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1. Introduction

In 1917 Johann Radon solved the following problem : �nd a function f on the
Euclidean plane R2 knowing its integrals

Rf(�) =

Z
�
f

along all lines � in the plane. The operator R is now called the Radon transform.
Apart from an important contribution by Fritz John (1938) the problem fell into
oblivion for about four decades, until it was given a nice general di¤erential geometric
framework on the one hand and applications in medicine or physics on the other
hand. In a radiograph of the human body the brightness of each point is determined
by the absorption of X-ray light by bones and tissues, integrated along each ray.

More generally let X be a manifold and let Y be a family of submanifolds � of
X equipped with measures dm� (e.g. induced by a Riemannian measure on X). The
Radon transform of a function f on X is the function Rf on Y de�ned by

Rf(�) =

Z
x2�

f(x) dm�(x) , � 2 Y ,

if the integral converges. The study of R is part of integral geometry.
Problem 1 (inversion formula) : Reconstruct f from Rf . A natural tool here is the
dual Radon transform ' 7! R�', mapping functions ' on Y into functions on X,
with

R�'(x) =

Z
�3x

'(�) dmx(�) , x 2 X .

Thus ' is integrated over all all submanifolds � containing the point x, with respect to
a suitably chosen measure dmx. The corresponding di¤erential geometric framework
(Helgason, Gelfand, Guillemin,...) is a double �bration

Z

. &
X Y

where Z is the submanifold of X�Y consisting of all couples (x; �) such that x 2 �.
Problem 2 (range theorem) : Characterize the image under R of various function
spaces on X.
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Problem 3 (support theorem) : Let K be a compact subset of X (e.g. a closed ball if
X is a complete Riemannian manifold). Prove that supp f is contained in K if and
only if Rf(�) = 0 for all submanifolds � 2 Y disjoint from K.

Only Problem 1 will be considered here. In section 2 we will obtain inversion
formulas for homogeneous spaces X and Y by means of tools from Lie group theory
(Helgason and others). Two methods are presented, using either convolutions or
shifted dual transforms. A completely di¤erent approach is given in section 3 by
means of a rather mysterious di¤erential form (the kappa operator) introduced by
Gelfand and his school.

2. Radon transforms on homogeneous spaces

a. Going back to J. Radon�s original problem, it was a fundamental observation by
S. Helgason (1966) that the set X of points and the set Y of lines in the Euclidean
plane are both homogeneous spaces of a same group G, the isometry group of R2.
This led him to study the following general situation ([7] chap. II, [9] chap. I).

Let X and Y be two manifolds with given origins x0 2 X and �0 2 Y and assume
a Lie group G acts transitively on both manifolds X and Y . The elements x 2 X
and � 2 Y are said to be incident if they have the same relative position as x0
and �0, i.e. if there exists some g 2 G such that x = g � x0 and � = g � �0. In most
examples the ��s are submanifolds of X, the origins are chosen so that x0 2 �0 and
the incidence relation is simply x 2 �.

Let K be the subgroup of G which stabilizes x0. It is a closed Lie subgroup of
G, a point x = g � x0 identi�es with the left coset gK and the manifold X with the
homogeneous space G=K. Likewise Y = G=H where H is the stabilizer of �0 in G.

The incidence relation translates into group-theoretic terms : x = g1 � x0 and
� = g2 � �0 are incident if and only if there exists g 2 G such that g1 � x0 = g � x0 and
g2 � �0 = g � �0 , i.e. i¤ g1k = g and g2h = g for some k 2 K, h 2 H, i.e. i¤ the left
cosets g1K and g2H are not disjoint in G. The set Z of all incident couples (x; �)
identi�es with the homogeneous space G=K \H.

Let us assume that K is compact. Then the Radon transform of a function f on
X can be de�ned as

Rf(g � �0) =
Z
H
f(gh � x0) dh , g 2 G

where dh is a left invariant measure onH. It is easily checked that f is here integrated
over all x incident to � = g � �0. Likewise the dual Radon transform of a function '
on Y is

R�'(g � x0) =
Z
K
'(gk � �0) dk ,

an integral of ' over all � incident to x = g � x0.

b. A detailed study of R has been be carried out by Helgason when X is a Rieman-
nian symmetric space of the noncompact type and Y is a family of submanifolds
of X. Let us start with the basic example of the two-dimensional hyperbolic space
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X = H2(R). This Riemannian manifold can be realized as the open unit disc jzj < 1
in C equipped with the metric

ds2 = 4
jdzj2

(1� jzj2)2
, jdzj2 = dx2 + dy2 .

Here G = SU(1; 1), the group of matrices g =
�
a b

b a

�
with a; b 2 C and det g = 1,

acting on C by
g � z = az + b

bz + a
.

The origin x0 = 0 is stabilized by the subgroup K de�ned by b = 0 whence
X = G=K. Now the Euclidean lines of R2 in Radon�s original problem admit two
analogues :

� geodesics of X, i.e. circles (or lines) meeting orthogonally the circle at in�nity
jzj = 1

� horocycles of X, i.e. curves orthogonal to a family of "parallel" geodesics (geo-
desics having a common point at in�nity), i.e. circles contained in jzj < 1 and
tangent to jzj = 1.

Which is best ? The former may seem more natural from a geometric point of view,
but the latter turns out to be closely related to harmonic analysis on X. Indeed
its Laplace operator admits a family of eigenfunctions which are constant on each
horocycle. The horocycle Radon transform is thus linked to the analogue of the
Fourier transform on X.

All this extends to the n-dimensional hyperbolic space X = Hn(R), with (n�1)-
dimensional horospheres instead of horocycles, and even to all Riemannian symme-
tric spaces of the noncompact type.

c. The following proposition ([12] p. 215) gives a �rst clue towards an inversion
formula of R.

Proposition 1 In the general setting of a above assume that Y = G=H has a
G-invariant measure. Then R�R is a convolution operator on X = G=K.

Convolution on X is deduced from convolution on the Lie group G by means of the
natural projection G! G=K.
Idea of proof. From the de�nitions of R and R� it is clear that R�R commutes with
the action of G on X and the proposition easily follows.

To invert R it is therefore su¢ cient to �nd an inverse of this convolution and
harmonic analysis on X provides natural tools for that. In the next theorem C
denotes various nonzero constant factors, r is the (Riemannian) distance from the
origin in X, � is the Laplace operator of X and f is an arbitrary function in C1c (X).

Theorem 2 (i) For the Radon transform on lines in Rn one has

R�Rf = C f � r1�n

f = �SR�Rf = C (��)1=2R�Rf
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where S is the convolution operator by C r1�n.
(ii) For the Radon transform on geodesics in Hn(R) one has

R�Rf = C f � (sinh r)1�n

f = (� + n� 2)SR�Rf

where S is the convolution operator by C (sinh r)1�n cosh r.
(iii) For the Radon transform on horospheres of Hn(R) one has

R�Rf = C f � (sinh r)�1
�
cosh

r

2

�3�n
f = P (�)R�Rf if n = 2k + 1 ,

where P is a polynomial of degree k.

In Rn the symbol � denotes the usual convolution whereas if g(r) is a radial function
on Hn(R)

(f � g) (x) =
Z
Hn(R)

f(y)g(d(x; y)) dm(y) ,

where d(:; :) is the Riemannian distance and dm is the Riemannian measure.
See [7] p. 29 for (i), [1] p. for (ii) and [12] p. 218 and 229 for (iii).

d. A di¤erent method, initiated by Radon himself in his 1917 paper, makes use of
the shifted dual Radon transform de�ned (in the group-theoretic setting of a) by

R�'(g � x0) =
Z
K
'(gk � �0) dk ,

with g;  2 G. The origin �0 in Y is now replaced by the shifted origin  ��0. Roughly
speaking, instead of integrating ' over all � containing x = g �x0 as was done by R�
(in most examples at least), we now integrate over all � at a given distance from x.
The shifted transform turns out to be a convenient tool to prove inversion formulas.
In Theorems 3 and 4 below the origins are chosen so that x0 2 �0 and f is an
arbitrary function in C1c (X).

Theorem 3 (i) For the Radon transform on lines in Rn one has

f(x) = � 1
�

Z 1

0

@

@t

�
R�(t)Rf(x)

� dt
t

where (t) is a translation of length t orthogonally to the line �0.
(ii) Let X = G=K be a Riemannian symmetric space of the noncompact type. The
Radon transform on geodesics of X is inverted by

f(x) = C

Z 1

0

@

@t

�
R�(t)Rf(x)

� dt

sinh t

with (t) = exp tV 2 G , V being a suitably chosen vector orthogonal to �0 in the
tangent space to X at x0.
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Formula (i) extends Radon�s result to the n-dimensional Euclidean space, (ii) is
proved in [13] and independently in [10].
Idea of proof. It su¢ ces to work at x = x0 and, taking averages over K, with K-
invariant (radial) functions f . Then (i) is proved by solving an integral equation of
Abel type. For (ii) Lie bracket computations show that V and the tangent to �0 at
x0 generate a two-dimensional hyperbolic subspace of X. In this H2(R) the integrals
can be written down explicitly and the problem boils down again to an Abel integral
equation.

Theorem 4 Let X = G=K be a Riemannian symmetric space of the noncompact
type. The Radon transform on horospheres of X is inverted by

f(x) = < T (a); R�aRf(x) >

where the variable a runs over A, the Abelian subgroup in an Iwasawa decomposition
G = KAN , and T (a) is a distribution on A.

See [12] p. 236 for a proof. Here shifted dual transforms provide a simpler proof
of an inversion formula due to Helgason (1964, see [9] p.116). Up to a factor T
is the Fourier transform of jc(�)j�2 where c is Harish-Chandra�s famous function.
If X = H2k+1(R) (more generally if all Cartan subalgebras are conjugate in the
Lie algebra of G) jc(�)j�2 is a polynomial and T , supported at the origin of A,
is a di¤erential operator : the inversion formula from Theorem 2 (iii) can then be
deduced from Theorem 4.

3. The Kappa operator

Introduced by Gelfand, Graev and Shapiro (1967) to study the Radon transform
on k-dimensional planes in Cn the "kappa operator" has been developed in several
papers by the Russian school (Gelfand, Gindikin, Graev - and Goncharov who related
it to the language of D-modules). But apart from Grinberg�s paper [6] it has never
been used by others (to the best of my knowledge), though this di¤erential form
seems to provide an e¢ cient tool to invert Radon transforms in various situations.
Here we introduce it in the context of the n-dimensional hyperbolic space X =
Hn(R), following [3] chapter 5 and several papers by Gindikin [4] [5].

a. Preliminaries. Let M be a n-dimensional manifold, ! a volume form on M and
S the hypersurface de�ned by '(x) = 0 where ' : M ! R is a C1 function with
d'(x) 6= 0 for x 2 S. Let V be a vector �eld on M which is transversal to S, i.e.
V '(x) 6= 0 for any x 2 S. Then the (n� 1)-form

� =
1

V '
iV ! (restricted to S) (1)

is a volume form on S such that d' ^ � = !. Here iV denotes the interior product
de�ned by

(iV !) (V1; :::; Vn�1) = !(V; V1; :::; Vn�1)

for any tangent vectors V1; :::; Vn�1.
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Integration over S with respect to � de�nes a distribution �(') supported in S :

< �('); f >=

Z
S
f � , f 2 C1c (M) , (2)

and it is easily checked that

'�(') = 0 , �(�') = ��1�(') (3)

if � is any strictly positive C1 function on M .
In the framework of microlocal analysis �(') can also be de�ned as the pullback

�(') = '�� of the Dirac measure on R, which is given by the oscillatory integral (see
[11] Theorem 8.2.4)

< �('); f >=

Z
R
dt

Z
M
f(x)eit'(x)!(x) . (4)

b. Radon transform on a quadric. Let "0 = 1; "i = �1 for i � 1 and

Q(x) =

nX
i=0

"ix
2
i = x20 � x21 � � � � � x2n .

From now on we consider the upper sheet of the hyperboloid

X = fx 2 Rn+1jQ(x) = 1 and x0 > 0g

and the Radon transform obtained by integrating over sections of X by all hyper-
planes

� � x � �0x0 + � � �+ �nxn + �n+1 = 0

that is, for f 2 C1c (X), � 2 Rn+2n0,

Rf(�) = < �(� � x); f(x) > . (5)

In view of (1) above we may take the Euler vector �eld V =
Pn
j=0 xj(@=@xj) as a

transversal �eld to X � Rn+1 and

! =
1

V Q
iV (dx0 ^ � � � ^ dxn)

=
1

2

nX
j=0

(�1)jxjdx0 ^ � � � ^ddxj ^ � � � ^ dxn (6)

(with dxj removed) as a volume form on X.
As such we get an overdetermined problem of integral geometry : reconstruct a

function f of n variables (the dimension of X) from a function of (n+1) (dimension
of the space of ��s, up to a factor). It is therefore to be expected that Rf satis�es
additional conditions (Proposition 5 below) and that knowing its restriction to some
n-dimensional submanifold should su¢ ce to reconstruct f .
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Let us point out two interesting such submanifolds. For �n+1 = 0 we obtain all
planes through the origin and their intersections with X are the (n�1)-dimensional
totally geodesic hypersurfaces of the hyperbolic space X. For Q(�0; :::; �n) = 0 we
obtain the horospheres of X. This can be checked for instance by projecting X
onto the plane x0 = 0 in Rn+1 from the point (�1; 0; :::; 0). The image of X is
the open unit ball of Rn (the Poincaré model of hyperbolic geometry), geodesics
hypersurfaces become (n�1)-spheres orthogonal to the unit sphere and horospheres
become (n� 1)-spheres tangent to the unit sphere (cf. 2.b above).

Proposition 5 Let P (@�) =
Pn+1
j=0 "j(@=@�j )

2. For f 2 C1c (X) the function Rf on
Rn+2n0 satis�es

Rf(��) = ��1Rf(�) , � > 0 ,

P (@�)Rf(�) = 0 .

Proof. The homogeneity follows from (3). The di¤erential equation is best seen from
(4) :

Rf(�) =

Z
R
dt

Z
X
f(x)eit��x!(x)

implies

P (@�)Rf(�) = �
Z
R
t2dt

Z
X
f(x)(Q(x)� 1)eit��x!(x) = 0

since Q(x) = 1 on X. �

c. The kappa operator at last. It will act on functions of � 2 Rn+2n0. Let

d� = d�0 ^ � � � ^ d�n+1

E =
n+1X
j=0

�j
@

@�j

be the volume form and Euler vector �eld respectively. For ' 2 C1(Rn+2n0) we
consider the di¤erential n-form on Rn+2n0

�' = iEiZ(d�) (7)

where Z is a vector �eld on Rn+2n0 to be chosen shortly and depending on '. The
goal is to obtain a closed form when ' = Rf so that

R
 �Rf will only depend on

the homology class of the n-cycle .
First, using the Lie derivatives LE = d � iE + iE � d, LZ = d � iZ + iZ � d, and

the divergence de�ned by LZ (d�) = (divZ)d� we have

d�' = LE(iZd�)� (divZ)iEd� . (8)

Lemma 6 For any linear di¤erential operator P with C1 coe¢ cients on Rn+2n0
and any '; u 2 C1(Rn+2n0) there exists a vector �eld Z = Z(P;'; u) on Rn+2n0
such that

divZ = u P'� ' tPu ,

where tP is the transpose of P with respect to d�. In other words d (iZd�) =
�
uP'� 'tPu

�
d�.
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Proof. (i) If P is a vector �eld we may take Z(P;'; u) = 'uP . Indeed for any vector
�eld V and any smooth function f

div(fV ) = V f + f div V .

This classical formula is easily checked from

div(fV )d� = LfV d� = d(ifV d�) = d(f iV d�)

= df ^ iV d� + f d(iV d�) = df ^ iV d� + f (div V ) d�

together with

0 = iV (df ^ d�) = (iV df) ^ d� � df ^ iV d�
= (V f) d� � df ^ iV d� .

Taking now V = 'uP and for f an arbitrary compactly supported function it follows
that Z

('uPf + f div('uP )) d� =

Z
div(f'uP )d� = 0

by Stokes formula. ButZ
'uPf d� =

Z
(uP (f')� fuP') d�

=

Z
f
�
'tPu� uP'

�
d� ,

whence div('uP ) = u P'� ' tPu as claimed.
(ii) If P = P1P2 is a product of two operators we may take

Z(P1P2; '; u) = Z(P1; P2'; u) + Z(P2; ';
tP1u) .

The lemma follows by linearity and induction on the order of P . �

If Z is chosen according to the lemma with iZd� homogeneous of degree 0 and
tPu = 0, (8) becomes

d�' = �(uP') iEd�

so that �' is a closed form if (and only if) P' = 0.

Going back to our problem with P = P (@�) =
Pn+1
j=0 "j(@=@�j )

2 = tP , "0 =
1; "j = �1 for j � 1, we may take, according to Lemma 6,

Z(P;'; u) =
n+1X
j=0

"j

�
@'

@�j
u� ' @u

@�j

�
@

@�j
(9)

and, for �xed x 2 X,
u(�) = ux(�) = (� � x)1�n . (10)

Indeed tP (@�)ux = n(n�1)(Q(x)�1)(� �x)�1�n = 0 and iZd� will have the required
homogeneity if ' is homogeneous of degree �1. Summarizing we obtain
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Proposition 7 Let x 2 X and ' 2 C1(Rn+2� n0), homogeneous of degree �1. The
di¤erential n-form �x' = iEiZ(d�) (where E is the Euler vector �eld and Z is given
by (9) and (10)) is closed if and only if P (@�)' = 0.
This holds in particular if ' = Rf .

A technical di¢ culty arises here : our ux is singular when � � x = 0, i.e. when
the hyperplane de�ned by � contains the given point x. It can be circumvented by
replacing (� � x)1�n with the distribution

ux(�) = (� � x� i0)1�n = lim
"!0+

(� � x� i")1�n ,

i.e. the pullback of

(t� i0)1�n = t1�n +
i�(�1)n
(n� 2)! �

(n�2)(t) (11)

under the map � 7! � � x. Then �x' becomes a n-form with distribution valued
coe¢ cients and Proposition 7 remains valid. Explicitly

Z =
n+1X
j=0

Zj
@

@�j
, Zj = "j

�
@'

@�j
ux � '

@ux
@�j

�
, �x' =

n+1X
j=0

Zj!j , (12)

where

!0 = iE (d�1 ^ � � � ^ d�n+1) =
n+1X
k=1

(�1)k�1�kd�1 ^ � � � ^ cd�k ^ � � � ^ d�n+1 (13)

and the subsequent !j are obtained from !0 by cyclic permutation of �0; :::; �n+1 and
multiplication by (�1)(n�1)j .
Remark. The above construction of �x' extends to all nondegenerate quadratic form
P on Rn+2 (see [4]).

d. Inversion formula.

Theorem 8 (Gindikin) Let f 2 C1c (X) where X is the upper sheet of the n-
dimensional hyperboloid. Let  be any n-dimensional submanifold of Rn+2n0 ho-
mologous to the cycle 0 de�ned in the proof below. The Radon transform on X is
then inverted by Z


�xRf = C f(x) , x 2 X ,

where C = �(2i�)n=(n� 2)!.

Proof. Let us take

0 =
�
� 2 Rn+2

�� �0 = �1 and �21 + � � �+ �2n = 1
	
.

Any homologous n-cycle in Rn+2n0 will give the same integral since �xRf is a
closed n-form by Proposition 7. For instance as a more natural but equivalent choice
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 might be de�ned by �0 = �1 and �20 + �
2
1 + � � �+ �2n = 1. The �rst condition means

that we consider hyperplanes containing (1;�1; 0; :::; 0) 2 X.
We now show the claim boils down to the classical inversion formula for the

Radon transform on hyperplanes of Rn.
(i) Restricting Rf(�) to �0 = �1 we obtain the function

 (�1; :::; �n+1) � Rf(�1; �1; :::; �n+1)

= < �(�1(x0 + x1) + �2x2 + � � �+ �nxn + �n+1); f(x) > .

The brackets are here computed by means of the volume form ! on X (see (6)
above). The map x = (x0; :::; xn) 7! y = (y1; y2; :::; yn) with y1 = x0 + x1, y2 = x2,
..., yn = xn induces a di¤eomorphism of X onto the half space y1 > 0 in Rn. In view
of

Q(x) = x20 � x21 � � � � � x2n = 1
x0dx0 = x1dx1 + � � �+ xndxn

y1dx1 ^ � � � ^ dxn = x0dy1 ^ � � � ^ dyn

it is readily checked that the volume form !(x) on X becomes

e!(y) = 1

2y1
dy1 ^ � � � ^ dyn .

To f corresponds the function ef(y) = f(x), compactly supported in y1 > 0. Then

 (�1; :::; �n+1) = < �(�1y1 + � � �+ �nyn + �n+1); ef(y) > ,

where the brackets are now computed by means of e!. In other words  is the Radon
tranform of the function ef(y1; :::; yn)=2y1 over hyperplanes of Rn.
Let c = �(2i�)n=(n � 1)!. From a classical inversion formula (see e.g. [3] p. 11) it
follows that

c f(x) = c ef(y) =
= 2y1

Z
Sn�1�R

 (�1; :::; �n+1) (�1y1 + � � �+ �nyn + �n+1 � i0)�n � ^ d�n+1 (14)

an integral taken over all �n+1 2 R and all (�1; :::; �n) in the unit sphere Sn�1 with
volume form

� =
nX
j=1

(�1)j�1�jd�1 ^ � � � ^ cd�j ^ � � � ^ d�n .
(ii) Let us now consider the restriction to  of �x' with ' 2 C1(Rn+2n0), homoge-
neous of degree �1. From the de�nition of  we have d�0 = d�1, d�1 ^ � � � ^ d�n = 0,
and !0 = �!1 = � ^ d�n+1, !j = 0 for j � 2 by (13). On  (12) thus reduces to

�x' = (Z0 � Z1)!0

=

��
@

@�0
+

@

@�1

�
':ux � ':

�
@

@�0
+

@

@�1

�
ux

�
� ^ d�n+1 .
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But, for ' = Rf and  as above,��
@

@�0
+

@

@�1

�
'

�
(�1; �1; :::; �n+1) =

@ 

@�1
(�1; :::; �n+1)

and, for ux = (� � x� i0)1�n,�
@

@�0
+

@

@�1

�
ux = (1� n)(x0 + x1)(� � x� i0)�n .

Therefore on 

�xRf =

�
@ 

@�1
(� � x� i0)1�n + (n� 1)y1 (� � x� i0)�n

�
� ^ d�n+1 .

Integrating the �rst term by parts we obtainZ

�xRf = 2(n� 1)y1

Z
 (� � x� i0)�n� ^ d�n+1 ,

where the latter integral is taken over all �n+1 2 R and all (�1; :::; �n) 2 Sn�1.
Comparing with (14) we are done. �

e. Examples.

Geodesic hypersurfaces of X. As noted above geodesics hypersurfaces of the hyper-
bolic space are the sections of X by hyperplanes through the origin of Rn+1, i.e.
� � x = 0 with �n+1 = 0. Now Theorem 8 applies with the cycle  replaced by

1 =
�
� 2 Rn+2

�� �n+1 = 0 and �21 + � � �+ �2n = 1	 .
Indeed one can �nd in the group SL(n+2;R) a continuous curve gt, 0 � t � 1, from
the identity to the matrix

g1 =

0@ 0 0::::0 1
0 Idn 0
�1 10:::0 0

1A .

Applying it to � we obtain a continuous deformation of  to 1 and
R
1
�xRf =

C f(x).
The result can be made explicit by means of (12) and (13). In !j , 0 � j � n, each
term contains �n+1 or d�n+1 hence !j = 0 on 1 and

�x' =

�
'
@ux
@�n+1

� @'

@�n+1
ux

�
!n+1 .

The corresponding inversion formula eventually simpli�es to ([3] p. 154)

2

Z
1

Rf(�)(� � x� i0)�n!n+1(�) = C f(x) .
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Horospheres of X. We need here all hyperplanes � � x = 0 such that

Q(�) = �20 � �21 � � � � � �2n = 0 .

Adding as before the condition �21 + � � �+ �2n = 1 we consider the cycle

2 =
�
� 2 Rn+2

�� �0 = 1 and �21 + � � �+ �2n = 1	 .
By continuous deformation the condition �0 = 1 can be changed into �0 = 0, then
to �0 = �1 by a continuous path in SL(n+ 2;R) as above. Thus Theorem 8 applies
with  replaced by 2 and leads to the inversion formula ([3] p.156)Z

2

Rf(�)(� � x� i0)�n!0(�) = C f(x) .
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