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Abstract

We extend to a large class of noncompact harmonic manifolds the inversion formulas for the
Radon transform on horospheres in hyperbolic spaces or Damek-Ricci spaces. Horospheres are
de�ned here as level hypersurfaces of Busemann functions. The proof uses harmonic analysis
on the manifolds considered, developed in a recent paper by Biswas, Knieper and Peyerimho¤;
we also give a concise proof of their Fourier inversion theorem for harmonic manifolds.
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Introduction

Harmonic analysis and integral geometry have close links with each other. In various geometric
frameworks the (generalized) Fourier transform of a function u is obtained by integrating it against
eigenfunctions of the Laplace operator. Decomposing this integral according to the level sets of
an eigenfunction, one can prove a so-called «projection slice theorem» which links the Radon
transform Ru, given by the integrals of u over such sets, with the Fourier transform of u. A
Fourier inversion formula for u may then lead to an inversion formula for the integral transform
R. One of the simplest examples is given by the exponentials x 7! e2i�h�;xi, eigenfunctions of
the Laplace operator in Rn, whose level sets are the hyperplanes h�; xi = constant. The classical
Fourier inversion theorem yields a Radon inversion formula which reconstructs u from its integrals
over hyperplanes.
Among many examples of this problem let us mention Helgason�s Radon transform over

horospheres of a symmetric space of the noncompact type [12]. As symmetric spaces of rank
one, the hyperbolic spaces are a special case, which also extends in a di¤erent direction to a large
class of spaces (non symmetric in general) known as Damek-Ricci spaces or harmonic NA groups
[9]. The purpose of this note is to extend the latter cases one step further, to all simply connected
harmonic manifolds with purely exponential volume growth. For this we shall use harmonic analy-
sis on these manifolds as developed in a recent paper by Biswas, Knieper and Peyerimho¤ [4].
There are no Lie groups here; horospheres are de�ned by means of Busemann functions.
In Section 1 we recall basic facts about harmonic manifolds, Busemann functions and we give

explicit geometric expressions of these functions and the corresponding horospheres for hyperbolic
spaces and for Damek-Ricci spaces. In Section 2 we summarize the main results of [4] in harmonic
analysis, radial then non radial; for the reader�s convenience we provide a concise version of the
proof of their Fourier inversion theorem (Theorem 7). In Section 3 we introduce the horosphere
Radon transform R on a harmonic manifold with purely exponential volume growth and its dual
transform R�. Our main result is Theorem 11, giving two versions of an inversion formula for R.
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One of them is u = R��Ru (where � is a certain operator), similar to Helgason�s Theorem 3.13 in
[12] Chapter II. The other uses a «shifted dual Radon transform» , a method introduced by Radon
in his pioneering 1917 paper dealing with lines in R2.
The author is grateful to the referees for their careful reading of the manuscript, which led to

several improvements.

Notation. If X is a topological space we denote by C(X), resp. Cc(X), the space of functions
X ! C which are continuous, resp. continuous with compact support.
If X is a (smooth real) manifold, we denote by ToX its tangent space at o 2 X and by D(X) the
space of C1 functions X ! C with compact support.
Throughout the paper X will be a complete Riemannian manifold, k:k the norm of tangent vectors
given by the Riemannian structure and d(x; y) the geodesic distance between two points x; y 2 X.
Given o 2 X, Expo is the exponential mapping at o: for any unit vector v 2 ToX, 
(t) = Expo(tv)
is the geodesic de�ned by 
(0) = o and 
0(0) = v, so that d(
(t1); 
(t2)) = jt1 � t2j. We shall also
use the gradient r and the Laplace-Beltrami operator Lf = div(rf).

1 Harmonic manifolds and Busemann functions

1.1 General facts

We collect here some facts needed in the sequel, mainly taken from [4] Section 2, to which we refer
for more details.
A Riemannian manifold X is harmonic if, for every origin o 2 X, there exists a non constant

harmonic function on a punctured neighborhood of o which is radial around o, i.e. only depends on
the distance d(o; x). For a few equivalent properties see e.g. [18] Théorème 4. A simply connected
complete noncompact harmonic manifold has no conjugate points (Allamigeon�s theorem) thus,
by the Cartan-Hadamard theorem, the exponential mapping Expo : ToX ! X at o is a global
di¤eomorphism onto, for every o 2 X.
Let SoX denote the unit sphere in ToX and let r > 0. If X is harmonic the Jacobian of the

map v 7! Expo(rv) from SoX into X only depends on r and is called the density function A(r)
of X. The harmonic manifold X is said to be of purely exponential volume growth if there exist
constants C > 1 and � > 0 such that, for all r � 1,

C�1e2�r � A(r) � Ce2�r:

An equivalent property is that the volume of metric balls of radius r satis�es a similar inequal-
ity. The class of harmonic manifolds with purely exponential volume growth includes all known
examples of non-�at noncompact harmonic manifolds.
Henceforth we assume X is a simply connected harmonic manifold with purely exponential

volume growth and o 2 X is a given origin.
For v 2 SoX let 
v(r) = Expo(rv), r � 0, be the geodesic ray such that 
v(0) = o and 
0v(0) = v.

The corresponding Busemann function is de�ned by1

bv(x) := lim
r!+1

(d(o; 
v(r))� d(x; 
v(r))) = lim
r!+1

(r � d(x; 
v(r))) : (1)

The limit exists since, by the triangle inequality, the function r 7! r � d(x; 
v(r)) is increasing
and bounded by d(o; x). Also jbv(x) � bv(y)j � d(x; y) and bv is a Lipschitz function on X. A
much stronger result can actually be proved: harmonic manifolds are Einstein manifolds, therefore
analytic by the DeTurck-Kazdan theorem, and bv is analytic on X (Ranjan and Shah [16], Theorem
3.1). It satis�es the partial di¤erential equations

krbv(x)k = 1 , Lbv(x) = �2� (2)
1This de�nition is the opposite of the classical one, so as to avoid minus signs at several places in the sequel, e.g.

for the examples in Sections 1.2 and 1.3.
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for x 2 X, where L is the Laplace-Beltrami operator and � is the constant introduced above. The
level sets of a Busemann function, called horospheres, may be viewed as spheres with center at
in�nity. They have constant mean curvature 2�.
A boundary structure for X can be introduced as follows. Let @X be the set of equivalence

classes of geodesic rays in X, two rays 
1 and 
2 (with di¤erent origins) being equivalent if the
distance d(
1(r); 
2(r)) remains bounded for r ! +1. Let 
(1) 2 @X denote the class of a ray 
.
Considering again 
v(r) = Expo(rv), the map v 7! ! = 
v(1) is a bijection of the unit sphere SoX
onto @X. The topology and the (normalized) measure on SoX induced by the Riemannian norm
can therefore be transferred to the boundary @X, providing it with a topology (which does not
depend on o) and a (normalized) measure do! (which depends on o), called the visibility measure
from o.
We can then modify the de�nition of Busemann functions as follows. For ! 2 @X let 
 be any

geodesic ray such that 
(1) = !. Then limr!+1 (d(o; 
(r))� d(x; 
(r))) only depends on o, x
and ! ([4], Lemma 2.1). We may thus de�ne Bo(x; !) by

Bo(x; !) := lim
r!+1

(d(o; 
(r))� d(x; 
(r))) = bv(x); (3)

where v = �0(0) 2 SoX is the initial velocity of the ray � such that �(0) = o and �(1) = ! (thus
�(r) = Expo(rv)). The function (x; !) 7! Bo(x; !) is continuous on X � @X and analytic with
respect to x. Besides

krxBo(x; !)k = 1 , LxBo(x; !) = �2� (4)

for x 2 X, ! 2 @X.
An obvious consequence of de�nition (3) is that, when replacing o with a new origin a,

Ba(x; !) = Bo(x; !)�Bo(a; !): (5)

Lemma 1 Given o 2 X, t 2 R and ! 2 @X let St(!) denote the horosphere fx 2 XjBo(x; !) = tg.
Then d(o; St(!)) := infx2St(!) d(o; x) = jtj.

Proof. Since jBo(x; !)j � d(o; x) by the triangle inequality, x 2 St(!) implies d(o; x) � jtj.
Let � denote the geodesic such that �(0) = o and �(1) = !. For any r; s 2 R we have d(�(s); �(r)) =
jr � sj therefore

Bo(�(s); !) = lim
r!+1

(r � jr � sj) = s:

In particular �(t) 2 St(!). Since d(o; �(t)) = jtj this completes the proof.

We shall also need the following link between the visibility measures from o and a (see Theorem
1.4 in Knieper and Peyerimho¤ [14] with h = 2�, proved for a wider class of harmonic manifolds):

da! = e
2�Bo(a;!)do!: (6)

In the next two subsections we give geometric expressions of the Busemann functions for hy-
perbolic spaces, resp. Damek-Ricci spaces, showing the general harmonic analysis of [4] agrees
with the classical theories developed in [12], resp. [2]. Hyperbolic spaces are actually a special
case of Damek-Ricci spaces but, notation and tools being di¤erent, we shall consider both cases
separately; for a detailed comparison see e.g. [18] Section 6.

1.2 Rank one symmetric spaces

Let X = G=K be a symmetric space of the noncompact type, where G is a connected noncompact
real semisimple Lie group with �nite center and K is a maximal compact subgroup. A dot denotes
the action of G on X: g � x = gg0K for g; g0 2 G and x = g0K 2 G=K. We brie�y recall the
classical semisimple notation of Helgason�s books [10], [11] and [12], to which we refer for details.
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The Lie algebra of G decomposes as g = k � p into the �1 eigenspaces of the Cartan involution,
where k is the Lie algebra of K and p is the tangent space to G=K at the origin o = K.
Let a be a maximal abelian subspace of p. A nonzero linear form � on a such that the joint
eigenspace

g� = fV 2 gj [H;V ] = �(H)V for all H 2 ag
is not f0g is called a root of the pair (g; a). Here we assume X has rank one i.e. dim a = 1, so that
there are four roots at most: �, �� and (possibly) 2�, �2�. We write a = RH with H chosen so
that �(H) = 1. Then n = g� � g2� is the Lie algebra of a nilpotent Lie subgroup N of G, leading
to the Iwasawa decompositions G = ANK = NAK where A is the (one-dimensional) subgroup
with Lie algebra a.
A K-invariant scalar product on p, normalized so that H is a unit vector, can be constructed from
the Killing form of g, whence a G-invariant Riemannian structure on X. The manifolds X thus
obtained are all the hyperbolic spaces (real, complex, quaternionic and exceptional). They are
harmonic with purely exponential volume growth.
Let M be the centralizer of A in K. The map k 7! Ad(k)H from K into p given by the adjoint
action induces a di¤eomorphism ! = kM 7! v = Ad(k)H of the homogeneous space K=M onto
the unit sphere of p.
In the Iwasawa decomposition G = ANK let A(g) 2 R (identi�ed with the line a = RH) be de�ned
by g 2 (expA(g))NK. Thus g = katn with at := exp tH implies t = A(k�1g). From the properties
of the subgroups A;N;K andM of G it follows easily that A(k�1g) only depends on the left cosets
x = gK and ! = kM ; following [12] Chapter III let us write it as A(x; !) := A(k�1g).

Proposition 2 The Busemann function of a rank one symmetric space of the noncompact type
G=K, relative to its origin o = K, is

bv(x) = A(x; !) = A(k
�1g)

for x = gK 2 G=K, ! = kM 2 K=M and v = Ad(k)H.
Given t 2 R and ! = kM 2 K=M , the equation A(x; !) = t de�nes the horosphere katN � o.

Proof. A unit tangent vector at o may be written as v = Ad(k)H and de�nes the geodesic

v(r) = Expo(rv) = kar:o from the origin. Using the G-invariance of the distance d on G=K,
we have d(x; 
v(r)) = d(k�1 � x; ar � o). By the Iwasawa decomposition G = ANK we may
write k�1 � x = atn � o with t = A(x; !) 2 R, ! = kM and some (unique) n 2 N . Thus, with
s := r � t! +1,

d(x; 
v(r)) = d(atn � o; ar � o) = d(o; n�1as � o)
= d(a�s � o; a�sn�1as � o):

But, writing n�1 = exp(V + Z) with V 2 g� and Z 2 g2�, we see that

a�sn
�1as = exp

�
e�sV + e�2sZ

�
tends to the identity element as s! +1. It follows that

d(x; 
v(r)) = d(a�s � o; o) + "(r) = jsj+ "(r) = r � t+ "(r);

with "(r)! 0 as r ! +1; indeed, by the triangle inequality,

j"(r)j = jd(a�s � o; a�sn�1as � o)� d(a�s � o; o)j � d(a�sn�1as � o; o):

Therefore
bv(x) = lim

r!+1
(r � d(x; 
v(r))) = t = A(x; !):

The last assertion of the proposition follows from the de�nitions.

Remark. The distance d(x; 
v(r)) = d(o; n�1as � o) might be computed exactly by the classical
method of SU(2; 1) reduction (see [10] Chapter IX §3). The above proof avoids this.
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1.3 Damek-Ricci spaces

Also known as a «harmonic NA group» , a Damek-Ricci space is a simply connected solvable
Lie group S, semi-direct product of a two-step nilpotent group N by a one-dimensional group A
isomorphic to the additive group of R, with some additional properties summarized below. Its Lie
algebra s decomposes as s = v� z�RH, a direct sum of vector subspaces with [v; v] � z, [v; z] = 0,
[z; z] = 0 and [H;V ] = 1

2V , [H;Z] = Z for all V 2 v, Z 2 z. Here v � z, resp. RH, is the Lie
algebra of N , resp. A.
Remark. In the special case of a rank one symmetric space considered in the previous section,
one has S = NA = G=K with G = NAK, v = g� and z = g2�. Note the di¤erent choice of H in
that case however, where we had [H;V ] = V and [H;Z] = 2Z for V 2 g�, Z 2 g2�.

Given scalar products h:; :i on v and z we equip s with the scalar product

hX;X 0i = hV; V 0i+ hZ;Z 0i+ tt0 for X = V + Z + tH , X 0 = V 0 + Z 0 + t0H;

and the norm de�ned by kXk2 = kV k2 + kZk2 + t2.
For Z 2 z, let JZ : v! v denote the linear map de�ned by hJZV; V 0i = hZ; [V; V 0]i for all V; V 0 2 v.
We assume J2ZV = �kZk2 V for all V 2 v, Z 2 z. It follows that JZV is orthogonal to V and
kJZV k = kZk kV k.
It is convenient to realize the Damek-Ricci space as the vector space S = v� z�R with the group
law

(V;Z; t)(V 0; Z 0; t0) =

�
V + et=2V 0; Z + etZ 0 +

et=2

2
[V; V 0] ; t+ t0

�
:

The subgroup N is de�ned by t = 0 and the subgroup A by V = Z = 0. Any x 2 S decomposes
in a unique way as x = nat with n = (V;Z; 0) 2 N and at = (0; 0; t) 2 A. We call t = t(x) the
A-component of x; clearly t(xy) = t(x) + t(y) for x; y 2 S.
The Lie group S is equipped with the Riemannian structure de�ned by the left invariant metric
which coincides with h:; :i on the tangent space s at the identity element o = (0; 0; 0) of S. It is then
a harmonic manifold with purely exponential volume growth. Let d(:; :) denote the corresponding
left-invariant Riemannian distance on S.
Another useful realization of S is obtained from the Cayley transform C : S ! B, a di¤eomorphism
of S onto the open unit ball B in s de�ned by

C(V;Z; t) =

 
(1 + u)V � JZV
(1 + u)2 + kZk2

;
2Z

(1 + u)2 + kZk2
;
�1 + u2 + kZk2

(1 + u)2 + kZk2

!
2 B � v� z� R; (7)

with u = et +
1

4
kV k2

(see [8], or [18] Section 4.4). In the unit ball model the geodesics from the origin are simply the
diameters of B:

C(Expo(rX)) = th
r

2
�X; (8)

where X 2 s is a unit tangent vector at o and r 2 R.
Replacing et by 0 in (7) we also obtain a di¤eomorphism

C1 : (V;Z) 7! C(V;Z;�1) (9)

N ! @Bn fHg

of N onto @Bn fHg, the unit sphere of s with the point H removed. Thus, adding to N a point
1, N [ f1g may be seen as the set of points at in�nity in S.
The geodesic symmetry � with respect to the origin o of S is de�ned by �(Expo(rX)) = Expo(�rX).
In other words, remembering (8),

C(�(x)) = �C(x)
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for any x 2 S. From the de�nition (7) of C it follows that

�(V;Z; t) =
�
��1(�uV + JZV

�
;���1Z; t� log �)

with u = et +
1

4
kV k2 , � = u2 + kZk2 :

It is then easily checked that, for any s 2 R, the map x 7! �(asx) is an involutive di¤eomorphism
of S, that is

�(asx) = a�s�(x) = �(as)�(x) for s 2 R; x 2 S: (10)

Introducing the A-component et(x) := t(�(x)) this implies
et(asx) = et(x)� s: (11)

Let us also note that
d(o; x) = d(o; �(x)) = d(o; x�1) (12)

in view of the de�nition of � and the left-invariance of d.
We refer the reader to [7], [8] or to our expository notes [18], Chapter 4, for more details.

Proposition 3 The Busemann function of a Damek-Ricci space S = NA, relative to its origin o,
is

bX(x) = et(n(X)�1x)� et(n(X)�1);
where x 2 S and X is a unit tangent vector at the origin with X 6= H = (0; 0; 1). Here n(X) 2 N
is characterized by C1(n(X)) = X (see also (14) below) and, for y 2 S, et(y) := t(�(y)) denotes
the A-component of its symmetrical point �(y).
For X = H, we have

bH(x) = t(x);

where t(x) is the A-component of x.
The horospheres bX(x) = constant are the sets n(X)�(Nat) if X 6= H, resp. Nat if X = H, for
some �xed t 2 R.

This result is given (with di¤erent proofs) in [3], Lemma 3.1 and [13], Theorem 4. The following
proof avoids using the explicit expression of distances in a Damek-Ricci space.
Proof. LetX = V0+Z0+t0H 2 s be a given unit vector tangent to S at o and 
(r) = Expo(rX),

r 2 R, be the geodesic de�ned by 
(0) = o and 
0(0) = X. By (8) the Cayley transform C maps

 onto a diameter of B:

C(
(r)) = RX = RV0 +RZ0 +Rt0H , with R := th
r

2
; r 2 R;

and by [7] p. 14 (or [18] Théorème 9) 
(r) 2 S = NA decomposes as 
(r) = n(r)a��(r) with

n(r) =
2R

�(RX)
((1�Rt0)V0 +RJZ0V0; Z0; 0) 2 N;

a��(r) = (0; 0;��(r)) 2 A , �(r) = log
�
�(RX)=(1�R2)

�
; (13)

�(RX) = (1�Rt0)2 +R2 kZ0k2 > 0:

As r tends to +1 we have �(RX)! �(X) = (1� t0)2 + kZ0k2. Since kV0k2 + kZ0k2 + t20 = 1, we
see that �(X) > 0 if and only if X 6= H.
Assume �rst X 6= H. Then �(r)! +1 as r ! +1 by (13) and n(r)! n(X) with

n(X) :=
2

�(X)
((1� t0)V0 + JZ0V0; Z0; 0) : (14)
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Since C(
(r)) = C(n(r)a��(r)) = th
r
2 �X we infer C1(n(X)) = X for r ! +1, with C1 de�ned

by (9). The map (14) X 7! n(X) is thus the di¤eomorphism C�11 of the unit sphere of s (with the
point H removed) onto the subgroup N of S.
To compute the distance d(x; 
(r)) for x 2 S we use the left-invariance of d together with d(o; y) =
d(o; �(y)�1) (see (12)). Writing n = n(r) and � = �(r) for short we obtain, in view of (10),

d(x; 
(r)) = d(o; a�n
�1x) = d(o;

�
�(n�1x)

��1
a� ):

Let us decompose
�
�(n�1x)

��1
= n0at. Here n0 and t depend on r and have �nite limits as r ! +1

because of (14), with t = �et(n�1x)! �et(n(X)�1x). Writing s := t+ � we obtain
d(x; 
(r)) = d(o; n0as) = d(a�s; a�sn

0as):

As in the proof of Proposition 2 we have a�sn0as ! o as s! +1 therefore

d(x; 
(r)) = d(a�s; o) + "1(r) = s+ "1(r)

with limr!+1 "1(r) = 0; indeed the triangle inequality implies

j"1(r)j = jd(a�s; a�sn0as)� d(a�s; o)j � d(a�sn0as; o)! 0:

Finally
d(x; 
(r)) = �(r)� et(n(X)�1x) + "2(r); (15)

with limr!+1 "2(r) = 0 and �(r) given by (13). Subtracting the same equality for x = o we obtain
the �rst result of the proposition.
The case X = H is easier. Here 
(r) = (0; 0; r) = ar and, writing x = nat with t = t(x),

d(x; 
(r)) = d(nat; ar) = d(at; n
�1ar) = d(at�r; a�rn

�1ar):

Since a�rn�1ar ! o for r ! +1 we infer as above

d(x; 
(r)) = d(o; at�r) + "(r) = r � t+ "(r)

and the result follows.
Horospheres. For X 6= H, bX(x) = constant is equivalent to et(n(X)�1x) = t for some t, that is
�(n(X)�1x) 2 Nat. For X = H, bH(x) = t is equivalent to x 2 Nat. Note that Nat = atN .

Remark. Since d(o; 
(r)) = r, (15) implies �(r) = r+ et(n(X)�1) + "(r). Comparing with (13), it
follows that log(�(X)=4) = et(n(X)�1) = et(n(X)).
2 Harmonic analysis on a harmonic manifold

From now on X will denote a simply connected harmonic manifold with purely exponential volume
growth, dx its Riemannian measure and o an (arbitrary) origin in X. In this section we summarize
the main results of [4] about harmonic analysis on X. In the same way as for harmonic analysis
on symmetric spaces, one begins with the special case of radial functions.

2.1 Radial harmonic analysis

Let do(x) := d(o; x) denote the distance function from the origin. A function u on X is radial
around o if it is of the form u = f �do for some function f on (0;1). Then u belongs to L1(X; dx)
if and only if f belongs to L1((0;1); A(r)dr), with the classical integral formula in geodesic polar
coordinates Z

X

u(x)dx =

Z 1

0

f(r)A(r)dr

7



where A(r) is the density function. Let L be the Laplace-Beltrami operator of X. For f 2
C1(0;1) we have the radial part formula

L(f � do) = (Lrf) � do with Lr :=
d2f

dr2
+
A0(r)

A(r)

df

dr
: (16)

Similarly, replacing the distance by a Busemann function, for g 2 C1(R) and ! 2 @X the function
x 7! v(x) = g(Bo(x; !)) is constant on horospheres of X and we have

L (g �Bo(:; !)) = (Lhg) �Bo(:; !) with Lh :=
d2g

dt2
� 2�dg

dt
: (17)

Formulas (16) and (17) easily follow from krdok = 1, Ldo = (A0=A) � do and (4).
For � 2 C let '� denote the unique function on [0;1) such that Lr'� = �

�
�2 + �2

�
'� and

'�(0) = 1. It extends to a smooth even function on R; furthermore '� = '�� by uniqueness.
As shown in Section 4 of [4], the theory of Chebli-Trimèche hypergroups applies to the present
situation, with further information from Bloom and Xu [5]. The Fourier transform de�ned by

ef(�) = Z 1

0

f(r)'�(r)A(r)dr

is thus inverted (under suitable assumptions on f : [0;1)! C) by

f(r) =

Z 1

0

ef(�)'�(r)d�(�);
with the Plancherel measure d�(�) = Cjc(�)j�2d� where C > 0 is a constant and the generalized
Harish-Chandra function c(�) is a complex function on Cn0.
Going back to our harmonic manifold X, let us introduce the spherical function (with respect

to o)
'�;o(x) := '�(d(o; x)): (18)

In view of (16) '�;o is characterized by the following properties: it is an eigenfunction of L with
eigenvalue �

�
�2 + �2

�
, which is radial around o and satis�es '�;o(o) = 1. Thus '�;o = '��;o. The

spherical transform of a function u 2 D(X), radial around o, is then de�ned by

euo(�) := Z
X

u(x)'�;o(x)dx , � 2 C; (19)

and we have the inversion formula ([4], Theorem 4.6)

u(x) =

Z 1

0

euo(�)'�;o(x)d�(�) , x 2 X: (20)

2.2 General harmonic analysis

Because the horospherical part Lh of L in (17) is a di¤erential operator with constant coe¢ cients,
the function v(x) = e(�i�+�)Bo(x;!) is, for any � 2 C and ! 2 @X, an eigenfunction of L with
eigenvalue �

�
�2 + �2

�
, satisfying v(o) = 1. The Fourier transform of a (not necessarily radial)

function u 2 Cc(X) is de�ned by means of these eigenfunctions:

euo(�; !) := Z
X

u(x)e(�i�+�)Bo(x;!)dx: (21)

This de�nition depends on the choice of an origin: when replacing o with a 2 X the identity (5)
gives eua(�; !) = e(i���)Bo(a;!)euo(�; !): (22)
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The aim of this section is to state the Fourier inversion theorem of [4] for non radial functions
and to provide a concise version of the proof given in [4]. The mean value operator Mo is a natural
tool to reduce the analysis of non radial functions to the radial case. For u 2 C(X) and x 2 X it
is de�ned by the spherical mean

Mou(x) :=

Z
SoX

u(Expo rv)do�(v) (23)

of u on the geodesic sphere with center o and radius r = d(o; x). Here SoX is the unit sphere in
the tangent space ToX and do� is its normalized measure induced by the Riemannian norm on
ToX. We thus obtain a function Mou, radial around o, with (Mou)(o) = u(o).
The de�nition of Mou may also be written as an integral over the orthogonal group K of ToX,

with its normalized Haar measure dk:

Mou(Expo �) =

Z
K

(u � Expo) (k�)dk , � 2 ToX:

This shows the operator Mo maps the spaces C(X), Cc(X) and D(X) into themselves. Abusing
notation, it will sometimes be convenient to writeMou(x) asMou(r) with r = d(o; x). In spherical
coordinates around o we thus haveZ

X

u(x)dx =

Z 1

0

Mou(r)A(r)dr (24)

for u 2 Cc(X), where A is the density function of X. This impliesZ
X

u(x)Mov(x)dx =

Z
X

Mou(x)v(x)dx (25)

for u 2 Cc(X), v 2 C(X), both sides being equal to
R1
0
Mou(r)Mov(r)A(r)dr.

Let us take up again the spherical function '�;o in (18). By the general properties of harmonic
manifolds Mo commutes with the Laplace operator L. Thus

'�;o =Mo

�
e(�i�+�)Bo(:;!)

�
for every ! 2 @X, in view of the characterization of '�;o in Section 2.1. It then follows from (25)
that de�nitions (19) and (21) agree if u 2 Cc(X) is radial around o, i.e. Mou = u:euo(�; !) = euo(�) (26)

for � 2 C, ! 2 @X. Our next goal is to prove Corollary 6, expressing '�;o as an integral over @X.

Lemma 4 For o; x 2 X, � 2 C and r � 0

Mx'�;o(r) = '�;o(x)'�(r):

This formula, noted by Szabó [19] p. 9, is a harmonic manifold analog of the functional equation
of spherical functions for symmetric spaces ([11] Chapter IV §2).
Proof. Since Mx commutes with L, the function u(y) := Mx'�;o(y) is an eigenfunction of L

with eigenvalue �(�2+ �2), radial around x. As a function of r = d(x; y) it is therefore a constant
multiple of '�(r), with the coe¢ cient u(x) = '�;o(x).

Proposition 5 Let o; x 2 X, a simply connected harmonic manifold with purely exponential vol-
ume growth2 and let bv(x) = limr!1(r � d(x;Expo rv)), v 2 SoX, denote the Busemann function
(with respect to o). Let f 2 C(R). Then the function

x 7�!
Z
SoX

f(bv(x))do�(v)

is radial around o.
2Using a result of Szabó [19] the proof given in [4] shows this proposition actually holds for all noncompact

simply connected harmonic manifolds.
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Proof. (i) It su¢ ces to prove that, for any f 2 C(R) and r � 0, the integral

g(x; r) :=

Z
SoX

f(d(x;Expo rv))do�(v)

is a radial function of x around o.
Indeed, replacing f(t) by f(r � t) the proposition will follow since, as r !1,

f(r � d(x;Expo rv))! f(bv(x))

for each v and the estimate jr � d(x;Expo rv)j � d(o; x) shows we can apply the dominated
convergence theorem.
(ii) Given f 2 C(R) the function y 7! u(y) := f(d(x; y)) is continuous on X and radial around x.
Since g(x; r) = Mou(r), we must prove that Mou(r) only depends on d(o; x) and r. We claim it
will su¢ ce to do it for any u 2 D(X) which is radial around x.
Indeed, for any u 2 C(X) there exists a sequence (uk) in D(X) such that uk ! u as k ! 1,
uniformly on every compact subset of X. For a Euclidean space this follows from the classical use
of cuto¤ and regularization functions, and the result transfers to X by means of (e.g.) the global
di¤eomorphism Expx : TxX ! X. Besides, if u is radial around x, we may assume each uk is radial
around x too, replacing it if necessary by Mxuk 2 D(X) which converges to Mxu = u uniformly
on every compact subset of X. This being done, we have Mouk !Mou, which implies our claim.
(iii) Thus let u 2 D(X) be radial around x and v(y) :=Mou(y). Then v 2 D(X) is radial around
o and its Fourier transform (19) is

evo(�) = Z
X

Mou(y)'�;o(y)dy =

Z
X

u(y)'�;o(y)dy

by (25). Writing u(y) = f(d(x; y)) and using spherical coordinates around x the latter integral
becomes, by (24) and Lemma 4,

evo(�) = Z 1

0

f(r)Mx'�;o(r)A(r)dr = ef(�)'�;o(x) with ef(�) = Z 1

0

f(r)'�(r)A(r)dr:

Note that the density function A(r) is the same for the origins o and x. The radial Fourier inversion
formula (20) now gives

Mou(y) = v(y) =

Z 1

0

ef(�)'�;o(x)'�;o(y)d�(�):
Remembering (18), the right-hand side only depends on d(o; x) and d(o; y). The proof is complete.

Corollary 6 Let X be a simply connected harmonic manifold with purely exponential volume
growth. Its spherical functions with respect to o 2 X are given by

'�;o(x) =

Z
SoX

e(�i�+�)bv(x)do�(v) =

Z
@X

e(�i�+�)Bo(x;!)do!

for x 2 X, � 2 C.

Proof. We know from (2) the �rst integral de�nes an eigenfunction of L with eigenvalue
�
�
�2 + �2

�
, which equals 1 for x = o. By Proposition 5 it is a radial function of x around o.

It must therefore coincide with '�;o(x). The de�nitions of Bo and the visibility measure do! in
Section 1.1 show the second integral agrees with the �rst.

We can now prove the Fourier inversion formula, which is one of the main results of [4], extending
a similar theorem for Damek-Ricci spaces proved in 1997 by Astengo, Camporesi and Di Blasio
[2].
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Theorem 7 [4] Let X be a simply connected harmonic manifold with purely exponential volume
growth. Given an origin o 2 X we have, for u 2 D(X) and x 2 X,

u(x) =

Z 1

0

Z
@X

euo(�; !)e(i�+�)Bo(x;!)do!d�(�):

The Plancherel measure d�(�) was introduced in Section 2.1.
Proof. Let us apply radial Fourier analysis to v =Mou, radial around o. By (25) and Corollary

6,

evo(�) = Z
X

Mou(x)'�;o(x)dx =

Z
X

u(x)'�;o(x)dx

=

Z
X

u(x)dx

Z
@X

e(�i�+�)Bo(x;!)do!:

Thus, remembering the de�nition (21),

gMou
o
(�) =

Z
@X

euo(�; !)do! (27)

for any u 2 D(X). The radial inversion formula (20) at o for the function v now gives

u(o) =Mou(o) =

Z 1

0

Z
@X

euo(�; !)do!d�(�):
Replacing the origin o with x by means of (6) and (22) we obtain the result.

3 The horosphere Radon transform

We shall need the following version of the classical coarea formula (see e.g. Chavel [6] p. 160).

Proposition 8 Let X be a connected Riemannian manifold. Given a C1 function ' : X ! R
such that the gradient r' never vanishes on X, let St denote the hypersurface de�ned by St =
fx 2 Xj'(x) = tg, t 2 R. Then, for any f 2 Cc(X),Z

X

f(x)d�(x) =

Z
R
dt

Z
St

f(x)

kr'(x)kd�t(x);

where d� is the Riemannian measure on X and d�t is the induced Riemannian measure on St.

Proof. Using a partition of unity it su¢ ces to prove the result for supp f contained in a
coordinate neighborhood. Since r' 6= 0, in the neighborhood of every point of X we can take
a local coordinate system � : x 7! u = (u1; :::; un) such that '(x) =

�
' � ��1

�
(u) = u1. Let

ds2 =
Pn

i;j=1 gij(u)duiduj denote the corresponding coordinate expression of the Riemannian
metric of M and g(u) := det(gij(u))1�i;j�n. ThenZ

X

f(x)d�(x) =

Z
Rn
(f � ��1)(u)

p
g(u)du

=

Z
R
dt

Z
Rn�1

(f � ��1)(t; u0)
p
g(t; u0)du0

with du = du1 � � � dun, u0 = (u2; :::; un) and du0 = du2 � � � dun.
In our coordinate system St is de�ned by u1 = t, with the induced Riemannian metric ds2 =Pn

i;j=2 gij(t; u
0)duiduj ; let gt(u0) := det(gij(t; u

0))2�i;j�n. Then, using the customary notation
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(gij)1�i;j�n for the inverse matrix of (gij)1�i;j�n, we have g11 = g�1gt since gt is the cofactor
of g11 in g, that is g(t; u0) = gt(u

0)=g11(t; u0). The components of the gradient r' are ri' =Pn
j=1 g

ij@j
�
' � ��1

�
= gi1, whence kr'k2 =

Pn
i;j=1 gijg

i1gj1 = g11. We obtainp
g(t; u0) =



((r') � ��1)(t; u0))

�1pgt(u0):
But

p
gt(u0)du

0 is the coordinate expression of d�t and the result follows.

With '(x) = d(o; x) where o is an origin in X, we have kr'(x)k = 1 and Proposition 8
implies the classical integral formula in spherical coordinates. We shall now use it with Busemann
functions.

3.1 De�nition and properties of the Radon transform

Going back to a simply connected harmonic manifold X with purely exponential volume growth as
in Section 2, its Riemannian measure dx and an (arbitrary) origin o, we consider the horosphere
Radon transform of a compactly supported continuous function u 2 Cc(X), de�ned by

Rou(t; !) :=

Z
St(!)

u(x)d�t(x) , t 2 R; ! 2 @X;

integral of u over the horosphere

St(!) := fx 2 XjBo(x; !) = tg

with respect to the induced Riemannian measure d�t. The subscript in Ro reminds that this
de�nition depends on the chosen origin: replacing o by a 2 X we have

Rau(t; !) = Rou(t+Bo(a; !); !); (28)

since the identity (5) shows the equations Ba(x; !) = t and Bo(x; !) = t+Bo(a; !) de�ne the same
horosphere.
For u 2 Cc(X), resp. D(X), and ! 2 @X, the function t 7! Rou(t; !) belongs to Cc(R),

resp. D(R). Indeed Rou(t; !) vanishes for t outside the compact set fBo(x; !); x 2 suppug and
the continuity, resp. smoothness, with respect to t is clear when using a partition of unity and the
same coordinates as in the proof of Proposition 8.
Since krxBo(x; !)k = 1 by (4), Proposition 8 yieldsZ

X

u(x)dx =

Z
R
Rou(t; !)dt

for any ! 2 @X. More generally, replacing u(x) by u(x)v(Bo(x; !); !) where v is a continuous
function on R� @X, Z

X

u(x)v(Bo(x; !); !)dx =

Z
R
Rou(t; !)v(t; !)dt (29)

for u 2 Cc(X) and ! 2 @X.
Let us introduce the dual Radon transform R�o of a function v on R� @X, de�ned by

R�ov(x) :=

Z
@X

v(Bo(x; !); !)do! (30)

with the visibility measure do! introduced in Section 1.1. It is the integral of v over the set of
horospheres containing a given x 2 X.
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Proposition 9 On a simply connected harmonic manifold X with purely exponential volume
growth,
(i) the transforms Ro and R�o are dual to each other:Z

X

u(x)R�ov(x)dx =

Z
R�@X

Rou(t; !)v(t; !)dtdo!

for u 2 Cc(X) and v 2 C(R� @X)
(ii) the horosphere Radon transform is related to the Fourier transform on X byeuo(�; !) = �e�tRou(t; !)�b(�; !) (31)

where u 2 Cc(X), � 2 C, ! 2 @X and bdenotes the classical one-dimensional Fourier transform
on the t variable: bv(�) := RR e�i�tv(t)dt.
The second result is a «projection slice theorem» for harmonic manifolds.
Proof. (i) Integrate (29) over ! 2 @X with respect to the measure do!.

(ii) Apply (29) with v(t) = e(�i�+�)t.

Corollary 10 (i) If u 2 Cc(X) is radial around o, its Radon transform Rou(t; !) does not depend
on !. We shall write it as Rou(t).
(ii) For an arbitrary u 2 Cc(X),

RoMou(t) =

Z
@X

Rou(t; !)do! , t 2 R:

(iii) For u; v 2 Cc(X) with v radial around o,

Ro(u � v) = (Rou) � (Rov):

On the right-hand side of (iii) is a convolution product on the real variable t and, on the left-hand
side, is the convolution product on X de�ned by

(u � v)(x) :=
Z
X

u(y)f(d(x; y))dy

if v(x) = f(d(o; x)).
Proof. (i) and (ii) follow from (31), together with (26) for (i) and (27) for (ii).

(iii) From the equality
(u � v)eo(�; !) = euo(�; !)evo(�)

(see [4] Section 7) we infer�
e�tRo(u � v)

�b(�; !) = �e�tRou�b(�; !) �e�tRov�b(�)
by (31). Therefore

e�tRo(u � v)(t; !) =
Z
R
e�sRou(s; !)e

�(t�s)Rov(t� s)ds

= e�t(Rou �Rov)(t; !):

Remark. Taking again u 2 Cc(X) radial around o, we have�
e�tRou

�b(�) = euo(�) = Z
X

u(x)'�;o(x)dx

by (31) and (19). This is an even function of � since '�;o = '��;o, therefore

Au(t) := e�tRou(t) (32)

is an even function of t 2 R, called the Abel transform of the radial function u. This transform
was introduced and studied by Peyerimho¤ and Samiou [15].
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3.2 Main results

Let S 2 S 0(R) be the distribution de�ned by

hS(t); f(t)i :=
Z 1

0

bf(�)d�(�) , f 2 S(R); (33)

where b is the classical Fourier transform and d�(�) = Cjc(�)j�2d� is the Plancherel measure
introduced in Section 2.1. The estimates for � 2 R

jc(�)j�1 = O(j�j) for j�j � K
jc(�)j�1 = O(j�j(n�1)=2) for j�j � K;

where K is a constant ([4] Section 4.1), show that S is actually a tempered distribution on R.
We shall now prove two inversion formulas for the horosphere Radon transform Ro. One of them

(35) is similar to the classical results for symmetric spaces ([12] Chapter II, Theorem 3.13) and
Damek-Ricci spaces ([1], or [18] Corollaire 26). In those cases the function c(�) and the measure
d�(�) de�ning S are explicitly given by quotients of gamma functions.
The other inversion formula (34) uses the shifted dual Radon transform operator R�o;t

de�ned by (see (6))

R�o;tv(x) :=

Z
@X

v(t+Bo(x; !); !)dx! =

Z
@X

v(t+Bo(x; !); !)e
2�Bo(x;!)do!

with t 2 R, x 2 X and v 2 C(R� @X), a method initiated by Johann Radon for lines in R2. The
equation Bo(y; !) = t + Bo(x; !) for y, equivalent to Bx(y; !) = t by (5), de�nes a horosphere at
distance jtj from x (see Lemma 1). We are thus integrating over the set of horospheres at a given
distance from x, instead of the set of horospheres containing x as in the dual transform R�o in (30).
The interest of this method is that, having proved a Radon inversion formula at the origin for
the special case of radial functions (such as (36) in the proof below), a general inversion formula
follows easily by means of the shifted dual transform; cf. [17] Section 6.2 within the framework of
homogeneous spaces of Lie groups.

Theorem 11 Let X be a simply connected harmonic manifold with purely exponential volume
growth and o 2 X a given origin. For u 2 D(X) and x 2 X we have

u(x) =


S(t); e�tR�o;tRou(x)

�
: (34)

Variant: let � denote the operator de�ned by �v(t; !) := e�t( �S �e�tv)(t; !) (convolution on the real
variable t), with �S(t) = S(�t). Then

u(x) = R�o�Rou(x): (35)

Proof. Assuming �rst u is radial around o, the radial Fourier inversion formula (20) at the
origin gives

u(o) =

Z 1

0

euo(�)d�(�) = Z 1

0

�
e�tRou

�b(�)d�(�)
=


S(t); e�tRou(t)

�
(36)

in view of (31) and the de�nition of S.
For an arbitrary u 2 D(X) we infer, applying this to the radial function Mou,

u(o) =Mou(o) =


S(t); e�tRoMou(t)

�
=

�
S(t); e�t

Z
@X

Rou(t; !)do!

�
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by Corollary 10 (ii). We may then replace o with any x 2 X:

u(x) =

�
S(t); e�t

Z
@X

Rxu(t; !)dx!

�
:

Going back to the origin o we haveRxu(t; !) = Rou(t+Bo(x; !); !) by (28) and dx! = e2�Bo(x;!)do!
by (6). This proves (34).
The inversion formula (34) may also be written as

u(x) =

Z
@X



S(t); e�tRou(t+Bo(x; !); !)

�
e2�Bo(x;!)do!: (37)

But, writing B = Bo(x; !) for short and changing t to �t, we haveD
S(t); e�(t+2B)Rou(t+B;!)

E
= e�B

D
�S(t); e�(B�t)Rou(B � t; !)

E
= e�B( �S � e�tRou)(B;!);

therefore

u(x) =

Z
@X

e�Bo(x;!)( �S � e�tRou)(Bo(x; !); !)do! = R�o�Rou(x):

Corollary 12 Let u 2 D(X) be radial around o. The Abel transform (32) is inverted by

u(x) =

�
S(t);

Z
@X

Au(t+Bo(x; !))e�Bo(x;!)do!

�
:

Proof. This follows immediately from (37).
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