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Abstract. Inversion formulas are given for the X-ray transform on all Riemannian
symmetric spaces of the non-compact type, by means of shifted dual Radon transforms.
One of these formulas is extended to a large class of totally geodesic Radon transforms
on these spaces.

1. Introduction

1.1. Inverting the X-ray transform on a Riemannian manifold means rebuilding a function
u on this manifold from the family of its integrals Ru(�) over all geodesics �. In the most
basic example the ��s are the lines in a two-dimensional Euclidean plane; a nice inversion
formula for this case was given by J. Radon in his pioneering 1917 article [12]:

u(x) = � 1
�

Z 1

0

dFx(t)

t
,

where Fx(t) is the average of Ru(�) over all lines � at distance t from the point x. He
also mentioned without proof the corresponding result for a two-dimensional hyperbolic
plane, with sh t instead of t in the denominator. After a long silence the problem was
taken up again by many authors: S. Helgason, and later C. Berenstein and E. Casadio
Tarabusi, S. Gindikin, S. Ishikawa, A. Kurusa, B. Rubin, among others. A brief and
partial comparative survey will be given in Section 5 below. To the best of my knowledge,
however, no inversion formula of the X-ray transform has been published yet beyond the
case of spaces of constant curvature (Euclidean, spherical or hyperbolic geometry).
It will be shown here that J. Radon�s announcement for the hyperbolic plane extends

to the X-ray transform on all Riemannian symmetric spaces of the non-compact type, i.e.
all homogeneous spaces X = G=K where G is a non-compact semisimple Lie group and K
is a maximal compact subgroup of G. Our method draws inspiration from S. Helgason�s
proof of the support theorem for this transform ([3] p.179). Inversion formulas will be
proved also for more general Radon transforms on these spaces, with � running through a
family of totally geodesic submanifolds of X, under some assumptions explained below.

1.2. Our inversion formula for the X-ray transform on X is

(1) u(x) = �j�j
�

Z 1

0

@

@t

�
R�exp tYRu(x)

� dt
sh t

(Section 3, Theorem 2). Here u is an arbitrary smooth compactly supported function on
X, x is any point of X, � is a root and the Radon transform Ru is obtained by integrating
u over the geodesics. To explain the operator R�exp tY let x0 be the origin of X, let �0 be
a given geodesic through x0 and let  belong to the group G. The classical dual Radon
transform R�v(x) (or backprojection operator), which takes the mean value of a function
v(�) over geodesics � containing the point x, is here replaced by the shifted dual tranform
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R�v(x) averaging v over geodesics at a given distance from x, namely at the same distance
than the geodesic  � �0 from x0.
In (1) the direction of �0 is H�, the root vector corresponding to �, and Y is any vector

in the eigenspace p� with norm jY j = j�j�1 (see Section 2.1 for de�nitions); thus Y is
orthogonal to �0 at the origin. The shift  = exp tY gives R�v(x), the average of v(�) over
geodesics � at a distance j�j�1t from x.
To prove (1) the key observation is that, due to simple bracket relations involving H�

and Y , the relevant geometry is the two-dimensional hyperbolic geometry. In particular the
hyperbolic Pythagorean theorem ch c = ch a ch b holds for right-angled geodesic triangles
with sides a, b and hypotenuse c, and the inversion problem for R is easily reduced to
inverting an integral equation of Abel type.
A variant of (1) is also given inTheorem 2, with exp tY replaced by a shift belonging to

the nilpotent part of an Iwasawa decomposition of G, and dt=t instead of dt= sh t.
Recently S. Helgason ([7]) has obtained another inversion formula valid when X has

rank l > 1 (but not for l = 1). Instead of hyperbolic planes embedded in X he uses
the Euclidean inversion formula for the X-ray transform in the l-dimensional �at totally
geodesic submanifold Exp a of X.
In the notation of (1) J. Radon�s result (extended to the X-ray transform on Rn) would

be

u(x) = � 1
�

Z 1

0

@

@t
(R�tYRu(x))

dt

t
,

where Y is any unit vector orthogonal to the line �0 taken as the origin and tY is a
translation of length t in Rn.

1.3. The method does not extend exactly as such to higher dimensional totally geodesic
Radon transforms, a topic dealt with in Section 4. The transform Ru(�) under study is
now obtained by integrating a function u on X over the submanifolds � = g � �0, where
�0 is a given totally geodesic submanifold containing the origin of X and g is arbitrary in
G. When the tangent space s to �0 at x0 has dimension greater than one it is no longer
possible to choose the vector Y as before, providing a suitable shift for all directions in s.
The di¢ culty can be circumvented by exchanging the roles of H� and Y . In Theorem 3
we assume (i) and (ii)
(i) s is a Lie triple system, i.e. [s; [s; s]] � s
(ii) s is contained in the eigenspace p� and � is an indivisible root.

Owing to (i) the submanifold �0 = Exp s is totally geodesic in X. Assumption (ii) implies
that the root vector H� is orthogonal to �0 at the origin and the hyperbolic Pythagorean
theorem can be used again, so as to reduce the problem to some Abel integral equation.
Roughly speaking (ii) means that s is not too big (see Lemma 4). When (i) and (ii) hold
we obtain the following inversion formulas (Theorem 3), where d = dim s = dim �0:
- if d = 2k is even there exists a polynomial P of degree k such that

(2) u(x) = P

�
@2

@t2

��
R�exp tH�Ru(x)

�����
t=0

- if d = 2k � 1 is odd

(3) u(x) =
kX
l=1

ak;l

Z 1

0
(ch t)l�1

�
1

sh t

@

@t

�l �
R�exp tH�Ru(x)

�
dt

where the ak;l�s are some inductively de�ned coe¢ cients. Two variants, valid for any d
(even or odd), are given by (17�) and (17�) in Section 4.5.
Here again the shifted dual transform R�v(x) with  = exp tH� is an average of the

function v(�) over totally geodesic submanifolds � at distance j�j�1t from x. In the special
case of the X-ray transform (d = k = 1) it is easily checked that formula (3) is equivalent
to (1) (Section 4.2).
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1.4. Section 2 is devoted to notations, de�nitions, and generalities about shifted dual
transforms. In Section 3 we prove our main result about the X-ray transform (Theorem
2). More general totally geodesic submanifolds are considered in Section 4, with Theorem
3 as the main result; examples and variants are also discussed. Finally, in Section 5, our
results are compared with a few others from the literature.

I am grateful to S. Helgason for several helpful comments on a preliminary version of
this paper.

2. Preliminaries

2.1. Notations. As usual R, C, H will respectively denote the �elds of real numbers, com-
plex numbers, quaternions, and D = C1c the space of compactly supported C1 functions
on a manifold. We write @x as well as @=@x for partial derivatives.
If G is a (real) Lie group let g, ad, exp denote the Lie algebra, its adjoint representation

and the exponential mapping respectively. When G acts on a set we write g � x for the
result of the action of g 2 G on x.
Throughout the paper G will be a connected non-compact real semisimple Lie group

with �nite center and K a maximal compact subgroup. We brie�y recall some classical
notations (see [2] for details). Let g = k � p be the corresponding Cartan decomposition
of the Lie algebra, with Cartan involution �. Equipped with a G-invariant metric, the
homogeneous space X = G=K is a Riemannian symmetric space of the non-compact type.
We shall denote its origin by x0 = K and by d(x; y) the distance of the points x, y. The
space p can be identi�ed with the tangent space to X at x0, and the exponential mapping
Exp : p ! X is a global di¤eomorphism onto, related to exp by ExpV = expV � x0 for
V 2 p. The curve ExpRV is the geodesic tangent to V at the origin x0.
A vector subspace s of p is called a Lie triple system if [s; [s; s]] � s. Then �0 = Exp s

is a totally geodesic submanifold of X, with tangent space s at x0.
Let �0 be a connected submanifold of X and � the set of all submanifolds g � �0, g 2 G.

For � 2 � let dm� be the measure on � induced by the Riemannian measure of X; when
� = �0 we write dm for dm�0 . The Radon transform of a function u on X is the function
on � de�ned by

Ru(�) =

Z
�
u(x) dm�(x)

if the integral converges. For  2 G the shifted dual Radon transform of a function v on
� is the function R�v on X de�ned by

R�v(g � x0) =
Z
K
v(gk � �0) dk , g 2 G ,

where dk is the Haar measure of K normalized by
R
K dk = 1 ; this de�nition depends on

the choice of the origin �0 in �. When  is the identity R� reduces to the classical dual
Radon transform R�; if the origins are chosen so that �0 contains x0, all submanifolds
gk � �0 in the integral contain the point g � x0.
Let a be a maximal abelian subspace of p and � a root of g with respect to a. This

means that the joint eigenspace1

g� = fX 2 g j (adH)X = �(H)X for all H 2 ag
is not f0g. We shall also use the eigenspaces

p� = fY 2 p j (adH)2Y = �(H)2Y for all H 2 ag .
The map X 7! Y = 1

2(X � �X) is a linear isomorphism of g� onto p�.

1No confusion should arise here with X = G=K !
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The Killing form B(Y; Z) = tr(adY adZ) of g gives rise to the invariant scalar product
< Y;Z >= �B(Y; �Z) of Y; Z 2 g and to the norm

jY j =
p
�B(Y; �Y ) .

The space X will be equipped with the Riemannian metric corresponding to this norm on
p.

2.2. The role of shifted transforms. All our inversion formulas for Radon transforms
will be proved by means of the following general observation from [14] p. 234. Let u be
a compactly supported continuous function on X = G=K and �0 a given totally geodesic
submanifold of X. For g 2 G the function

ug(x) =

Z
K
u(gk � x) dk , x 2 X ,

is K-invariant and ug(x0) = u(g �x0) ; when X has rank one K acts transitively on spheres
with center x0, and ug(x) is the mean value of u over the sphere with center g � x0 and
radius d(x0; x). Its Radon transform is, with  2 G,

Rug( � �0) =
Z
�0

ug( � x) dm(x) =
Z
�0

Z
K
u(gk � x) dm(x)dk

=

Z
K
Ru(gk � �0) dk = R�Ru(g � x0)(4)

by de�nition of the shifted dual transform R� .
Now assume an inversion formula for R is known at the origin x0 for K-invariant

functions, say

(5) u(x0) =< T (); Ru( � �0) > ,

where T is some linear form on a space of functions of the variable  belonging to G (or
to some submanifold of G). When u is arbitrary (5) applies to the K-invariant function
ug, whence u(g � x0) =< T (); Rug( � �0) > i.e.
(6) u(x) =< T (); R�Ru(x) >

for any x 2 X. In the sequel it will therefore su¢ ce to work with K-invariant functions
and to invert R at the origin; the general case will follow immediately thanks to the shifted
dual tranform.

3. The X-ray transform

Let X = G=K be a Riemannian symmetric space of the non-compact type. We keep
to the notation of Section 2.1. Let � be a root of g with respect to a and let A� 2 a be
de�ned by B(H;A�) = �(H) for all H 2 a. The norm j�j is de�ned by

j�j2 = jA�j2 = B(A�; A�) = �(A�) .
The vector H� = j�j�2A�, which satis�es �(H�) = 1, will be more convenient here than
A�. Besides, given a non-zero root vector Y 2 p�, let X be the unique vector in g� such
that Y = 1

2(X � �X) and let Z = 1
2 (X + �X) 2 k.

As explained in the introduction hyperbolic planes embedded in X as totally geodesic
submanifolds are essential to our method. The following easy lemma provides a large
supply.

Lemma 1. With the above notations

jH�j = j�j�1 , jY j = jZj = 2�1=2jXj .
The linear span of H�, Y and Z is a Lie subalgebra of g isomorphic to sl(2;R) and
Exp(RH��RY ) is a totally geodesic submanifold of X isomorphic to the hyperbolic plane
H2(R).
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If jY j = j�j�1 the adjoint action of expRZ on H� is
(7) Ad(exp tZ)H� = (cos t)H� � (sin t)Y , t 2 R .

Proof. In view of the invariance properties of the Killing form we haveB(X;X) = B(�X; �X) =
0, therefore

jY j2 = �B(Y; �Y ) = �1
2
B(X; �X) =

1

2
jXj2

and similarly for jZj2.
Besides [X; �X] belongs to p and commutes to a, therefore belongs to a, and

B(H; [X; �X]) = B(�X; [H;X]) = ��(H)jXj2 = �j�j2jXj2B(H;H�)
for all H 2 a. It follows that

[H�; X] = X , [H�; �X] = ��X , [X; �X] = �j�j2jXj2 H�
and H�, X, �X generate a Lie subalgebra of g isomorphic to sl(2;R), these generators
respectively corresponding to the matrices�

1=2 0
0 �1=2

�
,
j�jjXjp
2

�
0 1
0 0

�
,
j�jjXjp
2

�
0 0
�1 0

�
.

Finally

[H�; Y ] = Z , [H�; Z] = Y , [Y; Z] = �j�j2jY j2H� ,(8)

(adH�)
2Y = Y , (adY )2H� = j�j2jY j2H� ,

showing that RH� � RY is a two-dimensional non-abelian Lie triple system.
By (8) both sides of (7) solve the linear di¤erential equation

X 0(t) = [Z;X(t)] , X(0) = H� ,

and the lemma follows. �
Remark. When X has rank one Lemma 1 gives all its totally geodesic submanifolds
containing the origin and isomorphic to H2(R). Indeed, let H;Y be an orthogonal basis
of the Lie triple system of such a manifold. Then (adH)2Y is a linear combination of
H and Y , orthogonal to H with respect to the Killing form, thus Y is an eigenvector of
(adH)2. If p = a � p� � p2� is the eigenspace decomposition of p given by its maximal
abelian subspace a = RH, the vector Y must belong to the root space p� or p2�, and H
is proportional to H�.

We can now derive two versions of an inversion formula for the X-ray transform.

Theorem 2. Let X = G=K be a Riemannian symmetric space of the non-compact type.
Pick a root � of the pair (g; a), any vector Y 2 p� with jY j = j�j�1, and let2 H� 2 a,
X 2 g� be de�ned as in Lemma 1. Taking �0 = ExpRH� as the origin in the space of
geodesics, let R be the X-ray transform de�ned by integration over geodesics of X in a
family containing all g � �0, g 2 G.
Then R is inverted by the following formulas

(9) u(x) = �j�j
�

Z 1

0

@

@t

�
R�exp tYRu(x)

� dt
sh t

and

(9�) u(x) = �j�j
�

Z 1

0

@

@s

�
R�exp sXRu(x)

� ds
s
,

for u 2 D(X), x 2 X.

2No confusion should arise here with X = G=K !
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Proof. By Section 2.2 it is enough to prove that

u(x0) = �
j�j
�

Z 1

0

@

@t
(Ru(exp tY � �0))

dt

sh t
(10)

= �j�j
�

Z 1

0

@

@s
(Ru(exp sX � �0))

ds

s
(10�)

for any K-invariant u 2 D(X). Here, taking account of jH�j = j�j�1,

Ru(g � �0) =
Z
�0

u(g � x) dm(x) = 1

j�j

Z
R
u(g � Exp rH�) dr

for g 2 G.
As in Lemma 1 let Y = 1

2(X � �X) and Z = 1
2(X + �X). Since jY j = jXj=

p
2 = j�j�1

the generators H�, Y , Z will respectively correspond to�
1=2 0
0 �1=2

�
,
�

0 1=2
1=2 0

�
,
�

0 1=2
�1=2 0

�
in the Lie algebra isomorphism of their linear span g� = RH� � RY � RZ with sl(2;R).
Note that g� = k� � p�, with k� = RZ, p� = RH� � RY , is a Cartan decomposition.
Elementary matrix computations in SL(2;R) can then give identities in G as we now
explain.

Let ' : sl(2;R) ! g� denote the above isomorphism and � : ^SL(2;R) ! G� the
corresponding morphism of Lie groups from the universal covering of SL(2;R) onto G�,
the Lie subgroup of G with Lie algebra g�. Since SL(2;R) = ^SL(2;R)=�, where � is
a discrete central subgroup of ^SL(2;R), an equality in SL(2;R) will imply an equality
modulo � in ^SL(2;R), whence by � an equality modulo �(�) in G�. But, � being onto,
�(�) is contained in the center of G�, itself contained in the subgroup K� = expRZ of G�
(see [2] p. 252). For instance the equality in SL(2;R)

expA expB = expC expD expE

with A; : : : ; E 2 sl(2;R), implies in G�

exp'(A) exp'(B) = k exp'(C) exp'(D) exp'(E)

for some k 2 expRZ commuting to G�.
Applying this principle, the Cartan decomposition (G = KAK)

(11) exp tY exp rH� = k1 exp(wH�)k2 ,

where k1; k2 belong to expRZ � K and w = w(r; t) � 0 is de�ned by
(12) chw = ch r ch t ,

follows from easy computations in SL(2;R). The latter formula is the hyperbolic Pythagorean
theorem. Therefore, for K-invariant u,

Ru(exp tY � �0) =
1

j�j

Z
R
u(Expw(r; t)H�) dr .

By (7) exp(�Z) 2 K transformsH� into�H�. Thus u(ExpwH�) is a compactly supported
smooth even function of w 2 R, and there exists a compactly supported smooth function
u on [1;1[ such that

u(ExpwH�) = u(chw) , w 2 R
(see [13] p. 270 for a detailed proof), whence

Ru(exp tY � �0) =
1

j�j

Z
R
u(ch r ch t) dr .
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The left-hand side is thus a smooth even compactly supported function of t 2 R, which
may be written as Ru(�) with � = ch t and

Ru(�) =
2

j�j

Z 1

0
u(� ch r) dr .

This integral equation of Abel type can be solved for u in a classical way. First it implies
the equality of integrals

(13)
Z 1

0
Ru(� ch s)

ds

ch s
=
�

j�j

Z 1

�
u(�)

d�

�
, � � 1 .

Indeed the left-hand side is 2j�j�1
R R

u(� ch r ch s)drds= ch s and the double integral con-
verges since u is compactly supported. By the change of variables (r; s) 7! (�; �) with
� � � and 0 � � � �=2 de�ned by

(14) � = � ch r ch s , sin � =
sh rp

ch2 r ch2 s� 1
we have drds= ch s = d�d�=� and (13) follows. Then, taking derivatives of (13) with
respect to � at � = 1, we obtain

� �

j�j u(1) =
Z 1

0
(Ru)0 (ch s) ds .

In view of u(1) = u(x0) and Ru(ch t) = Ru(exp tY � �0) this is (9).
To deduce (9�) from (9) we use the Iwasawa decomposition (G = KNA)

(15) exp tY = k exp((sh t)X)a

with k 2 expRZ and a 2 expRH�. By the principle explained above (15) follows again
from easy computations in SL(2;R). Then, for K-invariant u,

Ru(exp tY � �0) = Ru(exp(sh t)X � �0)
and (9�) follows with s = sh t. �

Remarks. (i) By (11) the point exp tY � Exp rH� = k1 � ExpwH� is at distance j�j�1w
from the origin; as r varies this is minimum for r = 0 by (12). Therefore the point Exp tY
is the orthogonal projection of x0 on the geodesic exp tY ��0, and the shifted dual transform
R�exp tY integrates over a family of geodesics at distance j�j�1t from the point considered.
For R�exp sX the distance is j�j�1t given by sh t = s.
(ii) Di¤erent choices of � lead to di¤erent inversion formulas. But, � being chosen, the
choice of Y 2 p� (with jY j = j�j�1) is irrelevant: indeed two such vectors lie in the same
K-orbit since both can be transformed into H� by the action of K (see (7) with t = ��=2).

4. Totally geodesic Radon transforms

4.1. Inversion formulas. Radon transforms on a large class of d-dimensional geodesic
submanifolds can be inverted by a method similar to the above one for d = 1. But �nding
a shift suitable for all directions in these submanifolds requires reversing the roles: in
the next theorem the direction of �0 is assumed to lie in some eigenspace p� and the
shift is de�ned by the corresponding root vector H�. The (more natural) opposite choice
was made for d = 1 in Theorem 2. Both results are equivalent in this case however, as
explained in Section 4.2 below.
Our main result can be formulated in several ways; variants will be given in Section

4.5. We keep to the previous notation: X = G=K is a Riemannian symmetric space of
the non-compact type, a a maximal abelian subspace of p, � a root of the pair (g; a) and
the root vector H� 2 a is de�ned by B(H;H�) = j�j�2�(H) for all H 2 a. We recall that
� is called indivisible if �=2 is not a root.
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Theorem 3. Let s be a d-dimensional Lie triple system contained in the eigenspace p�,
where � is an indivisible root.
Let � be a family of d-dimensional totally geodesic submanifolds of X, containing �0 =
Exp s (taken as the origin) and all g � �0 for g 2 G.
Then �0 is a rank one Riemannian symmetric space of the non-compact type, or a single
geodesic, and the Radon transform R de�ned by integration over the elements of � is
inverted by the following formulas.

� If d = 2k is even there exists a polynomial of degree k with rational coe¢ cients

P (t) =
2kk!

(2k)!
tk + � � �

such that, for all u 2 D(X), x 2 X,

(16) (�2�)kj�j�du(x) = P

�
@2

@t2

��
R�exp tH�Ru(x)

�����
t=0

.

� If d = 2k � 1 is odd

(17) (�2�)kj�j�du(x) = 2
kX
l=1

ak;l

Z 1

0
(ch t)l�1

�
1

sh t

@

@t

�l �
R�exp tH�Ru(x)

�
dt

for all u 2 D(X), x 2 X. The coe¢ cients ak;l are positive integers inductively
de�ned by

p1(t) = t , pk+1(t) = (t+ 2k)pk(t) + tp
0
k(t) , pk(t) =

kX
l=1

ak;lt
l .

In particular ak;1 = 1 � 3 � 5 � � � � � (2k � 1) and ak;k = 1.

Proof. (i) Structure of �0. The exponential map of �0, which is the restriction of Exp to
s, is a di¤eomorphism of s onto �. In particular � is simply connected and it follows ([11]
p. 147 or [2] p. 244) that

�0 = �
� � �0 � �+ ,

a direct product decomposition of Riemannian symmetric spaces, with �0 Euclidean, �� of
the compact type and �+ of the non-compact type. This corresponds to the decomposition

s = s� � s0 � s+

of the Lie triple system. Now Exp should induce a di¤eomorphism of the vector space s�

onto the compact ��, whence s� = 0 and s = s0 � s+.
Besides the eigenspace p� = (I � �)g� is contained in p and in the Lie subalgebra g0 of

g generated by g� and g��. The root � being indivisible, g0 is a semisimple Lie algebra of
real rank one with root space decomposition ([2] p. 407)

(18) g0 = g2� � g� � g00 � g�� � g�2� .
Thus p \ g0 and p� a fortiori contain no abelian subspace of dimension greater than one.
Now let b be a maximal abelian subspace of s+. Then s0 � b is an abelian subspace

of s � p�, therefore one-dimensional at most whence s0 = 0 or b = 0. In the �rst case
�0 = �

+ and dim b = 1, in the latter s+ = 0 and �0 is one-dimensional. This implies the
�rst assertion of Theorem 3.
(ii) Integration over �0. All vectors relevant to the proof lie in the above rank one

subalgebra g0. Let 0 denote notions relative to g0, e.g. g0 = k0 � p0 etc. As a maximal
abelian subspace of p0 we now use RY instead of RH�, with Y 2 s � p� � p0 and jY j =
jH�j = j�j�1. As in Section 3 let X 2 g� � g0 be such that Y = 1

2(X � �X) and let
Z = 1

2(X + �X). By (7)

(19) Y = Ad k(H�) , with k = exp
�
��
2
Z
�
2 K 0 = K \G0 .
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Therefore adY , as an endomorphism of g0, has the same eigenvalues as adH� i.e. 0,
��(H�) = �1 and �2�(H�) = �2. Thus

p0 = RY � p01 � p02 ,
a decomposition into eigenspaces of (adY )2 with respective eigenvalues 0, 1 and 4. Simi-
larly the stable subspace s � p0 decomposes as

s = RY � s1 � s2
with s1 = s \ p01, s2 = s \ p02 and the same respective eigenvalues for (adY )2. Setting
p = dim s1, q = dim s2 we have d = dim s = p+ q + 1.
The jacobian J(T ) of Exp : s! �0 at T 2 s is a radial function of T . Since jT j = jrY j

with r = j�jjT j we have

J(T ) = J(rY ) = det

�
sh(r adY )

r adY

�����
s

=

�
sh r

r

�p�sh 2r
2r

�q
= r1�d(sh r)d�1(ch r)q .

The integral over �0 of a radial function f is thereforeZ
�0

f(y) dm(y) =

Z
s
f(ExpT )J(T )dT

=
2�d=2j�j�d
�(d=2)

Z 1

0
f(Exp rY )(sh r)d�1(ch r)qdr ,(20)

with Y 2 s, jY j = j�j�1.
(iii) The Radon integral. By Section 2.2 it will su¢ ce to work with a K-invariant

function u 2 D(X) and to prove (16) and (17) at x0, with R�exp tH�Ru(x) replaced by
Ru(exp tH�:�0). The latter can be computed by means of a Cartan decomposition, easily
checked in SL(2;R) as (11)(12) above: for any T 2 s there exist k1; k2 2 K such that

exp tH� expT = k1 exp(wH�)k2 ,

with w = w(r; t) � 0 de�ned by
chw = ch t ch r , r = j�jjT j .

By (20) it follows that

Ru(exp tH�:�0) =

Z
�0

u(exp tH�:y) dm(y)

=
2�d=2j�j�d
�(d=2)

Z 1

0
u(exp tH�:Exp rY )(sh r)

d�1(ch r)qdr

=
2�d=2j�j�d
�(d=2)

Z 1

0
u(Expw(r; t)H�)(sh r)

d�1(ch r)qdr .

As in the proof of Theorem 2 we may now write

u(ExpwH�) = u(chw) , Ru(exp tH�:�0) = Ru(�) , � = ch t .

Then

(21) Ru(�) =
2�d=2j�j�d
�(d=2)

Z 1

0
u(� ch r)(sh r)d�1(ch r)qdr ,

or else, with � = � ch r,

(22) �d�1+qRu(�) =
2�d=2j�j�d
�(d=2)

Z 1

�
u(�)(�2 � �2)

d
2
�1�qd� .
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(iv) Assume d even, d = 2k. Then repeated applications of the derivation ��1@� lead
to the following inversion of (22):

(�2�)kj�j�d� q�1u(�) =
�
��1@�

�k �
�2k�1+qRu(�)

�
and, for � = 1,

(�2�)kj�j�du(x0) =
�
@k� + � � �+ (q + 1)(q + 3) � � � (q + 2k � 1)

�
Ru(�)

���
�=1

where the operator
�
@k� + � � �

�
is a polynomial in @� of degree k with integer coe¢ cients

depending on k and q. But Ru(�) = Ru(exp tH�:�0) is an even function of t and, iden-
tifying Taylor expansions at � = 1 resp t = 0, related by � � 1 = ch t � 1 = t2

2 + � � � , we
obtain a triangular system of linear relations between derivatives which is solved as

@l�Ru(1) =

�
2ll!

(2l)!
@2lt + � � �+ al@2t

�
Ru(exp tH� � �0)

����
t=0

for l � 1, where the dots are a sum of even derivatives of decreasing order, mutliplied by
some rational coe¢ cients (like al). The result (16) follows for d = 2k.
(v) Assume d odd, d = 2k � 1. Since d = p + q + 1 the multiplicities p and q must

have the same parity. By the classi�cation of symmetric spaces of rank one (or by Araki�s
results on multiplicities, [2] p. 530), q must then vanish and the geodesic submanifold �0
is isomorphic to Hd(R). To invert (21) or (22), an integral equation of Abel type, we need
the integral formula (extending (13) in Section 3)

(23)
Z 1

0
Ru(� ch s)

ds

ch s
=
�kj�j�d
(k � 1)!

Z 1

�
u(�)

�
�2

�2
� 1

�k�1
d�

�
, � � 1 ,

which follows from (21) after some straightforward calculations by means of the change of
variables (14). The right-hand side of (23) is similar to the one in (22), and (23) is now
inverted by repeated applications of the derivation �3@� :

(24) (�2�)kj�j�d�2ku(�) = 2
�
�3@�

�k �Z 1

0
Ru(� ch s)

ds

ch s

�
.

It is easily checked by induction that, for any smooth function f ,

�
�3@�

�k
(f(��)) = �2k

kX
l=1

ak;l(��)
lf (l)(��)

with ak+1;l = ak;l�1 + (2k + l)ak;l, which is equivalent to the claimed induction formula
satis�ed by the polynomials pk. Taking f = Ru, � = ch s and � = 1, it follows that

(�2�)kj�j�du(x0) = 2
kX
l=1

ak;l

Z 1

0
(ch s)l�1(Ru)(l)(ch s) ds .

Going back to Ru(exp sH� � �0) = Ru(ch s) we have

(Ru)(l)(ch s) =

�
1

sh s

@

@s

�l
(Ru(exp sH� � �0))

and (17) is proved at x0 for a K-invariant function u. �

Remark. As in Section 3, the point Exp tH� is the orthogonal projection of the origin x0
on the geodesic submanifold exp tH�:�0, and the shifted dual transform R�exp tH� integrates
over a family of submanifolds at distance j�j�1t from the point considered.
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4.2. Example 1: the X-ray transform. For d = 1 formula (17) reduces to

(25) u(x) = �j�j
�

Z 1

0

@

@t

�
R�exp tH�Ru(x)

� dt
sh t

,

with �0 = ExpRY , Y 2 p� and (for convenience) jY j = j�j�1. This is (9) with H� and Y
interchanged.
Actually (25) is equivalent to (9). Indeed by (7) we have Ad k0(H�) = �Y and

Ad k0(Y ) = H� with k0 = exp
�
�
2Z
�
2 K, therefore the set � = fg � �0; g 2 Gg of geodesics

remains the same if the origin �0 = ExpRY is replaced by �00 = k0��0 = ExpRH� = k�10 ��0.
Besides

exp tH� � �0 = k0 exp tY � �00 .

Letting R�, resp. R0�, denote the dual Radon transform when the origin is �0, resp. �00, it
then follows from (4) that

R�exp tH�Ru(g � x0) =
Z
K
Ru(gk exp tH� � �0) dk =

Z
K
Ru(gk exp tY � �00) dk

= R0�exp tYRu(g � x0) .

This implies our claim.

4.3. Example 2: the classical hyperbolic spaces. Let X = Hn(F) with F = R, C
or H be one of the classical hyperbolic spaces. Then X = G=K with G = U(1; n;F),
K = U(1;F) � U(n;F), and the Cartan decomposition is g = k � p where p, the space of
all matrices

V =

0BBB@
0 V1 � � � Vn
V1
... (0)
Vn

1CCCA , Vi 2 F ,

can be identi�ed with Fn.
Let V �W =

Pn
i=1 ViWi. The scalar product of V;W 2 p (as a real vector space) is

Re(V �W ) up to a constant factor. For U; V;W 2 p = Fn, easy computations lead to

(26) [U; [V;W ]] = U
�
V �W �W � V

�
� V (W � U) +W (V � U) ;

here Fn is considered as a F-vector space, with scalars acting on the right.
Having chosen H 2 p, H 6= 0, the eigenspaces of (adH)2 can be obtained from (26)

whence the decomposition

p = a� p� � p2� , with a = RH and

p� = fV 2 p j H � V = 0g , p2� = fH� j � 2 F; �+ � = 0g .

The respective eigenvalues are 0, H �H and 4
�
H �H

�
.

Lemma 4. Any F-subspace s of p is a Lie triple system.
A real vector subspace s of p is contained in p� (for some choice of H 2 p) if and only if
the F-subspace of p generated by s is not p itself.

Proof. The �rst assertion is immediate from (26) and the second from the above expression
of p�. �
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4.4. Example 3: the eigenspaces. Again let � be an indivisible root for X = G=K,
an arbitrary Riemannian symmetric space of the non-compact type. The assumptions of
Theorem 3 are satis�ed by s = p�.
Indeed, for any linear form � on a let

k� = fZ 2 k j (adH)2Z = �(H)2Z for all H 2 ag .

Then (see [2] p.335)

[p�; p�] � k2� + k0 ,
[p�; [p�; p�]] � [p�; k2�] + [p�; k0] � (p3� + p�) + p� = p�

since 3� is not a root. Thus p� is a Lie triple system.

4.5. Variants. The method of proof of Theorem 3 can provide other inversion formulas
such as (17�) or (17�) below, both valid for any d, even or odd. Here n is any integer such
that n > d=2, and Cn = (�1)n2n�1�d=2�

�
n� d

2

�
j�j�d.

(17�) Cnu(x) =
�
��1@�

�n �Z 1

�
R�exp sH�Ru(x)�

d+q
�
�2 � �2

�n�1�(d=2)
d�

�����
�=1

(17�) Cnu(x) =
�
��1@�

�n �
�d
Z 1

�
R�exp sH�Ru(x)�

d�2n+q ��2 � �2�n�1�(d=2) d������
�=1

with � = ch s, s � 0, under the integrals.
For d = 2k the smallest n is k+1 and (17�) gives back the results of (iv) in the proof of

the theorem. For d = 2k�1 the smallest n is k and (17�)(17�) are variants of (17). Formula
(17) was preferred in Theorem 3 because of its similarity with Theorem 2. Changing � to
1=� and � to 1=� it may be checked also that (17�) generalizes Theorem 14 (i) in [14] p.
237, itself a generalization of Helgason�s result for Hn(R) in [4] p. 144 or [6] p. 97.
Let us sketch brief proofs of (17�) and (17�). From (22) it follows that, for any a and

any n > d=2,Z 1

�
Ru(�)�a

�
�2 � �2

�n�1�(d=2)
d� =

2�d=2j�j�d
�(d=2)

Z 1

�
u(�)�qA(�) d� ,(27)

with A(�) =
Z �

�
�a�d�q+1

�
�2 � �2

�(d=2)�1 �
�2 � �2

�n�1�(d=2)
d� .

The latter integral is hypergeometric, but boils down to an elementary function when
a = d + q, resp. a = d � 2n + q. It is easily computed by replacing the variable � by
x 2]0; 1[ such that

�2 = x�2 + (1� x)�2 , resp. ��2 = x��2 + (1� x)��2 .

Up to a constant factor the right-hand side of (27) becomesZ 1

�
u(�)�q

�
�2 � �2

�n�1
d� , resp. ��d

Z 1

�
u(�)�d�2n+q

�
�2 � �2

�n�1
d� .

If n is an integer (17�) resp. (17�) follow by applying n times the operator ��1@� .

5. Notes

In this �nal section the above method and results will be compared with a few others
from the literature, restricting ourselves to the X-ray transform. The following short list
of related works is of course far from exhaustive.
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5.1. X-ray transforms are inverted here by means of shifted dual transforms. This
method, initiated by J. Radon (1917) [12] for R2 and H2(R), was later extended by
S. Helgason to Hn(R) (1958, published3 in 1990 [4]). In our present notation Helgason�s
result is

u(x) =
1

�
@�

�Z �

0
R�exp sH�Ru(x)

d�p
�2 � �2

�����
�=1

with � = 1= ch s, s � 0, under the integral. Changing � to 1=� and � to 1=� , this is (17�)
above for k = 1.

5.2. A di¤erent method was used by C. Berenstein and E. Casadio Tarabusi (1991). For
the X-ray transform on Hn(R), n � 4, they obtain ([1] p. 628)
(28) u(x) = �(L+ n� 2)SR�Ru(x)
where L is the Laplace-Beltrami operator, R� is the classical dual Radon transform and S
is the convolution operator by a suitable radial function S(r) on Hn(R). Observing that
R�R itself is a convolution operator (by a radial function proportional to (sh r)1�n), their
idea was to choose S so that the composition SR�R could be inverted by a di¤erential
operator. This was accomplished by means of radial harmonic analysis on the space,
leading to

(29) S(r) = C (sh r)1�n ch r , with C =

�
�
�
n�1
2

��2
4�(n=2)+1� (n=2)

.

5.3. Yet another approach is B. Rubin�s (2002). For the X-ray transform on Hn(R),
n � 4, he proves that ([15] p. 208)
(30) u(x) = �(L+ n� 2)R�1Ru(x) ,
where R�1 is the integral operator transforming a function ' on the space � of all geodesics
into the function

(31) R�1'(x) = C 0
Z
�
'(�)(sh d(x; �))2�nd� , with C 0 =

�
�
n�2
2

�
�
�
n�1
2

�
4�(n+1)=2�(n=2)

;

as before d denotes the distance. Note that Rubin�s operator R�1 integrates over all
geodesics �, whereas the dual transform R� integrates only over geodesics passing through
a given point x, and the shifted dual transform R� over geodesics at a given distance from
x.
The similarity between (28) and (30) is explained by the next lemma.

Lemma 5. Retain the above notation on Hn(R). Then

SR�' = R�1'

for any function ' on � such that the right-hand side is an absolutely convergent integral.

Proof. The operators S, R� and R�1 commute with the action of G on X = Hn(R), it will
therefore su¢ ce to prove the result at the origin x0. By the duality between R and R�

the integral

SR�'(x0) =

Z
X
R�'(x)S(d(x0; x)) dx

may be written as

SR�'(x0) =

Z
�
'(�)RS(�) d� , with RS(�) =

Z
�
S(d(x0; x)) dm�(x) .

3"The formula for d odd seemed unreasonably complicated compared to [the formula] for d even, and
the case d = 1, [which] is the X-ray transform, had not acquired its later distinction through tomography",
Helgason commented on this 32 years delay ([4] p.142).
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Let x1 be the orthogonal projection of x0 on the geodesic �. Using the distance r to x1 as
a coordinate on � the latter integral becomes

RS(�) = 2

Z 1

0
S(w) dr

with w = d(x0; x), t = d(x0; x1) = d(x0; �), r = d(x1; x) and chw = ch t ch r, as in (12).
By (29) S(w) = C (shw)1�n chw therefore, for t > 0,

RS(�) = 2C

Z 1

0

ch t ch r�
ch2 t ch2 r � 1

�(n�1)=2dr ,
and changing the variable r into x =

�
ch2 t ch2 r � 1

��1
sh2 t, 0 < x < 1, it is easily checked

that

RS(�) = C
�1=2�

�
n�2
2

�
�
�
n�1
2

� (sh t)2�n = C 0 (sh d(x0; �))
2�n .

�
5.4. S. Ishikawa�s method is completely di¤erent ([8][9][10]), involving harmonic analysis
on the non-Riemannian symmetric space � = G=H. Though not explicitly written in
these articles, inversion formulas might be obtained from them; it would be interesting to
interpret them geometrically.

5.5. The present Theorem 3 extends the similar Theorem 14 from our previous paper
([14] p. 237), valid for the classical hyperbolic spaces Hn(F) only, and under the stronger
assumption that s is a (strict) F-vector subspace of p (cf. Lemma 4). Besides, the inversion
formula for odd-dimensional submanifolds is now given a (hopefully) more manageable
form.
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