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Abstract. The Radon transform considered here is de�ned by integrating a function over
p-dimensional a¢ ne subspaces in Rn. Viewing those planes as graphs, a general inversion
formula follows easily from a projection slice theorem. For even p it may also be written
by means of a di¤erential form given by the so-called kappa operator.

We also discuss the special case of Radon transform on Lagrangian p-planes in R2p,
and give an overview of two range theorems.

The aim of this expository note is to provide an elementary approach to some methods
and tools introduced and developed by the Russian school in the �eld of integral geometry
on Grassmannians.

1. INTRODUCTION
By p-plane we mean a p-dimensional a¢ ne subspace of the a¢ ne space Rn. Assuming
1 � p � n � 1 let q = n � p ; points in Rn will be written as (x; y) 2 Rp � Rq. A generic
p-plane can be de�ned as a graph :

P(u; v) = f(x; y) 2 Rp � Rqjy = ux+ vg ,

where u is a linear map of Rp into Rq and v is a vector in Rq. The map (u; v) 7! P(u; v)
is a bijection of L(Rp;Rq) � Rq onto the set of p-planes meeting 0 � Rq transversally.
Throughout the paper we identify L(Rp;Rq) with the space of p� q real matrices.

Our Radon transform is given by integrals of a function f over the p-planes P(u; v) :

Rf(u; v) =

Z
Rp
f(x; ux+ v) dx , (1)

where f is an arbitrary function in the Schwartz space S(Rn) of rapidly decreasing func-
tions (and all derivatives) and dx denotes Lebesgue measure.

An inversion formula of the transform R can be obtained by the following steps a,
b and sometimes c. For brevity we only write it at the origin in this introduction ; the
general case follows by translation, or can be worked out directly as will be done in the
next sections.

a. Projection slice theorem. Let (�; �) 2 Rp � Rq and let < ; > denote the canonical
scalar products in Rp and Rq. The function (x; y) 7!< �; x > + < �; y > is constant on
P(u; v) if and only if (�; �) is orthogonal to this plane i.e. � = � tu� (where tu is the
transpose of u) ; the constant value is then < �; v >. As an immediate consequence one
obtains the following "projection slice theorem"
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bf(�; �) = cRf(u; �) if � = � tu� , (2)

where

bf(�; �) = Z
Rp�Rq

f(x; y)e�2i�(<�;x>+<�;y>)dxdy , (3)

cRf(u; �) = Z
Rq
Rf(u; v)e�2i�<�;v>dv (4)

are the classical Fourier transforms in Rn, resp. Rq.

b. Choice of an admissible family. There exists a smooth map t 7! u(t) of Rp into
L(Rp;Rq) such that ' : (t; �) 7! (� tu(t)�; �) is a di¤eomorphism of Rp�Rq onto Rp�Rq
(up to sets of measure 0). Examples of such maps will be given in Sections 2 and 4 below.
By (2) bf is then determined by cRf whence, by Fourier inversion in Rn,

f(0; 0) =

Z bf(�; �)d�d� = Z cRf(u(t); �)jJ(t; �)jdtd� (5)

(Theorem 1). The Jacobian J of ' is a homogeneous polynomial function of degree p with
respect to �. Thus one recovers f from Rf by means of an operator with symbol jJ(t; �)j
acting on Rf(u(t); �), followed by integration over t.

c. Kappa operator. If J(t; �) has constant sign " we get a classical di¤erential operator
and the change (t; �) 7! (�; �) in (5) can be written in terms of di¤erential forms. This
can only happen for p even. To a smooth function F of (u; v) 2 L(Rp;Rq)�Rq the kappa
operator (at the origin) associates the di¤erential p-form on L(Rp;Rq)

�F (u) =
X @

@vj1
� � � @

@vjp
F (u; 0) duj11 ^ � � � ^ dujpp , (6)

where the ujk�s are the matrix elements of u and the sum runs over all j1; :::; jp from 1 to
q. This de�nition (due to the Russian school, cf. [3]) is motivated by inversion formula (5)
which is then equivalent to

(2i�)p"f(0; 0) =

Z
u(Rp)

�Rf (7)

as one readily checks under the assumption on J (Theorem 4).
Besides �Rf is a closed di¤erential form (Proposition 5). If p < n�1 this remarkable fact
follows from a system of di¤erential equations satis�ed by Rf , which actually characterize
the image under R of the Schwartz space S(Rn) (Theorem 10).

Details are given in Sections 2 and 3. The special case of Radon transforms on p-
dimensional Lagrangian subspaces of R2p has been studied by Debiard and Gaveau, Grin-
berg in [1], [9], [10]. In Section 4 we show their inversion formulas easily follow from
Sections 2 and 3 by restriction. In the �nal Section 5 we give two range theorems, but the
more technical proofs will be only sketched here.
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2. INVERSION FORMULAS
We keep to the notations of the introduction : let f 2 S(Rn), u 2 L(Rp;Rq), v 2 Rq and

Rf(u; v) =

Z
Rp
f(x; ux+ v) dx .

Remark.When working in the Euclidean space Rn a more natural de�nition would make
use of the Euclidean measure induced on P(u; v), instead of dx, and the above Rf(u; v)
should then be replaced by p

det (I + tuu) Rf(u; v) ,

where I is the unit p � p matrix and t means transpose. However we shall keep here to
de�nition (1).

The following properties a to d of the Radon transform (1) are easily checked.

a. Homogeneity. For any constant � > 0 let f�(x; y) = f(�x; �y). Then

Rf�(u; v) = ��pRf(u; �v) . (8)

b. Translation. For (a; b) 2 Rp � Rq let fa;b(x; y) = f(x+ a; y + b). Then

Rfa;b(u; v) = Rf(u; v + b� ua) . (9)

c. Partial di¤erential equations. The Radon transform of f satis�es the following
system of pq(q � 1)=2 di¤erential equations�

@vi@ujk � @vj@uik
�
Rf(u; v) = 0 , 1 � i; j � q , 1 � k � p , (10)

where @vi means @=@vi etc.
Indeed

@ujk(f(x; ux+ v)) = xk(@yjf)(x; ux+ v)

@vi@ujk(f(x; ux+ v)) = xk(@yi@yjf)(x; ux+ v)

and derivatives can be taken under the integral sign in (1).

d. Projection slice theorem. Given u 2 L(Rp;Rq) the partial Fourier transform cRf(u; :)
(see (4)) is the restriction of the Fourier transform bf (see (3)) to the q-dimensional vector
subspace � + tu� = 0 in Rp � Rq, i.e.

cRf(u; �) = bf(� tu�; �) (11)

for u 2 L(Rp;Rq), � 2 Rq.
Proof. Let u be �xed. In order to decompose the integral (3) into slices parallel to the
plane P(u; v) we change variables according to (x; v) 7! (x; y) = (x; ux+ v) :

bf(�; �) = Z
Rp�Rq

f(x; ux+ v)e�2i�(<�+
tu�;x>+<�;v>)dxdv .
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This simpli�es if �+ tu� = 0 i.e. if < �; x > + < �; y > (the phase function of the Fourier
transform) is constant on P(u; v), i.e. if (�; �) is an orthogonal vector to this plane. This
constant value is < �; v > and

bf(� tu�; �) =

Z
Rq
e�2i�<�;v>dv

Z
Rp
f(x; ux+ v) dx = cRf(u; �) .

Absolute convergence of the integrals justi�es the calculations.
Remark. By (11) bf is almost entirely determined by Rf . Indeed the linear map u 7!
� = � tu� maps L(Rp;Rq) onto Rp for any given � 6= 0 in Rq, as shown by taking a
rank one matrix u = (�j�k) with �1; :::; �q chosen such that

Pq
1 �j�j = �1. The points

(� tu�; �), u 2 L(Rp;Rq), � 2 Rqn0, thus �ll all of Rp � (Rqn0). Equation (11) and the
Fourier inversion formula now imply injectivity of the Radon transform f 7! Rf . They
also lead to an inversion formula for R (Theorem 1 below).

e. Inversion formulas. The dimension of the set of all (u; v) being pq + q, greater than
n = p+ q, we shall restrict u to some p-dimensional submanifold of L(Rp;Rq) in order to
reconstruct f(x; y) from Rf(u; v).

There exist an open subset 
 of Rq with complement of measure 0 and a C1 map
t 7! u(t) of Rp into L(Rp;Rq) such that

' : (t; �) 7�! (�; �) = (� tu(t)�; �) (12)

Rp � 
 �! Rp � 


is a di¤eomorphism onto. For example one can take any constant nonzero vector � 2 Rq
and the rank one matrix

u(t) = �
 t i.e. ujk(t) = �jtk , 1 � j � q , 1 � k � p , (13)

so that tu(t)� =< �; � > t, together with


 = f� 2 Rqj < �; � >6= 0g .

More general examples can be obtained by composing this map t 7! u(t) with a di¤eo-
morphism t0 7! t of Rp, or replacing u(t) by u(t)a(t) with a(t) 2 L(Rp;Rp) and ta(t)t = t.

The planes P(u(t); v) then make up a n-dimensional "admissible submanifold" leading
to an inversion formula.

Theorem 1 (General inversion formula) Let f 2 S(Rn) and let t 7! u(t) be any map
such that (12) is a di¤eomorphism. Then, for any (x; y) 2 Rn,

f(x; y) =

Z
Rp�


cRf(u(t); �)e2i�<�;y�u(t)x>jJ(t; �)j dtd� (14)

where J , the Jacobian of ', is

J(t; �) = (�1)p det @t(tu(t)�) = (�1)p
qX

j1;:::;jp=1

�j1 :::�jp
@(uj11(t); :::; ujpp(t))

@(t1; :::; tp)
, (15)

a homogeneous polynomial of degree p with respect to �.
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In all our speci�c examples u will be linear in t and the bilinear map (t; �) 7! tu(t)�
may be written as

tu(t)� = A(�)t (16)

with A(�) 2 L(Rp;Rp), linearly depending on �, hence J(t; �) = (�1)p detA(�).

Corollary 2 (Special inversion formula) In particular, with u(t) as in (16), we have

(2i�)pf(x; y) =

Z
Rp
(jdetA(@v)jRf) (u(t); y � u(t)x) dt (17)

where jdetA(@v)j is the operator with symbol jdetA(�)j acting on the variable v in Rf(u; v)
(see (18) below). The integral converges absolutely.
If u(t) = � 
 t as in (13) then u(t)x =< t; x > � and jdetA(@v)j = j < �; @v > jp, a
di¤erential operator for p even.

Proof of Theorem 1. Since 
 �lls Rq up to a set of measure zero, we may change
variables by means of (12) in the Fourier inversion formula and obtain

f(x; y) =

Z
Rp�


bf(�; �)e2i�(<�;x>+<�;y>)d�d�
=

Z
Rp�


bf(� tu(t)�; �)e2i�(<�
tu(t)�;x>+<�;y>)jJ(t; �)j dtd� .

Both integrals converge absolutely for f 2 S(Rn). But
� bf � '� (t; �) = cRf(u(t); �) by (11)

and (12) ; the result follows. Besides (12) gives �k = �
P
j ujk�j and

d�1 ^ � � � ^ d�p ^ d�1 ^ � � � ^ d�q =

= (�1)p
X
j1;:::;jp

�j1 :::�jpduj11 ^ � � � ^ dujpp ^ d�1 ^ � � � ^ d�q ,

hence the expression of J . �

Proof of Corollary 2. Here J(t; �) = (�1)p detA(�) and (14) can be written more
explicitly. If P (�) is a homogeneous polynomial of degree p with respect to �, let the
operator jP (@v)j be de�ned by

jP (@v)jF (v) = (2i�)p
Z
Rq
bF (�)e2i�<�;v>jP (�)j d� . (18)

Then (17) is an immediate consequence of (14). For p even j < �; @v > jp is the di¤erential
operator

�Pq
j=1 �j@vj

�p
. �

f. Link with the dual transform. Corollary 2 can be written in terms of the dual Radon
transform R�. Indeed let F (u; v) be a function on L(Rp;Rq)� Rq and let

R�F (x; y) =

Z
Rp
F (u(t); y � u(t)x) dt (19)
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be the integral of F over the family of all p-planes P(u(t); v) containing the point (x; y).
This de�nition of R� of course depends on the choice of the map t 7! u(t). Though natural
in the present context it di¤ers from Helgason�s de�nition in the Euclidean case ([11]
chapter I, §6), given by an integral over the orthogonal group.

Assuming absolute convergence of the integrals we have, for all f 2 S(Rn),Z
Rp�Rq

R�F (x; y)f(x; y) dxdy =

Z
F (u(t); y � u(t)x)f(x; y) dxdydt

=

Z
F (u(t); v)f(x; u(t)x+ v) dxdvdt

=

Z
Rp�Rq

F (u(t); v)Rf(u(t); v) dvdt .

Thus R� is actually dual to R.
In this notation Corollary 2 becomes

(2i�)pf = R�jdetA(@v)jRf (20)

where R� is given by (19). Since

R�@vjF = @yjR
�F , 1 � j � q ,

the example (13) u(t) = �
 t may be rewritten, for p even, as

(2i�)pf = (< �; @y >)
pR�Rf . (21)

3. THE KAPPA OPERATOR
Interesting simpli�cations occur in the inversion formula if the di¤eomorphism (12) is
orientation preserving (or reversing), i.e. if the Jacobian J given by (15) does not change
sign in Rp � 
 : see Corollary 2 with p even for an example. Throughout this section we
thus assume that J(t; �) has a constant sign " (= 1 or �1) for all (t; �) 2 Rp � 
.

This can only hold for even p. Indeed assume p odd and �x t 2 Rp. Then there exists
an open set V in Rq such that J(t; �), as a non identically zero polynomial of odd degree
with respect to �, is strictly positive on V and strictly negative on �V . Both V and �V
meet the dense open set 
, and J cannot have a constant sign on Rp � 
.

No absolute value is necessary in (14) then and Theorem 1 can be rewritten with
di¤erential forms instead of densities. Going over its proof again we assume Rp � Rq is
oriented by the volume form

d� ^ d� = d�1 ^ � � � ^ d�p ^ d�1 ^ � � � ^ d�q .

Then

f(x; y) =

Z
Rp�


bf(�; �)e2i�(<�;x>+<�;y>)d� ^ d�
= "

Z
Rp�


cRf(u(t); �)e2i�<�;y�u(t)x>J(t; �) dt ^ d� ,
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with (recalling that p is even)

J(t; �)dt ^ d� =
X
j1;:::;jp

�j1 :::�jp d�1 ^ � � � ^ d�q ^ duj11 ^ � � � ^ dujpp

and all ujk�s expressed as functions of t. By Fourier inversion for the integral over 
, i.e.
over Rq, we obtain

"(2i�)pf(x; y) =

Z
t2Rp

X
j1;:::;jp

�
@vj1 � � � @vjpRf

�
(u(t); y � u(t)x) duj11 ^ � � � ^ dujpp

in which dujk =
P
h @thujk(t) dth. This motivates the following

De�nition 3 Let (x; y) 2 Rp �Rq. To any smooth function F of (u; v) 2 L(Rp;Rq)�Rq
the kappa operator �x;y associates the di¤erential p-form on L(Rp;Rq) given by

(�x;yF ) (u) =

qX
j1;:::;jp=1

�
@vj1 � � � @vjpF

�
(u; y � ux) duj11 ^ � � � ^ dujpp . (22)

Summarizing we have proved

Theorem 4 (Inversion formula with kappa operator) Let f 2 S(Rn) and let t 7! u(t) be
any map such that (12) is a di¤eomorphism and its Jacobian (15) has constant sign ".
Then p is even and, for any (x; y) 2 Rn,

"(2i�)pf(x; y) =

Z

�x;yRf (23)

with  = u(Rp).

In (23)
R
 �x;yRf means the integral over R

p of the pullback u� (�x;yRf). This is a local
inversion formula, i.e. f can be reconstructed at (x; y) by means of integrals over p-planes
close to this point. As noted above the assumption is satis�ed with " = 1 if u(t) = � 
 t
and p is even.
In [3] p. 61 the right-hand side of (23) is shown to vanish for odd p, so that � does not
yield an inversion formula.

Proposition 5 (Properties of the kappa operator). For (a; b); (x; y) 2 Rp�Rq, f 2 S(Rn),
(i) �a;bRf� = ��a;�bRf with f�(x; y) = f(�x; �y), � > 0
(ii) �a;bRf = �0;0Rfa;b with fa;b(x; y) = f(x+ a; y + b)
(iii) Assume F satis�es the pq(q� 1)=2 di¤erential equations, for (u; v) 2 L(Rp;Rq)�Rq,
1 � i; j � q, 1 � k � p, �

@vi@ujk � @vj@uik
�
F (u; v) = 0 . (24)

Then �x;yF is a closed di¤erential form. In particular �x;yRf is closed.
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Proof. (i) and (ii) are immediate from (8), (9) and (22).
(iii) If q = 1 i.e. p = n�1 the di¤erential equations are trivial but the result is clear, since
u = (u1; :::; up) in this case and �F has the form

�x;yF (u) = g(u1; :::; up) du1 ^ � � � ^ dup ,

obviously closed. We may thus assume q > 1. Then d(�x;yF ) =
Pp
k=1 (!k � xk k) with

!k =

qX
j;j1;:::;jp=1

@ujk@vj1 � � � @vjk � � � @vjpF dujk ^ duj11 ^ � � � ^ dujkk ^ � � � ^ dujpp ,

 k =

qX
j;j1;:::;jp=1

@vj@vj1 � � � @vjk � � � @vjpF dujk ^ duj11 ^ � � � ^ dujkk ^ � � � ^ dujpp .

Both forms vanish by symmetry of their coe¢ cients with respect to j and jk.
In view of (10) this holds for F = Rf . �

4. RADON TRANSFORM ON LAGRANGIAN PLANES
The above results actually deal with the Radon transform restricted to the n-dimensional
"admissible" family of planes P(u(t); v), t 2 Rp, v 2 Rq, where u(t) is chosen so that (12)
is a di¤eomorphism. The rank one choice (13) leads to nice-looking inversion formulas :
see Corollary 2 and (21). Other interesting choices come out of the case of Lagrangian
planes.

Throughout this section we assume p = q i.e. n = 2p. A p-dimensional vector subspace
of R2p is Lagrangian if and only if the symplectic form

�((x; y); (x0; y0)) =< x; y0 > � < x0; y >

(with x; x0; y; y0 2 Rp) vanishes on it identically. For a graph y = ux, u 2 L(Rp;Rp), this
is equivalent to the symmetry u = tu. Let Sp denote the space of symmetric p � p real
matrices. We now consider the Radon transform (1) restricted to the manifold of a¢ ne
Lagrangian p-planes P(u; v), u 2 Sp, v 2 Rp.

Restricting (11) to u 2 Sp gives the projection slice theorem :

cRf(u; �) = bf(�u�; �) , u 2 Sp , � 2 Rp .
An inversion formula will follow as above for any choice of t 7! u(t) 2 Sp such that (12) is
a di¤eomorphism onto.

a. A Lagrangian inversion formula. As a �rst example one can take the diagonal
matrix

u(t) = diag (t1; :::; tp) , 
 = f� 2 Rpj�1 � � � �p 6= 0g ,

hence, by (20) with A(�) = diag(�1; :::; �p), the inversion formula for Lagrangian planes
(cf. [1])

(2i�)pf(x; y) = R�j@v1 � � � @vp jRf (25)

where f 2 S(R2p), (x; y) 2 Rp � Rp, R� is de�ned by (19) (with the above u(t)) and
j@v1 � � � @vp j denotes the operator with symbol j�1 � � � �pj acting on v. But here the Jacobian
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J(t; �) = (�1)p�1 � � � �p changes sign in 
 and we have no analog of (23) with a kappa
operator.

b. One more Lagrangian inversion formula. Another example is given, for even p,
by the block diagonal matrix (cf. [10] for p = 2)

u(t) = diag

��
t1 t2
t2 �t1

�
; :::;

�
tp�1 tp
tp �tp�1

��
,


 = f� 2 Rpj(�1; �2) 6= 0; :::; (�p�1; �p) 6= 0g .

Then, in the notation of (16) above, u(t)� = A(�)t with

A(�) = diag

��
�1 �2
��2 �1

�
; :::;

�
�p�1 �p
��p �p�1

��
,

detA(�) = (�21 + �
2
2) � � � (�2p�1 + �2p) ,

hence by (20) the inversion formula for f 2 S(R2p), p even, (x; y) 2 Rp � Rp,

(2i�)pf(x; y) = R��v12�
v
34 � � ��vp�1;pRf (26)

= �y12�
y
34 � � ��

y
p�1;pR

�Rf

with �vjk = @2vj + @
2
vk
, �yjk = @2yj + @

2
yk
.

c. Lagrangians and the kappa operator.

De�nition 6 Let (x; y) 2 Rp �Rp. To any smooth function F of (u; v) 2 L(Rp;Rp)�Rp
the Lagrangian kappa operator �Lx;y associates the restriction to Sp, the space of symmetric
p� p matrices, of the di¤erential p-form �x;yF (De�nition 3), i.e.

�Lx;yF = �� (�x;yF ) , (27)

where � : Sp ,! L(Rp;Rp) is the canonical injection.

Thus �Lx;yF is a di¤erential p-form on Sp which, in view of (22), only depends on the
restriction of F to Sp � Rp. For p = 2

�Lx;yF = @2v1F du11 ^ du12 + @v1@v2F du11 ^ du22 + @2v2F du12 ^ du22 ,

with all derivatives of F computed at (u; v) = (u; y � ux).

Theorem 7 (Lagrangian inversion formula with kappa operator) Let f 2 S(R2p) and let
t 7! u(t) be any map from Rp into Sp such that (t; �) 7! (�u(t)�; �) is a di¤eomorphism
of Rp � 
 onto itself (see (12)) with Jacobian of constant sign ". Then p is even and, for
any (x; y) 2 Rp � Rp,

"(2i�)pf(x; y) =

Z

�Lx;yRf (28)

with  = u(Rp) � Sp.
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The right-hand side of (28) is the integral over Rp of the pullback u�
�
�Lx;yRf

�
.

The assumption of Theorem 7 is satis�ed in example b above. Taking p = 2 and u(t)
as in b i.e. u21 = u12, u22 = �u11, (28) reads

�4�2f(x; y) =
Z
R2
(@2v1 + @

2
v2)Rf(u; y � ux) du11 ^ du12 ,

in agreement (up to a factor) with the result of [10].
Proof of Theorem 7. Theorem 4 applies with u replaced by � � u : Rp ! L(Rp;Rp),
hence

"(2i�)pf(x; y) =

Z
Rp
(u� � ��) (�x;yRf) =

Z
Rp
u�(�Lx;yRf) . �

d. Partial di¤erential equations.

Proposition 8 (i) Let f 2 S(R2p) and (x; y) 2 Rp � Rp. Then �Lx;yRf is a closed di¤e-
rential form on Sp.
(ii) Let F be a smooth function on L(Rp;Rp) � Rp satisfying the di¤erential equations
(24) with p > 1 (e.g. F = Rf). Let G be the restriction of F to Sp � Rp. Then for
(u; v) 2 Sp � Rp, 1 � j < k � p,�

@2vj@ukk + @
2
vk
@ujj � @vj@vk@ujk

�
G(u; v) = 0 . (29)

Proof. (i) By De�nition 6 and Proposition 5(iii)

d
�
�Lx;yRf

�
= d (���x;yRf) = �� (d�x;yRf) = 0 .

(ii) We take (ujk)j�k as coordinates on Sp. If I : Sp � Rp ,! L(Rp;Rp)� Rp denotes the
canonical injection we have G = F � I and

@ujjG =
�
@ujjF

�
� I , @vjG =

�
@vjF

�
� I ,

@ujkG =
�
(@ujk + @ukj )F

�
� I for j < k .

By (24) @vk@ujkF = @vj@ukkF hence

@vj@vk@ujkG =
��
@vj@vk@ujk + @vj@vk@ukj

�
F
�
� I

=
��
@2vj@ukk + @

2
vk
@ujj

�
F
�
� I

=
�
@2vj@ukk + @

2
vk
@ujj

�
G . �

e. Remark. As noted in [9] the situation would be di¤erent with skew-symmetric matrices
instead of symmetric, despite the analogy with the Lagrangian Radon transform. Indeed
restriction of (11) would give the projection slice theorem

cRf(u; �) = bf(u�; �) ,
but u� is now orthogonal to � and bf is not fully determined by this equation. The transform
R is not injective in this case ; see [9] p. 125 for details.
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5. RANGE THEOREMS
The above tools also lead to range theorems for the Radon transform, i.e. characterizations
of the image under R of the space S(Rn). We shall only sketch the proofs of Theorems 10
and 12 below (due to Grinberg [9], Debiard and Gaveau [1]) with emphasis on the formal
signi�cance of the partial di¤erential equations (Lemmas 11 and 13).
a. General case. In order to de�ne the relevant notion of rapidly decreasing functions
on the Grassmannian we need a notation : let u = (ujk) 2 L(Rp;Rq), � 2 Rq and, for
1 � j � q , 1 � k � p,

Ljk =

qX
i=1

uik

 
pX
l=1

ujl@uil � �i@�j

!
.

As before bF (u; �) denotes the partial Fourier transform on Rq of a function F (u; v).

De�nition 9 A complex valued function F of (u; v) 2 L(Rp;Rq)�Rq is said to be rapidly
decreasing if it is C1 and
(i) for each u the function v 7! F (u; v) belongs to S(Rq)
(ii) for any polynomial P in the di¤erential operators

@ujk ,
I + tuu

�1=2
2

@�j ,
qX
i=1

uik@uil , Ljk

with 1 � j � q, 1 � k; l � p, there exist a positive integer N and a constant CN > 0 such
that, for all u, �,

P bF (u; �) � CN
�
1 +

tu�+ k�k��N .

A more pleasant de�nition was given by Gonzalez [7][8] with a di¤erent parametrization of
the manifold of p-planes. Here, writing them as graphs, we had interesting simpli�cations
in the previous sections but at the expense of introducing arti�cial singularities at planes
not transversal to 0 � Rq. The role of the operators

P
uik@uil , Ljk is to deal with these

singularities.

Theorem 10 (Range theorem for p-planes) Let F be a function of (u; v) 2 L(Rp;Rq)�Rq
with n = p+ q. For 1 � p < n� 1 the following are equivalent :
(i) There exists f 2 S(Rn) such that F = Rf .
(ii) F is rapidly decreasing and

�
@vi@ujk � @vj@uik

�
F (u; v) = 0 for (u; v) 2 L(Rp;Rq)�Rq,

1 � i; j � q , 1 � k � p .
In (i) f is unique and given by (14), or (23) if J has constant sign.

As noted in [9] p. 120 no additional "moment conditions" on F are required for p <
n � 1 ; see Richter [12] for a proof. Viewing the Grassmannian as a homogeneous space
of the Euclidean motion group of Rn Gonzalez proves a more satisfactory result, with
the di¤erential operators in (i) replaced by a family of second order invariant di¤erential
operators under this group [7] or even by a single fourth order invariant di¤erential operator
[8].
Sketch of proof. (i) implies (ii) by (10) and estimates of Rf and its derivatives ([9] p.
116).
(ii) implies (i). The key lemma is

11



Lemma 11 Let F be a rapidly decreasing function of (u; v) 2 L(Rp;Rq)� Rq. The follo-
wing are equivalent :
(ii)

�
@vi@ujk � @vj@uik

�
F = 0 , 1 � i; j � q , 1 � k � p .

(ii�) For all u; u0 2 L(Rp;Rq) and all � 6= 0 in Rq, the equality tu� = tu0� impliesbF (u; �) = bF (u0; �).
Proof of Lemma 11. Let Ejk 2 L(Rp;Rq) denote the matrix with 1 as entry (j; k) and
0 elsewhere. Considering the Fourier transform bF (u; �) = R F (u; v)e�2i�<�;v>dv we have��

@vh@ujk � @vj@uhk
�
F
�b(u; �) = 2i� @s=0 bF (u+ s(�hEjk � �jEhk); �) . (30)

For � 6= 0 the matrices Ahjk = �hEjk� �jEhk, 1 � h; j � q, 1 � k � p, generate the kernel
of the map u 7! tu�. Indeed this map is onto by the Remark in Section 2.d, therefore its
kernel has dimension pq � p and, assuming �h 6= 0 for some h, the Ahjk with 1 � j � q,
j 6= h, 1 � k � p, are p(q � 1) independent elements of this kernel.
Replacing u by u+sAhjk in (30) we see that (ii) is equivalent to bF (u+sAhjk; �) = bF (u; �)
for all s; h; j; k; i.e. to bF (u+ u0; �) = bF (u; �) whenever tu0� = 0. The lemma is proved. �

By (ii) and Lemma 11 there exists a unique function  on Rp � (Rqn0) such that

 (� tu�; �) = bF (u; �)
for all u 2 L(Rp;Rq), � 2 Rqn0. The technical point is to show that, F being rapidly
decreasing,  extends to a function in S(Rp�Rq). We admit it here ; see [9] Appendix II.

If there exists f 2 S(Rn) such that Rf = F then the projection slice theorem (11)
implies bf =  . Conversely, if f denotes the inverse Fourier transform of  , we have
f 2 S(Rn) and cRf(u; �) = bf(� tu�; �) =  (� tu�; �) = bF (u; �) ,
hence Rf = F and the theorem. �

b. Lagrangian case. Let us now restrict to Sp, the space of symmetric matrices (with
p = q) as in Section 4. Following [9] again we say that a function G is rapidly decreasing
on Sp � Rp if it extends to a rapidly decreasing function on L(Rp;Rp)� Rp.

Theorem 12 (Range theorem for Lagrangian p-planes) Let G be a function of (u; v) 2
Sp � Rp. For p > 1 the following are equivalent :
(i) There exists f 2 S(R2p) such that G is the restriction of Rf to Sp � Rp.
(ii) G is rapidly decreasing and

�
@2vj@ukk + @

2
vk
@ujj � @vj@vk@ujk

�
G(u; v) = 0 for (u; v) 2

Sp � Rp, 1 � j < k � p.
In (i) f is unique and given by one of the inversion formulas in Section 4.

Sketch of proof. (i) implies (ii) by Proposition 8 and estimates of Rf and its derivatives.
(ii) implies (i). The key lemma is

Lemma 13 Let G be a rapidly decreasing function of (u; v) 2 Sp �Rp. The following are
equivalent :

(ii)
�
@2vj@ukk + @

2
vk
@ujj � @vj@vk@ujk

�
G(u; v) = 0 for (u; v) 2 Sp � Rp, 1 � j < k � p

(ii�) For all u; u0 2 Sp and all � 2 Rp such that �1 � � � �p 6= 0 the equality u� = u0� impliesbG(u; �) = bG(u0; �).
12



Proof of Lemma 13. Let Sjk 2 Sp denote the matrix with 1 as entries (j; k) and (k; j)
and 0 elsewhere. Then��

@2vj@ukk + @
2
vk
@ujj � @vj@vk@ujk

�
G
�b(u; �) =

= �4�2@s=0 bG �u+ s ��2jSkk + �2kSjj � �j�kSjk� ; �� . (31)

We now claim that for �1 � � � �p 6= 0 the matrices

Bjk = �2jSkk + �
2
kSjj � �j�kSjk , 1 � j < k � p ,

make up a basis of the kernel of the map L� : u 7! u�.
Indeed L�(Sp) = Rp : for any � 2 Rp the equation u� = � is solved by

u = diag(�1=�1; :::; �p=�p) 2 Sp .

Thus dimkerL� = p(p+1)=2� p = p(p� 1)=2 and the p(p� 1)=2 matrices Bjk, j < k, are
linearly independent elements of this kernel since

P
j<k �jkBjk = 0 implies �jk�j�k = 0

hence �jk = 0. This proves the claim.
Replacing u by u+ sBjk in (31) we see that (ii) is equivalent to bG(u+ sBjk; �) = bG(u; �)
for all s; j; k and the lemma follows. �

Let 
 be the set of all � 2 Rp such that �1 � � � �p 6= 0. By (ii) and Lemma 13 there
exists a unique function  on Rp � 
 such that

 (�u�; �) = bG(u; �)
for all u 2 Sp, � 2 
. Then  extends to a function in S(R2p) (admitted).

The proof ends as for Theorem 10. If there exists f 2 S(R2p) such that G equals
Rf restricted to Sp � Rp we must have bf(�u�; �) = cRf(u; �) = bG(u; �) =  (�u�; �) for
u 2 Sp, � 2 
, hence bf =  . Conversely, if f denotes the inverse Fourier transform of  ,
we have f 2 S(R2p) and

cRf(u; �) = bf(�u�; �) =  (�u�; �) = bG(u; �)
for u 2 Sp, � 2 
, therefore G is the restriction of Rf to Sp � Rp. �

13



REFERENCES
The present notes were mainly inspired by reading Gelfand, Gindikin and Graev [3] (who
give a much deeper study of the kappa operator), Grinberg [9], Debiard and Gaveau [1],
Gelfand and Gindikin [2]. Theorem 10 is taken from [9], Theorem 12 from [1] and [9]. For
the case of Lagrangian planes see [1], [9] and [10].
For other occurrences of the kappa operator, in the context of integral geometry over
quadrics, see [4] chapter 5, [5], [6] or even the notes [13].

[1] Debiard, A. and Gaveau, B., Formule d�inversion en géométrie intégrale lagrangienne,
C.R. Acad. Sc. Paris 296 (1983), p. 423-425.
[2] Gelfand, I.M., Gindikin, S.G., Nonlocal inversion formulas in real integral geometry,
Funct. Anal. Appl. 11 (1977), p. 173-179 ; reprinted in Gelfand, Collected papers, vol. III,
Springer-Verlag 1989, p. 73-79.
[3] Gelfand, I.M., Gindikin, S.G. and Graev, M.I., Integral geometry in a¢ ne and projective
spaces, J. Sov. Math. 18 (1980), p. 39-167 ; reprinted in Gelfand, Collected papers, vol. III,
Springer-Verlag 1989, p. 99-227.
[4] Gelfand, I.M., Gindikin, S.G. and Graev, M.I., Selected topics in integral geometry,
Transl. Math. Monographs 220, Amer. Math. Soc. 2003.
[5] Gindikin, S.G., Integral geometry on real quadrics, Amer. Math. Soc. Transl. (2) 169
(1995), p. 23-31
[6] Gindikin, S.G., Real integral geometry and complex analysis, in Lecture Notes in Math.
1684, Springer 1998, p. 70-98.
[7] Gonzalez, F., On the range of the Radon d-plane transform and its dual, Transactions
Amer. Math. Soc. 327 (1991), p. 601-619.
[8] Gonzalez, F., Invariant di¤erential operators and the range of the Radon d-plane trans-
form, Math. Ann. 287 (1990), p. 627-635.
[9] Grinberg, E., Euclidean Radon transforms : ranges and restrictions, in Contemporary
Math. 63, Amer. Math. Soc. 1987, p. 109-133.
[10] Grinberg, E., That kappa operator, in Lectures in Applied Math. 30, Amer. Math.
Soc. 1994, p. 93-104.
[11] Helgason, S., The Radon transform, Second edition, Birkhaüser 1999.
[12] Richter, F., On the k-dimensional Radon transform of rapidly decreasing functions,
in Lecture Notes in Math. 1209, Springer-Verlag 1986, p. 243-258.
[13] Rouvière, F., On Radon transforms and the kappa operator, preprint 2006,

http ://math.unice.fr/~frou/recherche/Radon06a.pdf

Laboratoire J.-A. Dieudonné
Université de Nice
Parc Valrose
06108 Nice cedex 2, France
e-mail : frou@math.unice.fr

14


