) = '00(0).
Example. By Theorem 8 the 2-geodesic transform on X = Hn(R) can be inverted by
means of a second order di¤erential operator :

�2�(n� 2)u = (L+ n� 2)R�Ru ,

and Proposition 16 now yields the inversion formula

�2�u =
�
@2t + 1

�
R�exp tTRu

��
t=0

, (24)

where u 2 D(X) and T 2 p is any unit vector orthogonal to s. Formula (24) also follows
from Theorem 14 (ii) with k = 1, q0 = 0.
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Proof of Proposition 16. The point is to show that the group K \H acts transitively
on the unit sphere of s?, the orthogonal of s in p.
For the scalar product (T; V ) = Re

P
TiVi on p we have (T; V �) = (T�; V ), � 2 F,

therefore s? is a F-subspace of p.
An element k of K \H is characterized by k 2 K and k � Exp s =Exp s, i.e. k � s = s

(adjoint action). Let n0, d0 be the respective dimensions of p and s as F-vector spaces.
Taking a F-basis of p according to the decomposition p = s� s?, it follows that

K = U(1;F)� U(n0;F) , K \H = U(1;F)� U(d0;F)� U(n0 � d0;F) .

But U(n0 � d0;F) acts transitively on the unit sphere of Fn0�d0 , which implies our claim.
If T; T 0 2 s? are two unit vectors, there exists ko 2 K \H such that ko �T = T 0. Thus

R�exp tT 0v(gK) =

Z
K

v
�
gkko exp(tT )k

�1
o H

�
dk

=

Z
K

v (gk exp(tT )H) dk = R�exp tT v(gK) .

In particular R�exp tT v is an even function of t.
Going back to (23), we now take as (Xj) an orthonormal R-basis of p according to the

decomposition p = s � s?. The n � d basis vectors in s? give the same contribution to
the right hand side, whereas the d vectors in s generate one parameters subgroups of H
and give no contribution; indeed exp tV � Exp s =Exp s for V 2 s, since s is a Lie triple
system by section 4.3.c. This completes the proof.

6.5. Multitemporal waves. We shall now deal with general invariant di¤erential
operators. As before G is a Lie group, H a closed subgroup, K a compact subgroup, and
X = G=K, Y = G=H. Let g, h, k be the respective Lie algebras, and t a vector subspace
of g such that

g = (k+ h)� t .

Let K1; : : : ;Kp be a basis of k, complemented by H1; : : : ;Hq 2 h so that the Ki�s and
Hj�s are a basis of k+h, and let T1; : : : ; Tr be a basis of t. We shall use the same notations
for the corresponding left-invariant vector �elds on G, e.g.

Kif(g) = @sf (g exp sKi)js=0

with f 2 C1(G), g 2 G, s 2 R. We denote by D(G) the algebra of all left invariant
di¤erential operators on G, by D(G)K the subalgebra of right K-invariant operators and
by D(X) the algebra of G-invariant di¤erential operators on X. For s = (s1; : : : ; sr) 2 Rr,
let

t(s) = exp s1T1 � � � exp srTr .

We recall that, for g; t 2 G,

R�t v(gK) =

Z
K

v(gktH) dk .

Theorem 17. LetG be a Lie group,H;K Lie subgroups, withK compact andX = G=K,
Y = G=H.
(i) For any P 2 D(X) there exists Q(@), a constant coe¢ cients di¤erential operator on
Rr, with order(Q) � order(P ), such that for any v 2 C1(Y ), x 2 X,

PR�v(x) = Q(@s)R
�
t(s)v(x)

���
s=0

. (25)
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(ii) Assume furthermore that t is a Lie subalgebra of g with [t; h] � h, and let T denote
the connected Lie subgroup of G with Lie algebra t. Then for any P 2 D(X) there exists
a right-invariant di¤erential operator Q on T , with order(Q) � order(P ), such that

P(x)R
�
t v(x) = Q(t)R

�
t v(x) (26)

for v 2 C1(Y ) ; here P(x) acts on the variable x 2 X and Q(t) acts on t 2 T .

Thus R�t v(x), as a function of (x; t) 2 X � T , solves the generalized �multitemporal�
wave equation (26) with time variable in a multidimensional space. Similarly (25) can be
viewed as a wave equation in the variables (x; s) 2 X � Rr at the time s = 0.
Proof. In order to work on G rather than on its homogeneous spaces, we de�ne w(g) =
v(gH) and, for g; t 2 G,

F (g; t) = (R�t v) (gK) =

Z
K

w(gkt) dk , (27)

so that F (gk; k0th) = F (g; t) for any k; k0 2 K, h 2 H, and

F (g; e) = (R�v) (gK) =

Z
K

w(gk) dk .

Let P 2 D(X) be given. Since K is compact the coset space X = G=K is reductive and
there exists D 2 D(G)K such that ([9] p.285)

(Pf) (gK) = D(g) (f(gK)) (28)

for f 2 C1(X), g 2 G.
To transfer derivatives from g to t we observe that, by the invariance of D under left
translation by gk and right translation by k,

D(g)w(gkt) = D(x)w(gkxt)
��
x=e

,

where g; x; t are variables in G. Integrating over K it follows that

D(g)F (g; t) = D(x)F (g; xt)
��
x=e

, (29)

By the Poincaré-Birkho¤-Witt theorem, the di¤erential operators

K
�1
1 � � �K�p

p T�11 � � �T�rr H
1
1 � � �Hq

q

(where all exponents are positive integers) are a basis of D(G). Setting apart the terms
with � =  = 0, we can thus write, for some Ei; Fj 2 D(G) and some constant coe¢ cients
a�,

D = D0 +

pX
i=1

KiEi +

qX
j=1

FjHj , D0 =
X
�

a�1:::�rT
�1
1 � � �T�rr . (30)

If we replace D(x) by (30) in (29), the second term (KiEi)(x)F (g; xt)
��
x=e

vanishes because
Ki 2 k and F (g; kxt) = F (g; t). In the third term the left invariant vector �eld Hj 22 h
acts by

(Hj)(x)F (g; xt) = @sF (g; x exp (sHj) t)js=0 ,

and this vanishes too whenever t normalizes H, because F (g; xth) = F (g; xt).
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Since t = e in case (i), or t 2 T with Ht = tH in case (ii), we �nally obtain for both cases
(in multi-index notation)

D(g)F (g; t) = D0
(x)F (g; xt)

���
x=e

= (31)

=
X
�

a� @
�
s F (g; (exp s1T1 � � � exp srTr) t)js=0 =

 X
�

a�@
�
s

!
F (g; t(s)t)

�����
s=0

.

Let the operator Q be de�ned by

Qf(t) =
X
�

a�@
�
s f(t(s)t)

�����
s=0

,

a right invariant di¤erential operator on the group T in case (ii). The theorem now follows
from (27), (28) and (31) in both cases (i) and (ii).

6.6. Examples. Keeping the notations of the previous section, we shall illustrate The-
orem 17.

a. Totally geodesic transform. As in section 4.1.a, let X = G=K be a Riemannian
symmetric space of the noncompact type and yo = Exp s the origin in the dual space
Y = G=H. By (3) we have k + h = k � s, therefore Theorem 17 (i) applies with t = s?,
the orthogonal of s in p.

b. Horocycle transform. Again X = G=K is a Riemannian symmetric space of the
noncompact type (see Notations, d), but the dual space is now the space of horocycles
Y = G=MN . We recall Harish-Chandra�s isomorphism of algebras ([9] p.306)

� : D(X) �! D(A)W ,

where D(A)W is the subalgebra of W -invariant di¤erential operators in D(A). The de�n-
ition of � will be recalled during the next proof.

Proposition 18. Given v 2 C1(Y ), the function of x = gK and a 2 A given by

w(x; a) = a�R�av(x) = a�
Z
K

v(gkaN) dk

is a solution of the system of multitemporal wave equations

P(x)w(x; a) = �(P )(a)w(x; a) , P 2 D(X); x 2 X; a 2 A .

Proof. Theorem 17 (ii) applies here with T = A, the abelian subgroup from the Iwasawa
decomposition G = KAN ; indeed k + h = k + m + n = k � n, and g = (k � n) � a,
[a; h] � [a;m]+ [a; n] � n � h. By (31) we thus have

P(x)R
�
av(x) = D0

(a)R
�
av(x) , (32)

where D 2 D(G)K is related to P by (28) and D0 2 D(A) was characterized by

D �D0 2 kD(G) + D(G)n . (33)

To compare D0 and �(P ) we recall that �(P ) = a��Da � a�, where Da 2 D(A) is charac-
terized by

D �Da 2 nD(G) + D(G)k . (34)
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Moreover (Df)(a) = Da(f(a)) for a 2 A, if f 2 C1(G) is such that f(ngk) = f(g) for
any g 2 G, k 2 K, n 2 N ([9] p.302 sq.).
Taking u 2 D(G) we have, by a classical integral formula,Z

G

Df(g) � u(g) dg =

Z
N�A�K

Df(a) � u(nak) a�2�dndadk

=

Z
N�A�K

Daf(a) � u(nak) a�2�dndadk . (35)

On the other hand, this integral can be written with the transpose operator tD asZ
G

Df(g) � u(g) dg =

Z
G

f(g) tDu(g) dg

=

Z
A

f(a) a�2�da

Z
N�K

�
tDu

�
(nak) dndk .

But tD 2 D(G)K therefore, for any g 2 G,Z
N�K

�
tDu

�
(ngk) dndk =

�
tD
�
(g)

�Z
N�K

u(ngk) dndk

�
.

The latter integral, as a function of g, is left N -invariant and right K-invariant so thatZ
N�K

�
tDu

�
(nak) dndk =

�
tD
�
a

�Z
N�K

u(nak) dndk

�
.

Since (tD)a =
t (D0) obviously by (33) and (34), we obtainZ

G

Df(g) � u(g) dg =

Z
A

D0(f(a)a�2�) da

Z
N�K

u(nak) dndk

=

Z
N�A�K

�
a2�D0 � a�2�

�
f(a) � u(nak) a�2�dndadk ,

for any f 2 C1(A) and any u 2 D(G). Comparing with (35) it follows that

Da = a2�D0 � a�2� , D0 = a���(P ) � a� ,

whence the result by (32).

A slightly di¤erent proof can be obtained by decomposing the wave a�R�av(gK) into
elementary horocycle waves as follows. For g 2 G we denote by A(g) 2 A the A-component
of g in the Iwasawa decompositions G = NAK = ANK (we recall that A normalizes N),
and by K(g) 2 K its K-component in the decompositions G = KAN = KNA.

Proposition 19. (i) Given f 2 C1(A) and k 2 K, the function

w(gK; a) = a��f(A(k�1g)a)

is a solution of the system of multitemporal wave equations

P(x)w(x; a) = �(P )(a)w(x; a) , P 2 D(X); x 2 X; a 2 A .

(ii) Given v 2 C1(Y ), the function of x = gK and a 2 A given by

a�R�av(gK) =

Z
K

a�v(gkaN) dk

is a solution of the same equations.
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Part (i) is Proposition 8.5 in [12] p.118. Note that, k being �xed, the �wave surfaces�
A(k�1g) = constant are parallel horocycles with the same normal kM 2 K=M (cf. [11]
p.81). Indeed the equality A(k�1g) = ao 2 A is equivalent to k�1g 2 aoNK, i.e. g � xo 2
kao � yo.
If � is a linear form on a and f(a) = ai�+�, the result (i) implies that A(k�1g)i�+� is,
as a function of gK, an eigenfunction of all invariant operators P 2 D(X) ; this is a
fundamental result for harmonic analysis on X.
Part (ii) provides a simpler proof and a generalization of Proposition 8.6 in [12] p.118,
where v was the Radon transform Ru of some u 2 D(X). We refer to [12] or [13] for a
detailed study of those multitemporal wave equations.
Proof of Proposition 19. (i) Both sides of the wave equation are invariant under the
action of K on X; we can therefore assume k = e. Now w(gK; a) = a��f(A(g)a) is left
N -invariant and right K-invariant as a function of g, and it will su¢ ce to prove the result
for g = a 2 A.
By the decomposition (34) of D we have, for any b 2 A,

D(g) (f(A(g)b))
��
g=a

= (Da)(a) (f(ab)) = a��(P )(a)
�
a��f(ab)

�
.

But �(P ) is an invariant di¤erential operator on A, isomorphic to the additive group of a
vector space, and we obtain

D(g)

�
b��f(A(g)b)

���
g=a

= a��(P )(a)
�
(ab)��f(ab)

�
= a��(P )(b)

�
(ab)��f(ab)

�
= �(P )(b)

�
b��f(ab)

�
= �(P )(b)

�
b��f(A(g)b)

���
g=a

.

Thus (i) is proved for g = a.
(ii) Let g 2 G, k 2 K and k0 = K(gk). Then gk = k0a0n0 with a0 2 A and n0 2 N . It
follows that k0�1g = a0n0k�1, therefore a0 = A(k0�1g) and

gkaN = k0A
�
k0�1g

�
aN .

For �xed g the map k 7! K(gk) = k0 is a di¤eomorphism of K onto itself and, by the
integral formula ([9] p.197)Z

K

F (k0) dk =

Z
K

A(k0�1g)2� F (k0) dk0 ,

we have

a�R�av(gK) = a�
Z
K

v(gkaN) dk = a�
Z
K

v(k0A(k0�1g)aN) dk

= a��
Z
K

�
A(k0�1g)a

�2�
v(k0A(k0�1g)aN) dk0 .

By (i) applied to the functions f(a) = a2�v(k0aN) , k0 2 K, this is a solution of the wave
equations.

Corollary 20. (Helgason) If g has only one conjugacy class of Cartan subalgebras, there
exists a di¤erential operator P 2 D(X) such that the horocycle Radon transform of
X = G=K is inverted by

u(x) = PR�Ru(x)

for u 2 D(X), x 2 X.
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We prove it here by means of shifted transforms and wave equations ; see [11] p.116 for
Helgason�s original proof.
Proof. The assumption on g implies that, in the notation of (15), C � jc(�)j�2 is a W -
invariant polynomial on a�. Let P 2 D(X) be the corresponding operator under the
isomorphism � : D(X)! D(A)W , so that �(P )(i�) = C � jc(�)j�2. By Theorem 13 and
Proposition 19 (ii) (with v = Ru) we have

u(x) = < T(a); a
�R�aRu(x) >= �(D)(a) (a

�R�aRu(x))
��
a=e

= P(x) (a
�R�aRu(x))

��
a=e

= P(x)R
�Ru(x) .
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