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Abstract. Damek-Ricci spaces, also called harmonic NA groups, make up a

large class of harmonic Riemannian manifolds including all hyperbolic spaces.

We prove here an inversion formula and a support theorem for the X-ray trans-
form, i.e. integration along geodesics, on those spaces.

Using suitably chosen totally geodesic submanifolds we reduce the problems

to similar questions on low-dimensional hyperbolic spaces.

1. Introduction

Trying to reconstruct a function on a manifold knowing its integrals over a cer-
tain family of submanifolds is one of the main problems of integral geometry. In the
framework of Riemannian manifolds a natural choice is the family of all geodesics:
the simple example of lines in Euclidean space has suggested naming X-ray trans-
form the corresponding integral operator, associating to a function f its integrals
Rf(ξ) along all geodesics ξ of the manifold.

But few explicit formulas are known to recover f from Rf , only valid (to the best
of my knowledge) for Riemannian symmetric spaces: see Helgason [6] for Euclidean
spaces, hyperbolic spaces or spheres, Helgason [7] or the author’s paper [10] for
general Riemannian symmetric spaces of the noncompact type.

We prove here an inversion formula and a support theorem for the X-ray trans-
form on Damek-Ricci spaces (also called harmonic NA groups). Introduced in
1992 [3] as a negative answer to a 1944 question by Lichnérowicz: ”is a harmonic
Riemannian manifold necessarily a symmetric space?”, those spaces were actively
studied in the 90’s. They make up a large class of harmonic Riemannian manifolds
including all hyperbolic spaces.

Though the main results in analysis on Damek-Ricci spaces (see [4], [8]) look quite
similar to their hyperbolic space analogs, their proofs are more delicate however for
lack of the familiar compact isotropy group of the origin in the hyperbolic case.
This difficulty arises here too; we circumvent it by reducing our problem to some
totally geodesic submanifold, isometric to the complex hyperbolic space H2(C).

In Sections 2 to 4 we develop the necessary tools. In Section 2 we recall, with
slight change, the inversion formula obtained in [10] for Riemannian symmetric
spaces (Theorem 2.1). Section 3 contains a brief summary about Damek-Ricci
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spaces and a close look at the special case of hyperbolic spaces. Section 4 is devoted
to the construction of totally geodesic subgroups of a Damek-Ricci space. Our main
results (Theorems 5.1 and 6.1) are proved in Sections 5 and 6.

For another inversion formula in integral geometry over Damek-Ricci spaces (the
”horocycle transform”), see [8] Corollaire 26.

2. X-ray transform on symmetric spaces

The X-ray transform f 7→ Rf on a complete Riemannian manifold M is defined
by

Rf(ξ) =
∫
x∈ξ

f(x) dmξ(x) ,

where f is a function on M , ξ is an arbitrary geodesic and dmξ is the arc length
measure on ξ. The integral converges if f is, for instance, continuous and rapidly
decreasing with respect to the Riemannian distance on M .

An inversion formula, reconstructing f from Rf , was proved for M = G/K, a
Riemannian symmetric space of the noncompact type, by Helgason [7] and inde-
pendently in [10]. Theorem 2.1 below is a restatement of the main result of [10], in
a slightly modified form better suited to our needs.

Let us recall first a few classical semisimple notations; see [5] for more details.
In this section G denotes a connected noncompact real semisimple Lie group with
finite center, K a maximal compact subgroup of G, g = k ⊕ p the corresponding
Cartan decomposition of the Lie algebra (eigenspaces of the Cartan involution θ),
a a maximal abelian subspace of p, and α a root of the pair (g, a) i.e. a nonzero
linear form on a such that the joint eigenspace

gα = {X ∈ g| [H,X] = α(H)X for all H ∈ a}
is not {0}.

The Killing form B(X,Y ) = tr (adX adY ) of g gives the invariant scalar product
< X,Y >= −B(X, θY ) of X,Y ∈ g and the norm |X| =

√
−B(X, θX). Let Hα ∈ a

be the dual vector to α defined by B(H,Hα) = α(H) for all H ∈ a; a different
normalization of Hα was chosen in [10] but this is insignificant. We set |α| = |Hα|.

The manifold G/K is equipped with the G-invariant Riemannian metric defined
by this scalar product on p (identified to the tangent space to G/K at the origin
o). As usual exp : g→ G will denote the exponential mapping of the group G and
Exp the exponential mapping of G/K at the origin, a global diffeomorphism of p
onto G/K.

Let α be a fixed root. Taking ξ0 = Exp RHα as the origin in the space of geodesics
the X-ray transform of a function f on G/K satisfies, for g ∈ G,

Rf(g · ξ0) =
∫
ξ0

f(g · x) dmξ0(x) = |α|
∫

R
f(g · Exp tHα) dt

since |Hα| = |α|, where dots denote the natural action of G on G/K. We also need
the shifted dual transform of a function ϕ on the space of geodesics, defined by

R∗γϕ(x) =
∫
K

ϕ(gkγ · ξ0) dk if x = g · o ,

where the shift γ is a given element of G and dk is the normalized Haar measure
on K. Roughly speaking R∗γ integrates ϕ over a set of geodesics at a given distance
from the point x ∈ G/K. When γ is the identity element R∗γ is the classical dual
transform.
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X-ray transform 3

Note that the group G does not act transitively on the space of all geodesics
unless G/K has rank one. In the next theorem, having chosen ξ0 = Exp RHα as
the origin, we use a shift arising from the Lie subalgebra gα.

Theorem 2.1. Let G/K be a Riemannian symmetric space of the noncompact type
and let α be any root of the pair (g, a). Taking ξ0 = Exp RHα as the origin in the
space of geodesics, let R denote the X-ray transform obtained by integrating over
geodesics in a family containing all g · ξ0, g ∈ G.
For any nonzero X ∈ gα this transform is inverted by

f(x) = −
√

2
π|X|

∫ ∞
0

∂

∂t

(
R∗exp tXRf(x)

) dt
t

,

for f ∈ C∞c (G/K), x ∈ G/K.

Proof. This was proved in [10] if the vector Y = 1
2 (X − θX) has norm |Y | = |α|−1;

the factor in front of the integral was −|α|/π then. But considering Z = 1
2 (X+θX)

we easily have X = Y + Z, |Y | = |Z| and |X| =
√

2|Y |, thus −|α|/π = −
√

2/π|X|.
The formula now extends to an arbitrary X ∈ gα, since changing t into λt with
λ > 0 in the integral amounts to replacing X with λX.

3. Damek-Ricci spaces

A Damek-Ricci space, or harmonic NA group, is a simply connected Lie group
S with Lie algebra s satisfying the following assumptions 1 to 4:

1. Direct sum decomposition. s is a direct sum of vector subspaces s = v⊕ z⊕ a,
with a one-dimensional. Let H be some fixed nonzero vector in a (see 2 below);
elements of s will be written as V + Z + tH with V ∈ v, Z ∈ z and t ∈ R.

2. Lie bracket. We assume [v, v] ⊂ z, [v, z] = 0, [z, z] = 0 and [H,V ] = 1
2V ,

[H,Z] = Z for all V ∈ v, Z ∈ z. The general Lie bracket in s is thus given by

(3.1) [V + Z + tH, V ′ + Z ′ + t′H] =
1
2

(tV ′ − t′V ) + (tZ ′ − t′Z + [V, V ′]) .

3. Scalar product. v and z are equipped with scalar products < , >, extended to
a scalar product on s as

(3.2) < V + Z + tH, V ′ + Z ′ + t′H >=< V, V ′ > + < Z,Z ′ > +tt′ .

The group S is equipped with the left-invariant Riemannian metric defined
by this scalar product on s. Let ‖.‖ denote the corresponding norm on s; thus
‖H‖ = 1.

4. The maps JZ . For Z ∈ z let JZ : v→ v denote the linear map defined by

(3.3) < JZV, V
′ >=< Z, [V, V ′] >

for V, V ′ ∈ v. We finally assume that, for all V ∈ v, Z ∈ z,

(3.4) J2
ZV = −‖Z‖2 V .

From (3.3) and (3.4) it is easily shown that

(3.5) ‖JZV ‖ = ‖Z‖ · ‖V ‖ , [V, JZV ] = ‖V ‖2 Z .

From assumptions 1 to 3 it follows that n = v⊕z is a nilpotent Lie algebra, [s, s] ⊂ n,
and s is solvable with orthogonal decomposition s = v ⊕ z ⊕ a into eigenspaces of
adH with respective eigenvalues 1/2, 1, 0. At the group level we have S = NA, a
semi-direct product, where N and A are the Lie subgroups of S with Lie algebras
n and a.

Inverse Problems and Imaging Volume X, No. X (200X), X–XX



4 François Rouvière

Damek-Ricci spaces generalize rank one symmetric spaces of the noncompact
type (hyperbolic spaces). The latter are, in the notation of Section 2, the spaces
G/K with G of rank one i.e. dim a = 1. The classical Iwasawa decomposition
G = NAK, where N , resp. A, is a nilpotent, resp. one-dimensional abelian, Lie
subgroup of G, gives a diffeomorphism ϕ : na 7→ naK of the solvable group NA
onto G/K, intertwining the left translation by x ∈ NA with the natural action
on G/K of the same element x ∈ G. A G-invariant Riemannian metric on G/K
therefore corresponds via ϕ with a left invariant metric on NA. Forgetting G and
K the Riemannian manifold G/K can thus be studied as the solvable group NA
with this left invariant metric.

The next proposition links both points of view precisely. Let n = gα⊕g2α where
α and 2α denote the positive roots of the pair (g, a) with respective eigenspaces gα,
g2α ; let p = dim gα, q = dim g2α (with q = 0 if 2α is not a root). The above-
mentioned Iwasawa decomposition of G is given by its Lie subgroups N , A with Lie
algebras n, a. On g we consider the scalar product

(3.6) < X ′, X ′′ >g= − 2
p+ 4q

B(X ′, θX ′′) ;

the Killing form B is here normalized so that H ∈ a defined by α(H) = 1/2 is a
unit vector. In this notation we have the following

Proposition 3.1. (Hyperbolic spaces as Damek-Ricci spaces [9]) Equipped with the
Lie bracket induced by g and the scalar product

< Y ′ +H ′, Y ′′ +H ′′ >s=
1
2
< Y ′, Y ′′ >g + < H ′, H ′′ >g ,

(with Y ′, Y ′′ ∈ n, H ′, H ′′ ∈ a), the Lie algebra s = n⊕ a satisfies assumptions 1 to
4 with v = gα, z = g2α and JZV = [Z, θV ] for V ∈ gα, Z ∈ g2α.
The group S = NA is a Damek-Ricci space, isometric to the hyperbolic space G/K
equipped with the G-invariant metric given by the scalar product induced on p by
< , >g.

Proof. Easy by means of the linear isomorphism 1
2 (I−θ) of s onto p (the projection

parallel to k in g). See [9] §6.1 for details.

General Damek-Ricci spaces are also solvable groupsNA with one-dimensional A,
but not necessarily arising from Iwasawa decompositions of semisimple Lie groups;
excepting the hyperbolic spaces they are not symmetric spaces. For more details
we refer to Damek and Ricci [3][4], Cowling et al. [1][2] or to our expository notes
[8][9].

4. Totally geodesic subgroups

A (connected) submanifold M ′ of a (connected) Riemannian manifold M is said
to be totally geodesic in M if each geodesic of M ′ (with respect to the metric induced
by M) is a geodesic of M . Let us recall the following general

Proposition 4.1. (Cowling et al. [1]) Let S be a Lie group with the left invariant
Riemannian metric defined by a scalar product < , > on its Lie algebra s. Let S0

be a Lie subgroup of S with Lie algebra s0.
Then S0 is totally geodesic in S if and only if

< X, [X,Y ] >= 0

for all X ∈ s0 and all Y ∈ s⊥0 (the orthogonal complement of s0 in s).
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Proof. See the Appendix to [1] or, for a shorter proof, Proposition 2.1 of [2].

Going back to Damek-Ricci spaces Proposition 4.1 implies a more specific result.

Corollary 4.2. Let S0 be a Lie subgroup containing A in a Damek-Ricci space
S = NA and let s0 be its Lie algebra. Then s0 = v0 ⊕ z0 ⊕ a with v0 = s0 ∩ v,
z0 = s0 ∩ z, and S0 is totally geodesic in S if and only if

JZv0 ⊂ v0 for all Z ∈ z0 .

When this condition holds S0 is a Damek-Ricci space with the scalar product induced
by S.

Proof. The decomposition of s0 is given by the eigenspaces of its endomorphism
adH.

Let v1, resp. z1, denote the orthogonal complement of v0 in v, resp. z0 in z. Then
s⊥0 = v1 ⊕ z1 and, writing X = V0 + Z0 + tH an element of s0 and Y = V1 + Z1 an
element of s⊥0 , with Vi ∈ vi, Zi ∈ zi, we have by (3.1)

[X,Y ] = [V0 + Z0 + tH, V1 + Z1] =
t

2
V1 + tZ1 + [V0, V1]

therefore

< X, [X,Y ] > = < V0 + Z0 + tH,
t

2
V1 + tZ1 + [V0, V1] >

=
t

2
< V0, V1 > +t < Z0, Z1 > + < Z0, [V0, V1] >

=< Z0, [V0, V1] > = < JZ0V0, V1 >

by (3.3). The condition of Proposition 4.1 is thus equivalent to JZ0v0 ⊂ v0 for all
Z0 ∈ z0 .

When this holds s0 satisfies assumptions 1 to 4 with the scalar product induced
by s : for Z ∈ z0 the map JZ for s0 is the restriction to v0 of the map JZ for s.

Proposition 4.3. Let S be a Damek-Ricci space with Lie algebra s = v⊕ z⊕ a and
let V ∈ v, Z ∈ z be nonzero vectors. Then

s0 = RV ⊕ RJZV ⊕ RZ ⊕ RH

is a solvable Lie subalgebra of s.
The corresponding Lie subgroup S0 is totally geodesic in S and isometric to the
complex hyperbolic space H2(C) = G∗/K∗ with G∗ = SU(1, 2), K∗ = S(U(1) ×
U(2)) and the metric arising from (3.6).

Proof. This is a Damek-Ricci analog of the classical SU(1, 2) reduction for rank one
semisimple Lie groups.

We may assume ‖V ‖ = ‖Z‖ = 1; by (3.5) W = JZV is also a unit vector in v.
By (3.1) and (3.5) again we have

[H,V ] = V/2 , [H,W ] = W/2 , [H,Z] = Z ,(4.1)

[V,W ] = Z , [Z, V ] = 0 , [Z,W ] = 0 ,

and s0 is a solvable Lie subalgebra. The space v0 = RV ⊕ RW is stable under JZ
since JZW = −V by (3.4), and the Lie subgroup S0 of S with Lie algebra s0 is
totally geodesic by Corollary 4.2 with z0 = RZ.

A realization of S0 can be obtained by considering the classical group G∗ =
SU(1, 2) and its maximal compact subgroup K∗ = S(U(1)×U(2)). All semisimple
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notations related to G∗ will bear the subscript ∗ . Let g∗ = n∗ ⊕ a∗ ⊕ k∗ be the
Iwasawa decomposition arising from a∗ = RH∗ with

H∗ =
1
2

 0 0 1
0 0 0
1 0 0

 .

The bracket relations (4.1) mean that the mapping

(4.2) vV + wW + zZ + tH 7−→ 1
2

 iz v − iw t− iz
v + iw 0 −v − iw
t+ iz v − iw −iz

 ,

with v, w, z, t ∈ R, is a Lie algebra isomorphism of s0 onto the solvable subalgebra
s∗ = n∗ ⊕ a∗ of g∗.

This gives a Lie group isomorphism of S0 onto the subgroup S∗ = N∗A∗ of G∗
hence, composing with na 7→ naK∗, a diffeomorphism of S0 onto the homogeneous
space G∗/K∗ = H2(C). In order to apply Proposition 3.1 (with p = 2, q = 1) we
endow g∗ with the metric (3.6)

< X ′, X ′′ >g∗= −2
6
B∗(X ′, θ∗X ′′) = 2 tr

(
X ′ tX ′′

)
where t means transpose. Indeed B∗(X ′, X ′′) = 6 tr (X ′X ′′) and θ∗X

′′ = − tX ′′

for the Lie algebra g∗ = su(1, 2). The corresponding scalar product on s∗ is, by
Proposition 3.1,

< Y ′ +H ′, Y ′′ +H ′′ >s∗= tr
(
Y ′ tY ′′

)
+ 2 tr

(
H ′ tH ′′

)
with Y ′, Y ′′ ∈ n∗, H ′, H ′′ ∈ a∗. Applying this to matrices given by (4.2) (with
t′ = t′′ = 0 for Y ′, Y ′′, and H ′ = t′H∗, H ′′ = t′′H∗) yields v′v′′+w′w′′+z′z′′+ t′t′′,
in agreement with the scalar product in s0 with respect to its orthonormal basis
(V,W,Z,H). The diffeomorphism of S0 onto H2(C) is therefore an isometry, as
claimed.

5. Inversion formula for Damek-Ricci spaces

For lack of a compact group K inversion formulas for the X-ray transform on a
Damek-Ricci space cannot be directly obtained by the method of Section 2. The
difficulty can be circumvented however by means of totally geodesic submanifolds,
drawing inspiration from [7] and [10].

On a Damek-Ricci space S = NA let exp denote the exponential mapping of the
group S and Exp the exponential mapping of the Riemannian manifold S at the
origin o (the identity element). They are (distinct) global diffeomorphisms of s onto
S ([9] p. 18 and 24). Let ξ0 = Exp (RH) = A be the geodesic tangent to H at o.

Theorem 5.1. Let S be a Damek-Ricci space and V be any nonzero vector in v.
The X-ray transform R on S is inverted by

f(x) = − 1
π
√

3 ‖V ‖

∫ ∞
0

∂

∂t

(
R∗exp tVRf(x)

) dt
t

,

for f ∈ C∞c (S), x ∈ S, where R∗ is defined by (5.2) below.

Proof. Let S0 be the totally geodesic subgroup of S given by Proposition 4.3 from
the given V and any nonzero Z ∈ z. We work at the origin first, restricting f to S0.

By Proposition 4.3 and its proof we have a Lie group isomorphism S0 → S∗ =
N∗A∗ onto a solvable sugbroup of G∗ = SU(1, 2) and an isometry of S∗ onto
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G∗/K∗ = H2(C). Using ˜ for objects tranferred from S0 to G∗/K∗ by the composed
diffeomorphism, or from s0 to s∗ ⊂ g∗, we have by Theorem 2.1 at the origin of
G∗/K∗

f̃(o) = −
√

2

π|Ṽ |

∫ ∞
0

∂

∂t

(∫
K∗

Rf̃(k · exp tṼ · ξ̃0) dk
)
dt

t
,

where dots mean here the natural action of G∗ on G∗/K∗. Going back to S0 we
obtain

(5.1) f(o) = −
√

2

π|Ṽ |

∫ ∞
0

∂

∂t

(∫
K∗

Rf(k · exp tV · ξ0) dk
)
dt

t
.

Indeed the mapping exp for S0 (restriction to s0 of exp for S) corresponds with exp
for S∗ (restriction to S∗ of exp for G∗) in view of the Lie isomorphism (4.2), and
the left translation by exp tV in S0 with the action of exp tṼ on G∗/K∗. Abusing
notations we have still denoted by k · (· · · ) the isometry of S0 corresponding with
the action of k ∈ K∗ on the hyperbolic space.

The norm used in (5.1) is given by |Ṽ |2 = −B∗(Ṽ , θ∗Ṽ ) therefore, by (3.6) with
p = 2, q = 1 and Proposition 3.1 for g∗,

|Ṽ |2 = −B∗(Ṽ , θ∗Ṽ ) = 3
∥∥∥Ṽ ∥∥∥2

g∗
= 6

∥∥∥Ṽ ∥∥∥2

s∗
.

Now Proposition 4.3 implies
∥∥∥Ṽ ∥∥∥

s∗
= ‖V ‖s0

= ‖V ‖ (the norm in s) so that |Ṽ | =
√

6 ‖V ‖ and the constant factor in (5.1) is −1/π
√

3 ‖V ‖.
We finally introduce the following analog of the shifted dual transform of a

function ϕ on the set of all geodesics of S:

(5.2) R∗γϕ(x) =
∫
K∗

ϕ(x · k · γ · ξ0) dk , x ∈ S , γ ∈ S0 .

Let us explain the notation: ξ0 is a geodesic of S and S0, γ · ξ0 is the geodesic of S0

(and S) obtained by left action of γ in S0. With k· as above, k · γ · ξ0 is a geodesic
of S0, therefore of S. Finally x · k · γ · ξ0 is the geodesic of S obtained by left action
of x ∈ S. The integral, taken with respect to the normalized Haar measure dk on
the compact group K∗, converges if ϕ(x · k · γ · ξ0) is a continuous function of k.

Thus the integral over K∗ in (5.1) is R∗exp tVRf(o), and the theorem follows by
left action of x.

Remark. When written down explicitly our inversion formula only involves the
geodesics ξ = x · k · exp tV · ξ0 with k ∈ K∗, t ∈ R, lying at distance 1√

2
‖V ‖ arg sh t

from x. Indeed the distance used here on S0 is 1/
√

6 times the distance in [10],
which was |Y | arg sh t = 1√

2
|Ṽ | arg sh t (see [10], final Remark), and |Ṽ | =

√
6 ‖V ‖.

6. Support theorem on Damek-Ricci spaces

On a Riemannian manifold M with origin o and distance d we shall say (following
[6] p. 120) that a function f is exponentially decreasing if ekd(o,x)f(x) is bounded
on M for any k ≥ 0. Because of the triangle inequality this definition does not
depend on the choice of o.

Theorem 6.1. Let S be a Damek-Ricci space and let R > 0. For an exponentially
decreasing continuous function f on S the following are equivalent:
(i) f(x) = 0 for any point x ∈ S such that d(o, x) ≥ R
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8 François Rouvière

(ii) Rf(ξ) = 0 for any geodesic ξ of S such that d(o, ξ) ≥ R.

Proof. (i) implies (ii): obvious.
(ii) implies (i). Let x ∈ S with d(o, x) ≥ R. Since Exp is a global diffeomorphism
there exists X ∈ s = v ⊕ z ⊕ a such that x = ExpX (and ‖X‖ = d(o, x)). This
vector decomposes as X = vV + zZ + tH where V ∈ v, Z ∈ z are unit vectors and
v, z, t ∈ R . Let s0 = RV ⊕ RJZV ⊕ RZ ⊕ RH.

By Proposition 4.3 the corresponding S0 is totally geodesic in S, contains x and
is isometric to the hyperbolic space H2(C). Considering the restriction of f to S0

our assumption implies Rf(ξ) = 0 for any geodesic ξ of S0 such that d(o, ξ) ≥ R.
Helgason’s Corollary 4.1 of [6] p. 120 then applies to S0, hence f(x) = 0.

Remark. Helgason’s result is also proved by restriction to a totally geodesic sub-
manifold, this time isometric to the two-dimensional hyperbolic space H2(R).
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