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Abstract

Several small divisor problems occuring in Fluid Mechanics are
presented. Two of them come from water waves: 3D periodic travel-
ling gravity waves, and 2D standing gravity waves. The last example
comes from quasipatterns observed for thin viscous horizontal fluid lay-
ers periodically vertically shaked (Faraday type experiment).

1 Introduction

The most classical small divisor problem is the following:
given a Ck periodic function u of period 1, with 0 average, we look for a

periodic function v of period 1, with 0 average, such that

v(x+ α) − v(x) = u(x), for all x ∈ R, (1)

where α is irrational.
A Fourier analysis gives for Fourier coefficients un, vn the relationship

(e2iπnα − 1)vn = un, n ∈ Z.

Notice that if α is rational, u needs to satisfy infinitely many compatibility
conditions.

A classical Dirichlet theorem says that for any irrational α, there are
infinitely many p/q (q > 0) such that |α − p/q| < 1/q2. It results from
this that the coefficients (e2iπnα −1) may become very small (a subsequence
{nk}k∈N exists with (e2iπnkα − 1) → 0 as k → ∞). Then, a natural question
arises about a lower bound for these coefficients. Here comes the following
definition
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Definition 1 A diophantine number α /∈ Q is such that there exists c > 0
and r ≥ 2 such that

|α− p/q| > c/qr, for any p/q ∈ Q, q > 0.

This means that diophantine numbers are badly approximated by ratio-
nals (the worst being the golden mean (1 +

√
5)/2). A known result is that

most irrational numbers (in the sense of measure theory) are diophantine,
but there are also non diophantine numbers like Liouville numbers which
are too well approximated by rationals.

Now solving (1) with α diophantine, leads to

|vn| ≤
|n|r−1

4c
|un|, n ∈ Z\{0}.

A consequence of this estimate is that there is a loss of regularity between
u and v. For example, for u ∈ Hk, then v ∈ Hk−r+1, whereHk is the Sobolev
space of 1-periodic functions, square integrable as well as there derivatives
up to order k.

It should be noticed that the problem (1) occurs naturally in celestial
mechanics (see the paper [12] for example), and allows to solve the question
on whether the sequence

u(x) + u(x+ α) + ...+ u(x+ nα)

is bounded or not as n→ ∞, this last question coming from a reduced model
of perturbation theory (iteration of a Poincaré map).

It is quite remarkable that Fluid Mechanics also offers small divisor prob-
lems. Such problems appear naturally when we are dealing with dynamics
on invariant tori, as this may happen in several classical hydrodynamic sta-
bility problems, after few bifurcations (see [6]). We do not present such cases
below. We concentrate on cases where the small divisor problem arises in
various ways for steady flows (no dynamics here). In particular, we present
two water wave problems where this difficulty happens in an a priori unex-
pected way.

The first example is 3D Travelling gravity waves, with a 2D periodic
horizontal pattern on the free surface. We consider the infinite depth case,
which is not essential in such a case. On the contrary, absence of surface
tension is essential for having a small divisor problem. Details of proofs may
be found in [17, 18].

The second example is the 2D Standing gravity waves on an infinitely
deep fluid layer, where the free surface (a curve here) should be periodic in
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time and in the horizontal coordinate. Details of proofs are in [21, 19, 20].
In this example, absence of surface tension is not essential, but the fact that
the fluid depth is infinite in absence of surface tension, gives an additionnal
difficulty known as ”complete resonance” with respect to the finite depth
problem which also gives a small divisor problem (see the results in [25] not
presented here).

The third example is given by quasipatterns occuring for thin viscous
fluid layers periodically vertically shaked (Faraday type experiment). In
this last case, occurence of small divisors is a priori expected because of
spatial quasi-periodicity. Details of proofs of existence of such patterns as
solutions of the Swift-Hohenberg PDE model are in [22, 5]. The proof of
existence on fluid mechanics equations related with the Faraday experiment,
is still an open problem. See the paper [2] for the connection between the
fluid mechanics problem and the small divisor problem for quasipatterns.

2 Lyapunov-Schmidt method and its failure

Let us consider the following nonlinear equation

Lu+R(u, µ) = 0 in X , u ∈ D(L) = Z ⊂
dense

X , (2)

where Z is continuously embedded in X , both spaces being Hilbert spaces,
µ is a parameter in Rp, R : Z ×Rp → X , is of class Ck in a neighborhood of
0 and

R(0, 0) = 0,DuR(0, 0) = 0,

L : Z → X is a linear bounded operator, such that 0 is isolated in its
spectrum (considered as an operator in X ), being an eigenvalue of finite
multiplicity. We denote by E0 the finite-dimensional kernel of L. A conse-
quence of these assumptions is that the range of L is closed, and since its
domain Z is dense in X we can define its adjoint L∗ the kernel of which has
the dimension of E0 and is the orthogonal complement of the range of L (see
for instance [23]). The Lyapunov-Schmidt method consists in introducing
the pseudo-inverse L̃−1 of L defined on range(L) = {kerL∗}⊥ and taking
values in E⊥

0 ∩ Z . This is a bounded operator such that

L̃−1L = I|E⊥

0
∩Z , LL̃−1 = I|{kerL∗}⊥ .

Let us define the orthogonal projection Q on the range of L in X , and
decompose u ∈ Z as follows

u = u0 + v, u0 ∈ E0, v ∈ E⊥
0 ∩ Z,
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then (2) gives
v + L̃−1QR(u0 + v, µ) = 0 in E⊥

0 ∩ Z,
and implicit function theorem applies for the search of v ∈ Z. This gives v =
V(u0, µ) = O(|µ| + |u0|2). Notice that when R is analytic in its arguments,
this provides V analytic in its arguments, with a convergent Taylor series in
”powers” of (u0, µ) for small enough |µ| + |u0|.

Now replacing v by V(u0, µ) in (2), we obtain the ”bifurcation equation”
in kerL∗:

(I −Q)R(u0 + V(u0, µ)) = 0. (3)

It then remains to solve (3), for example with respect to u0 ∈ E0, or in
parametric form for (u0, µ). The simplest case is when E0 is one-dimensional.
In cases of higher dimensions, in most cases, there are symmetries with are
inherited by (3), and which simplifies a lot its structure (see for example
[11]).

Unfortunately the Lyapunov-Schmidt method fails in the cases presented
below. In the first and third examples, the failure is due to the fact that 0 is
not isolated in the spectrum of L. This is a direct consequence of the small
divisor phenomenon occuring when we try to invert L̃. However, it should
be noticed that a ”formal Lyapunov Schmidt method” applies, leading to
a formal expansion of the solution (u0, µ) in powers series of a parameter,
with no hope for proving its convergence. Once truncated at some order,
this formal series provides an approximate solution, which is the starting
point of the Newton iteration method, which we use here (as in Nash-Moser
theorem) for proving the existence of the solution.

In the second example the failure is of different type. Indeed L̃−1 is
bounded but the nonlinear term R is not defined as a mapping Z×Rp → X ,
due to occurence of derivatives in nonlinear terms, of higher orders than in
the linear term L. So L̃−1 cannot be applied to nonlinear terms. Notice that
an additional difficulty is that E0 is infinite-dimensional in this example.
The small divisor problem arises in the resolution method, where we need to
invert the differential at iteration points which are not the origin (iterations
via Newton method). The small divisor problem then appears as provoqued
in an artificial way, but we don’t know another way to solve the problem.

3 3D travelling periodic gravity waves

In this section we consider the 3D water wave problem, with a periodic
2D free surface Σ. The waves travel with a constant velocity cu (u is the
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horizontal unit vector in the propagation direction, c being the velocity)
(see Figure 1). In the experimental picture (from [15]) shown in Figure 2

g

z

z

Figure 1: 3D water wave problem

the waves travel in x direction and the pattern is symmetric with respect to
this direction. There are not yet experiments showing waves travelling in a
direction which is not a symmetry axis of the periodic pattern (this is much
more difficult to manage experimentally). However, as seen below, we are
able to prove the existence of waves in both cases (see Figure 3). We assume

Figure 2: Experimental 3D periodic travelling waves. See [15]

the flow to be potential (perfect incompressible fluid), and in the moving
frame the particles velocity (nondimensionalized) reads

U = (u + ∇Xϕ,
∂ϕ

∂z
)

and the potential ϕ satisfies

∆ϕ = 0 z < η(X), ∇ϕ→ 0 as z → −∞. (4)

We need to add boundary conditions on the free surface z = η(X)

∇η · (u + ∇Xϕ) − ∂ϕ

∂z
= 0 (U orthogonal to the normal of Σ) (5)

u · ∇Xϕ+
(∇ϕ)2

2
+ µη = 0 (6)
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the last equation coming from the Bernoulli first integral of Euler equations,
written on the free surface where the pressure is constant, and where the
parameter µ is defined by µ = gL/c2, g being the acceleration of gravity
and L being a length scale to be chosen. It should be noticed that a trivial
solution of the system is ϕ = 0, η = 0, (flat free surface, fluid at rest).

3.1 Linearized problem for horizontally periodic waves

Since we are looking for solutions in a neighborhood of (ϕ, η) = (0, 0) it is
natural to study the solutions of the linearized problem which reads as

∆ϕ = 0 z < 0, ∇ϕ→ 0 as z → −∞

∇η · u− ∂ϕ

∂z
= 0, z = 0,

u · ∇Xϕ+ µη = 0, z = 0.

Moreover, we look for periodic solutions. This means that we define a pe-
riodic lattice of wave vectors Γ = {K = n1K1 + n2K2; (n1, n2) ∈ Z2} and
periodic functions possess Fourier expansions of the form

η(X) =
∑

K∈Γ

ηKe
iK·X , ϕ =

∑

K∈Γ

ϕK(z)eiK·X , X = (x1, x2) ∈ R2. (7)

The condition for having a non trivial periodic solution is the following
dispersion relation

µ|K| − (K · u)2 = 0. (8)

Without restriction, we may assume that u = u0 = (1, 0), and define the
basic wave vectors as

K1 = (1, τ 1), K2 = λ(1,−τ 2).

The coordinate 1 means that we chose here the length scale. Now K1 and
K2 must satisfy the dispersion relation. Hence

µc = |K1|−1 = λ2|K2|−1 = cos θ1,

λ =
cos θ1

cos θ2
, τ1 = tan θ1, τ2 = tan θ2. (9)

This means that we may fix a priori arbitrarily the angles θ1 and θ2 made
by the wave vectors K1 and K2 with the x1 axis. Considering now all
integer combinations of K1 and K2 in the lattice Γ, we assume the following
nonresonance condition:
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Condition 2 For u = u0, µ = µc, equation (8) has the only solutions
{±K1,±K2, 0} in the lattice Γ.

It is not difficult to show that the set of (τ 1, τ2) ∈ R+2 such that condi-
tion 2 holds, is of full Lebesgue measure.

A direct consequence of condition 2 is that there are only 4 distinct
solutions of the linearized problem for u = u0 and µ = µc.

3.2 Small divisor problem

The study of the free boundary problem above, is made via the couple of
equations satisfied by the unknown U = (ψ, η) where ψ(X) = ϕ(X, η(X)).
We arrive (see [17, 18]) to a system of two coupled scalar equations, that we
write as follows

L0U + (µ− µc)L1U + L2(U,u − u0) + N (U) = 0 (10)

where L0,L1 are linear operators, L2 is linear in U and u − u0, and N
contains all nonlinear terms (at least quadratic) in U . Moreover, the system
is invariant under horizontal translations X 7→ X + h, and invariant under
the symmetry X 7→ −X. Notice that operators Lj, j = 0, 1, 2, and N are
first order differential or pseudo-differential operators. In particular we have

L0U =

(
(−∆)1/2 −∂x1

∂x1
µc

)
U,

and by construction kerL0 is 4-dimensional. When we compute L̃0
−1

(see
section 2) of a finite Fourier series (such as (7)), a factor

µc|K| − (K · u0)
2

occurs in the denominator corresponding to coefficient of eiK·X , with K =
n1K1 +n2K2 ∈ Γ\{±K1,±K2, 0}. This denominator does not cancel, but it
may be very small for large |K|. This is our small divisor problem here.

Remark 3 It should be noticed that in presence of surface tension (very
small in reality), a term σ|K|3 appears in the dispersion relation. In such a

case, there is no longer a small divisor problem and L̃0
−1

is a good operator
allowing to use, for example, Lyapunov-Schmidt method. This was used in
papers [29, 7, 14, 13] where existence results are stated, depending on surface
tension.

7



3.3 Asymptotic expansion of 3D waves

As mentionned at section 2, we can use formally the Lyapunov-Schmidt
method and obtain a solution, with ψ odd, and η even in X, in parametric
form (see [18]), under the form of a power series of (ε1, ε2) ∈ R+2 :

U = (ψ, η) =
∑

p+q≥1

εp
1ε

q
2Upq, (11)

U10 = (− sinK1 ·X,
1

µc

cosK1 ·X), U01 = (− sinK2 ·X,
λ

µc

cosK2 ·X)

µ− µc = α1ε
2
1 + α2ε

2
2 +O(ε21 + ε22)

2

u− u0 = (ω1, ω2), ω1 = −ω
2
2

2
+ .., ω2 = β1ε

2
1 + β2ε

2
2 +O(ε21 + ε22)

2

with αj , βj known analytic functions of τ1 and τ2 (notice that u is a unitary
vector). Notice that first formal computations may be found in papers of
the fifties [10, 33].

The computation of coefficient Upq, p + q > 1 needs to invert L0 on a
complement of kerL0, for finite Fourier series, hence for large p + q, Upq

may be very large, and we cannot prove the convergence of the series (only
a bound of its divergence as a Gevrey series, provided we restrict the choice
of (τ1, τ2). This is the same type of estimate as given below for the third
example in section 5). In fact we obtain here a formal torus of solutions in
considering the family

{TvU = U(.+ v);v ∈ R2/Γ}.

Figure 3 shows the result in keeping only orders 1 and 2 in (ε1, ε2), for two
different couples (τ 1, τ 2). The first case is with τ1 = τ 2 (diamond waves)
and may be compared with experimental results. The computation at this
small order fits remarkably well with experiments of [15].

3.4 Adaptation of Nash-Moser theorem

As it is commonly used for solving small divisor problems in nonlinear sys-
tems, we adopt Nash-Moser method. This is based on the Newton iteration
method, which needs to invert the differential of (10) at successive iterated
points, in a neighborhood of the solution. The first approximation is indeed
given by the series (11) truncated at some high enough order. Details of the
proof may be found in [17, 18], depending on the symmetric or asymmetric
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Figure 3: 3D waves computed with few terms in the series (symmetric and
nonsymmetric with respect to propagation direction)

case. The main difficulty, as usual, is to invert the differential and to control
the loss of regularity of iterated points at each step. Inverting the differen-
tial at a point U = (ψ, η) is equivalent here to solve with respect to φ the
following second order differential equation:

−J ∗

(
1

a
J (φ)

)
+ Gη(φ) = h ∈ Hs

odd(R
2/Γ) (12)

where h is given in a Sobolev space of periodic functions, and where the
operators are such that J = V · ∇(·) (V depends on (ψ, η)), a is a periodic
function depending on (ψ, η), and Gη is the first order Dirichlet-Neumann
linear operator (maps the trace of φ on the free surface z = η(X), to the
normal derivative of φ on the free surface, where φ is solution of the Laplace
equation in Ω). Notice that for (ψ, η) = 0, u = u0, and µ = µc, equation
(12) reduces to

{µ−1
c (∂x)2 + (−∆)1/2}φ = h,

and the Fourier symbol of the linear operator on the left hand side reads
−µ−1

c (K · u0)
2 + |K|, which is exactly the left hande side of the dispersion

relation.

9



The idea is to find a diffeomorphism of the torus such that main orders
of the differential equation (12) have constant coefficients, leading to main
orders of the form

L = νD2 + (−∆)1/2 with D =: ∂y1
+ ρ∂y2

,

where this operator (diagonal on the Fourier basis) would have a controlled
inverse. The new linear operator to invert would look like

L + perturbation of lower order.

It would then be possible to invert

(L + perturbation)−1 = (I + L−1perturbation)−1L−1.

Unfortunately (L−1perturbation) is unbounded. This leads to two problems:
i) find the good diffeomorphism;
ii) reduce the new operator to the sum of a diagonal operator with a

controllable inverse, plus a nicely smoothing perturbation.
The diffeomorphism of the torus Y ∈ (R/2πZ)2 7→ X(Y ) allowing to

change into constant coefficients the main orders of the differential equation
(12), satisfies a new equation where two new constants ρ and ν occur (ρ is
the rotation number of the velocity vector field V ). This leads to a new
extended system, for the unknown U,X, ρ, ν depending on parameters µ,u.

We are able to build a formal expansion of the solution of the extended
system, under parametric form provided that λ /∈ Q, which, truncated at
order m, is given by:

Um(Y, ε),Xm(Y, ε), µm(ε),um(ε), ρm(ε), νm(ε).

where (ε = (ε1, ε2)). Notice that λ = ρ = 1 in the symmetric case (diamond
waves). This case is treated in a simpler way, using the additional symmetry
of solutions (see [17]).

Provided that ρ satisfies a diophantine condition, the differential of the
extended system reduces to a differential equation for φ with constant main
coefficients, with a linear operator of the form

L + A0D + B0 + L−1, with L = νD2 + (−∆)1/2, and D =: ∂y1
+ ρ∂y2

,

where A0,B0 are bounded operators, and L−1 is a regularizing operator. It
then appears that the operator L depends on (ρ, ν), and even for ”good”
values of (ρ, ν) its inverse is unbounded, loosing one derivative. It is then
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necessary to make a sequence of changes of variables, named descent method,
to transform the operator into a new one.

The first step leads to an operator of the form (the unbounded part A0D
disappears)

L + B′
0 + L′

−1.

The second step introduces a projection Π such that L−1(I −Π) and D−1Π
are regularizing operators. This step leads to a new operator of triangular
form:

Π(L + V + F−1)Π + (I − Π)(L + P)

with V bounded and constant, P bounded, F−1 smoothing. Then
Π(L+V)−1Π is controllable for suitable (ρ, ν), with the loss of one deriva-

tive. Here appears a small divisor problem with a control on parameters. It
is then possible to control the inverse of the full operator and to be able to
use the Nash-Moser method. We arrive to the following (see [18])

Theorem 4 Choose l ≥ 34, m even ≥ 4, 0 < δ < 1. There is a full measure
set T ⊂ R+2 such that for τ = (τ 1, τ 2) ∈ T , there exists a subset E(τ ) of
the quadrant {(ε21, ε22) ∈ R+2} for which 0 is a Lebesgue point, i.e.

(2/ǫ2)meas(E(τ ) ∩ {ε21 + ε22 < ǫ}) → 1 as ǫ→ 0.

Moreover, for δ < ε1/ε2 < δ−1 and (ε21, ε
2
2) ∈ E(τ ), the nonlinear system

has a unique solution (U,µ,u) ∈ Hl
(S) × R × S1 of the form

U = U2m + |ε|mŬ(ε), µ = µ2m + |ε|mµ̆(ε), u = u2m + |ε|mŭ(ε),

where ε = (ε1, ε2), and (U2m, µ2m,u2m) is the asymptotic expansion formally
computed at order |ε|2m.

4 2D standing gravity waves on an infinitely deep
fluid layer (”Clapotis”)

We consider an incompressible 2-dimensional infinitely deep horizontal per-
fect fluid layer, the flow being potential and we are looking for flows periodic
in time (period T ) and in the horizontal direction (λ is the wave length).
We choose the time scale as T/2π and the length scale as λ/2π. Then only
one parameter µ appears in the system, defined as 1 + µ = gT 2/2πλ.
The velocity potential: ϕ(x, z, t) is 2π - periodic in x and t and satisfies

∆ϕ = 0 , −∞ < z < η(x, t). (13)
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Figure 4: The 2D standing wave problem

The boundary conditions on z = η(x, t) which is 2π - periodic in x and t are
as follows:

∂η

∂t
+
∂ϕ

∂x

∂η

∂x
− ∂ϕ

∂z
= 0 (14)

∂ϕ

∂t
+

1

2

{
(
∂ϕ

∂x
)2 + (

∂ϕ

∂z
)2

}
+ (1 + µ)η = 0. (15)

The first condition expresses that the fluid velocity relative to the free surface
is tangent to the free surface, the second condition is the Bernoulli first
integral of Euler equation expressed on the free surface, where the pressure
is constant (no surface tension here). We see that there is a basic solution:
(flat free surface) given by η = 0, ϕ = 0.

4.1 Linearized problem - complete resonance

The linearized problem consists in looking for functions ϕ and η, 2π− peri-
odic in x and t, solutions of

∆ϕ = 0 , −∞ < z < 0,

∂η

∂t
− ∂ϕ

∂z
= 0,

∂ϕ

∂t
+ (1 + µ)η = 0 on z = 0,

where we restrict to solutions with η even in x and t, for having more
uniqueness later (the system is invariant under translations in x and t), i.e.

η(x, t) =
∑

h(q)
p cos px cos qt, ϕ(x, z, t) =

∑
ϕ(q)

p epz cos px sin qt.

For having a non trivial solution we need to satisfy the dispersion relation:

(1 + µ)p− q2 = 0, p, q ∈ N. (16)

For µ = 0 we obtain an infinite number of solutions. This is a completely
resonant system: the kernel of the η component of the linearized operator is
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span{cos q2x cos qt; q ∈ N}. Notice that for any rational value of µ the same
phenomenon occurs and notice that for irrational values of µ, (1 + µ)p− q2

may be very small. Notice that when surface tension is taken into account,
the dispersion relation reads as

µ1p+ µ2p
3 − q2 = 0

with two real positive parameters µ1 and µ2. In such a case there is no
complete resonance in general.

Few historical remark on this problem:
S.Poisson [26] gave the complete solution of the linearized problem (Laplace

1776 went very close). For formal expansion of a solution of the nonlinear
problem, see J.Boussinesq [4] who gave the first nonlinear study (in La-
grangian formulation) with an expansion up to order ε2. L.Rayleigh [27]
went up to order ε3, and Ya.I.Sekerkh-Zenkovich [32] went up to order ε4.
Even for deriving a formal expansion in powers of amplitude, the difficulty
here is due to the infinite-dimensional kernel of the linearized problem. All
these authors chose the simplest eigenvector at the first order (”unimodal so-
lution”), and pushed the expansion as far as they could, solving at each order
a growing number of compatibility conditions. L.W.Schwartz - A.K.Whitney
[31] conjectured on an algorithm up to ε∞. This was proved to work by
C.Amick-J.Toland in 1987 [1]. More recently, it was proved in 2002 [16]
and in [19] by using a change of variables which suppresses quadratic terms
in (17), that there are infinitely many expansions, formal solutions of the
standing wave problem [20]. More precisely, let I be a finite or infinite subset
of N, then the following expansions

η =
∑

p≥1

εpηp, µ = ε2/4, starting with η1 =
∑

q∈I

±1

q2
cos q2x cos qt

are formal solutions of (13,14,15).

Remark 5 This means that all orders of these expansions may be computed
and satisfy the infinitely many compatibility conditions.

Contrary to the present case, when the depth of the fluid layer is finite, a
small divisor problem occurs directly on the unperturbed linear operator,
as in section 3. This last problem was solved in 2001 by P.Plotnikov and
J.Toland [25]. Notice that the standing wave problem with surface tension
is not completely resonant in general, but is still not solved.

In the present problem (infinite depth) there are no small divisors at
this step, contrary to [25] and to the case seen at section 3. The small
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divisor problem appears during the method of resolution, where it looks as
analogous to what happens in (16) for irrational µ.

4.2 Small divisor problem

A conformal map transforms the free surface z = η(x, t) into z = 0, the
system takes the form of a scalar second order equation in w(x, t) (new form
of η)

F(w,µ)
def
= L0w − µHw′ + N (w) = 0 (17)

where L0w
def
= ẅ − Hw′, H is the Hilbert transform, (.). and (.)

′

are time
and space derivatives, N represents second order nonlinear terms. Notice
that the linear part of (17) corresponds to the dispersion equation (16),
hence dim(Ker(L0)) = ∞, and Range(L0) is ∞ codim.

The analysis problem here is due to the fact that in nonlinear terms
there appear derivatives of orders higher than in the linear term, so that
Lyapunov-Schmidt method cannot work. As in previous section, the idea is
to use the Nash-Moser method, and use a Newton algorythm. Inverting the
differential at a point w in a neighborhood of 0 leads to solve with respect
to v a differential equation of the form

∂t[v̇ − ∂x(av)] + H∂x{aH[v̇ − ∂x(av)]} − H∂x[(1 + µ− b)v] = h,

where a, and b are known bi-periodic small functions. Thanks to the prop-
erty H2 = −I, and to the fact that the commutator [a,H] is a smoothing
operator, we observe that the differential equation takes a form analogous
to (12) found at section 3. We are then able to use a similar method (diffeo-
morphism of the torus and change of variable and averaging). The averaging
of coefficients which depend on the parameter µ, introduces the small divisor
problem. An adaptation of the Nash-Moser theorem is managed and arrives
to the following result:

Theorem 6 ([21],[20]) Define I a finite set of integers and ε by µ = ε2/4,
then there exists a set MI of amplitudes ε, which is asymptotically of full
measure, where the standing wave exists in a regular function space, with
the following asymptotic expansion (as mentioned above):

η = ε
∑

q∈I

±1

q2
cos q2x cos qt+O(ε2), ε ∈ MI

(1/r)meas{MI ∩ [0, r]} → 1 as r → 0.
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Figure 5: Experiment of Faraday type. see [24]

5 Quasipatterns

Since the observations of Faraday in 1831 [8] on the response of a vertically
forced thin fluid layer, where it results the appearance of waves at the surface
(with half the frequency of forcing), there were temptative theoretical expla-
nations [28], [3], and many experiments of this type. For low viscosity fluids,
quasi crystalline structures may be observed. Among them, let us mention
beautiful results by [9] and [24] (see Figure 5 and see more references in
[2]). The mathematical justification of the existence of such 2-dimensional
quasi-peridic patterns is still an open problem on fluid dynamics systems.
We show below how this works on a simple model for hydrodynamical in-
stabilities, which is the Swift-Hohenberg PDE in R2. This model is popular
for explaining simply the nature of the instability, with the corresponding
symmetry breaking, in Rayleigh-Bénard convection. We are looking for a
steady solution, i.e. a solution x ∈ R2 → U(x) ∈ R of the PDE

(1 + ∆)2U = µU − U3, (18)

where µ is a real parameter, and ∆ is the Laplace operator in the plane. We
are looking for solutions close to the equilibrium U = 0. The study of the
linearized system leads to the following Dispersion equation:

(1 − |k|2)2 = µ, k ∈ R2

expressing that there is a non trivial solution of the linearized system, of the
form eik.x. For µ < 0 there is no solution, while we notice that for µ = 0 all
wave vectors k with |k| = 1 are critical.

We choose to look for solutions quasiperiodic in R2, invariant under
rotations of angle π/q.
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Figure 6: Example q = 4, 8 wavevectors form the basis of the quasilattice

Figure 7: Example with q = 4. The truncated quasilattices Γ9and Γ27. The
small dots mark the combinations of up to 9 or 27 of the 8 basis vectors.

Let us define a quasilattice Γ as

Γ = {km =
∑

j=1,...2q

mjkj , m ∈ N2q, (kj ,kj+1) = π/q}.

For q = 1, 2, 3, Γ is a lattice leading to a periodic pattern. For q ≥ 4, Γ is
a quasilattice leading to a quasipattern. Figures 6,7 show how the points of
the quasilattice appear in the Fourier plane. In figure 8 we show numerical
computations of quasipatterns on the Swift-Hohenberg PDE, made in [30]
for various integer values of q, using a Newton method.
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Figure 8: Numerical computations on Swift-Hohenberg PDE. See
A.Rucklidge - M.Silber [30]

5.1 Formal Lyapunov-Schmidt method and small divisor prob-
lem

Fixing q and the symmetry of the solutions we are looking for (invariant
under rotations Rπ/q), reduces the kernel of the operator L0 = (1 + ∆)2 to
one-dimensional. Then idenfying powers of ǫ in (18), replacing U and µ by
the series

U =
∑

n≥0

ǫ2n+1U2n+1 invariant under rotations Rπ/q, (19)

µ =
∑

n≥1

ǫ2nµ2n,

we then obtain

L0U1 = 0, U1 =

2q∑

j=1

eikj .x

L0U3 = µ2U1 − U3
1 , µ2 = 3(2q − 1) (compatibility condition)

U3 =
∑

k=kj+kl+kr

αke
ik.x

Assume U2k+1, µ2k are known for k = 1, ..., n− 1, then U2n+1, µ2n are deter-
mined by

L0U2n+1 = µ2nU1 +
∑

1≤k≤(n−1)

µ2kU2n+1−2k −
∑

l+r+s=n−1

U2l+1U2r+1U2s+1,

17



and the compatibility condition gives µ2n. At each step, we need to invert
L0 in using

L−1
0 eik·x = (1 − |k|2)−2eik·x, k 6= kj , j = 1, ..., 2q.

The problem for estimating U2n+1, µ2n is to find a bound for (1− |k|2)−2 as
k varies in Γ. This is our small divisor problem.

To obtain such a bound, let us define the number Nk as:

Nk = min



|m| =

∑

j=1,..2q

mj; k = km =
∑

j=1,...2q

mjkj



 .

Then, it is proved in [22] that

(|k|2 − 1)2 ≥ cN−4l
k

, if |k| 6= 1,

where l + 1 is the order of the algebraic integer ω = 2cos π/q, given by

l + 1 = ϕ(2q)/2, ϕ(.) is the Euler totient function

(l = 1 for q = 4, 5, 6, l = 2 for q = 7, ..).
Now, we need spaces of quasi-periodic functions. So we define the fol-

lowing Hilbert spaces

Hs =

{
U =

∑

k∈Γ

Uke
ik·x; ||U ||2s =

∑

k∈Γ

(1 +N2
k)s|Uk|2 <∞

}

with the scalar product

〈W,V 〉s =
∑

k∈Γ

(1 +N2
k)sWkVk.

The following result is proved in [22]:

Lemma 7 Hs is a Banach algebra for s > q/2 :, ||UV ||s ≤ cs||U ||s||V ||s.
For s > p+ q/2, we have Hs →֒ Cp.

All the above ingredients allow to find, by induction, Gevrey estimates for
the series (U2n+1, µ2n):

Theorem 8 Let q be ≥ 4, and choose s > q/2, then there exists K(q, c, s),
γ(q, s) such that the uniquely determined power series U =

∑
n≥0 ǫ

2n+1U2n+1,

µ =
∑

n≥1 ǫ
2nµ2n, have coefficients U2n+1 (quasi-periodic functions) in Hs

and
||U2n+1||s + |µ2n| ≤ γKn(n!)4l, for n ∈ N

18



Remark 9 This theorem does not give the existence of a solution. However
we notice that the same type of estimates may be obtained for the series (11)
found at section 3.

We may use a Borel transform and a truncated Laplace transform on this
Borel transform to prove (see [22]) the existence of a solution up to an
exponentially small term:

Theorem 10 Let q ≥ 4, s > q/2, then there exists K and C > 0 such that
for ǫ small enough, there exists C∞ functions Ū , µ̄ such that

||(1 + ∆)2Ū(ǫ) − µ̄(ǫ)Ū (ǫ)) + [Ū(ǫ)]3||Hs−4
≤ Ce

− K

ǫ1/8l .

In fact an existence theorem was recently proved (see [5]):

Theorem 11 For any q ≥ 4, s > q/2, there exists µ0 > 0, such that there
is a quasipattern solution for 0 < µ < µ0 in Hs, invariant under rotations
of angle π/q. The asymptotic expansion of this bifurcating solution is given
by the known formal series.

For proving such a result, we start with Uǫ, µǫ given by the series (19) trun-
cated at order ǫ5, which is an approximate solution. Then, the differential
of (18) with respect to U at the point Uǫ

Lǫ = (1 + ∆)2 − µǫI + 3U2
ǫ ,

is selfadjoint in H0 and has quasiperiodic coefficients. We are able to prove
that its spectrum, which is real, lies on the right hand side of cǫ2 with
c > 0. Such a result is obtained thanks to a decomposition of the Fourier
space, reducing the inversion of µI+Lǫ to a subspace corresponding to wave
vectors k located in little discs centered in kj , j = 1, 2, .., 2q. In this subspace
we show that the principal part of the operator is nearly in diagonal form
allowing to use perturbation theory.

This is a non trivial fact since there are not only eigenvalues in the
spectrum, and that the perturbation term is not relatively compact with
respect to (1 + ∆)2, the spectrum of which fills R+. Once this location of
the spectrum is proved, a variant of the implicit function theorem is then
sufficient to conclude.
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