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We analyse the force balance on a cylindrical drop in a Hele-Shaw cell, subjected

to a Marangoni flow caused by a surface tension gradient. Depth-averaged Stokes

equations, called Brinkman equations, are introduced and a general closed form so-

lution is obtained. The validity of the averaging procedure is ascertained by consid-

ering a linear surface tension gradient acting on a cylindrical flattened drop. The

Marangoni-driven flow field and resulting force predicted by the Brinkman model are

seen to match well a full three-dimensional direct numerical simulation. A closed

form expression of the force acting on the drop is obtained, calculated from contribu-

tions due to the normal viscous stress, tangential viscous stress, and pressure fields,

integrated on the drop perimeter. This expression is used to predict the force balance

when a stationary droplet is submitted to both a carrier flow and a Marangoni flow.
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I. INTRODUCTION

Droplet-based microfluidics has developed into a highly active area in recent years, owing

to its ability to answer some major issues facing single phase flows. In particular, the use

of droplets reduces the problem of handling small volumes to the manipulation of a single

droplet, which provides an elegant approach to performing reactions with minute volumes

since the contents of a drop can remain within the drop if the liquids are chosen properly.

In addition, the recirculation motion inside the drop induced by the shear imposed on

the immiscible interface through the surrounding carrier flow can be used to mix the drop

contents.

This has renewed interest in Marangoni effects acting on drops, with the active modula-

tion of surface stresses being proposed as a manipulation tool for droplets either inside or

outside microchannels1. Lasers were used to locally heat a water-oil interface in the confined

geometry of microchannels and this technique was used to implement all of the necessary

operations on droplets2–4. In this approach, the heating produced by the focused laser leads

to a thermocapillary stress that is generated on the drop surface. Owing to the low Reynolds

numbers, this almost instantaneously produces a flow in the inner and outer fluids, while

the drop translation is simultaneously blocked as its interface reaches the laser spot. These

experiments therefore demonstrate the production of a net force that can balance the vis-

cous drag on a locally heated droplet, generating forces of a few hundred nano Newtons5.

The direction of the force was found to be pointing away from the hot spot, similar to the

direction observed by Kotz et al. (2004)6 and Grigoriev et al. (2006)7 in spherical geome-

try, Selva et al. (2010)8 but in disagreement with classical results which predict that drops

should migrate towards the hot regions (e.g. Young, Goldstein and Block 19599). This was

attributed by Verneuil et al. (2009)5 to the anomalous direction of the thermocapillary rolls,

due to the presence of partially soluble surfactants that were depleted by the laser.

While theses authors confirmed experimentally the Marangoni origin of the force, sev-

eral questions remain about the hydrodynamics and the scalings behaviour of such forcing

methods. This leads us to revisit the problem of the force acting on a drop in a Hele-

Shaw geometry, building on previous related studies which treated this subject, namely the

work of Nadim et al. (1996)10, Boos and Tess (1997)11 and Bush (1997)12. These three

studies addressed the effect of Marangoni stresses, due to a temperature or surfactant con-
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centration gradient, on the motion of a flattened drop or bubble. Nadim et al. (1996)10

calculated the tangential stress effects caused by a linear surface temperature distribution

on a flat fluid-fluid interface and used this result to derive the velocity of a circular bubble

in a constant temperature gradient. Boos and Tess (1997)11 determined the flow in detail

using depth-averaged (so called Brinkman) equations and conducted numerical computa-

tions of the velocity field for complex shaped bubbles, using a simplifying boundary layer

approximation. Finally, Bush (1997)12 derived an expression for the terminal velocity of

a buoyancy driven flattened bubble and showed that it could be retarded by a secondary

solutal Marangoni flow.

The aim of the present study is to calculate the forces acting on a stationary drop or

bubble in a Hele-Shaw cell in the presence of a surface tension gradient and of an external

flow, in the spirit of Hadamard (1911)13, Rybzynski(1911)14 and Young et al. (1959)9. This

first leads us to generalize Boos and Thess (1997)11’s solution of the Brinkman equations for

an arbitrary general surface tension distribution. The stress distribution predicted by the

depth-averaged procedure inherent to the Brinkman model is then quantitatively validated

by comparison with three dimensional numerical computations of the Stokes equations,

enabling us to obtain a generic closed form expression of the force acting on a stationary

droplet. The equilibrium conditions under which the force exerted by the carrier fluid is

exactly cancelled by the Marangoni effect are finally determined.

The governing equations for the inner and outer flows around a flattened drop are posed

in Section II and a numerical solution procedure is proposed in section III. The depth-

averaged, co-called Brinkman equations are introduced and solved in section IV in the

cases of local or global variations of surface tension. In Section V, the validity of the

approach is assessed by comparing the stress fields predicted theoretically in the frame of

the Brinkman approximation with those obtained from three dimensional Stokes simulations.

This enables the determination of the generic force expression on a droplet for any arbitrary

flow and allows computing the force caused either by a Marangoni flow on a stationary drop

(Section VI) or by an incoming flow on a stationary droplet (Section VII). The tentative

application of our approach to translating droplets follows in Section VIII before conclusions

and perspectives are drawn in Section IX.
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FIG. 1. Schematic of the depth-averaged model: a cylindrical steady drop of radius R in a Hele-

Shaw cell of thickness h.

II. PROBLEM STATEMENT

Let us consider a cylindrical flattened drop or bubble of radius R̄ and viscosity µ̄1, sur-

rounded by a stationary or constantly flowing (at velocity Ū∞) fluid of viscosity µ̄2, in a

Hele-Shaw cell of gap h̄ small compared to R̄, as depicted in Figure 1 (dimensional vari-

ables are denoted with an overbar). The two fluids are immiscible and subject to a surface

tension γ̄ = γ̄0 + ∆γ̄ γ which may vary in space with an amplitude ∆γ̄. This surface ten-

sion distribution is assumed to remain frozen. It may result either from a temperature

T̄ = T̄0 +∆T̄ T or surfactant concentration c̄ = c̄0 +∆c̄ c distribution, the resulting surface

tension variation ∆γ̄ = ḠT∆T̄ or ∆γ̄ = Ḡc∆c̄ being obtained using a scalar coefficient Ḡc

or ḠT . We shall assume the Reynolds number Re = Ū R̄/(µ̄1 + µ̄2) based on the radius

of the drop R̄, the total viscosity µ̄1 + µ̄2 and the characteristic velocity Ū to be small.

Depending on the flow configuration, this reference velocity Ū is either the characteristic

Marangoni velocity Ūm = ∆γ̄h̄/R̄(µ̄1+ µ̄2) or the external carrier fluid velocity Ū∞. In order

to non-dimensionalize the equations, we therefore use the radius of the drop R̄ as character-

istic length-scale, the reference time and force scale being (µ̄1+µ̄2)R̄
∆γ̄

and ∆γ̄R̄ (respectively

R̄/Ū∞ and R̄(µ̄1+ µ̄2)Ū∞) when the droplet is submitted to Marangoni forcing (respectively

when submitted to a uniform carrier flow). Nondimensional quantities are denoted without

overbar.

With the assumption of a low Reynolds number, the equations of motion reduce to the

3-D Stokes equations,

µi∆V(i) = ∇Pi, (1)

∇.V(i) = 0, (2)
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where the pressure is denoted by Pi and where the index i = 1, 2 refers to fluid 1 and 2.

With the exception of section VIII (where the results are extended tentatively to moving

droplets), the present study focussed on steady droplets. In this situation, the droplets

adopt toroidal-like shapes with the geometric details of the rim depending on the wetting

properties. For droplet wetting the channel walls, the droplet in directly in contact with

the solid walls and the rim geometry is set by the contact angle. For non wetting droplets,

a thin molecular film is caused by the disjunction pressure and the rim has a shape that

becomes asymptotically close to a semi-circle of radius of curvature equal to the half-height

of the channel h/2 as h/R tends to 0. The existence of this curved rim is neglected in the

present study, following Boos and Thess (1997)11 and Bush (1997)12. The droplet interface

thereby reduces to a flattened cylinder which we further assume to be circular, assuming

that the capillary number is sufficiently low for the droplet to depart from its equilibrium

shape in absence of flow. Although this assumption of a prescribed shape of the interface

precludes the imposition of the normal stress boundary condition, it is a classical assumption

in low-Reynolds number two-phase flows9,13,14.

The remaining boundary conditions consist of impermeability and continuity of both

tangential velocities and tangential shear stresses, where tk (k = 1, 2) denote the two unit

tangent vectors and T(i) the stress tensors.

V(i).n
∣

∣

r=1
= 0, (3)

V(1).tk
∣

∣

r=1
= V(2).tk

∣

∣

r=1
, (4)

tk.T
(1).n

∣

∣

r=1
= tk.T

(2).n
∣

∣

r=1
+∇γ.tk. (5)

III. A REFERENCE NUMERICAL SOLUTION

Let us now consider the effect of an imposed surface tension profile, generated for example

by an imposed temperature field. We assume for the sake of clarity that the surface tension

along the interface γ(θ) is an even function (we anticipate in this way the null contribution

of the odd part of the function to the net x-directed force). Its gradient may then be decom-

posed onto the sine modes only (calculations can be extended to cosine modes contributions

in a straightforward manner)

dγ

dθ
=

∞
∑

n=1

an sin(nθ), (6)
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where

an =
1

π

∫ 2π

0

dγ

dθ
sin(nθ)dθ. (7)

In this section, we solve numerically the 3D Stokes equations (2)-(5) in the case of a

linear surface tension gradient acting on a cylindrical interface (γ(r, z, θ) = cos(θ)). We take

advantage of the following (so-called n = 1) azimuthal dependences

V (i)
r (r, z, θ) = v(i)r (r, z) cos(θ) (8)

V
(i)
θ (r, z, θ) = v

(i)
θ (r, z) sin(θ) (9)

V (i)
z (r, z, θ) = v(i)z (r, z) cos(θ) (10)

P (i)(r, z, θ) = q(i)(r, z) cos(θ) (11)

to transform the 3D stokes equations exactly into the 3C/2D (three components and two

dimensions) n = 1-Stokes equations given as

∂

∂r

(

1

r

∂rv
(i)
r

∂r

)

− v
(i)
r

r2
− 2v

(i)
θ

r2
+
∂2v

(i)
r

∂z2
=
∂q(i)

∂r
(12)

∂

∂r

(

1

r

∂rv
(i)
θ

∂r

)

− v
(i)
θ

r2
− 2v

(i)
r

r2
+
∂2v

(i)
θ

∂z2
= −q

(i)

r
(13)

1

r

∂

∂r

(

r
∂v

(i)
z

∂r

)

− v
(i)
z

r2
+
∂2v

(i)
z

∂z2
=
∂q(i)

∂z
(14)

1

r

∂

∂r

(

rv(i)r

)

+
v
(i)
θ

r
+
∂v

(i)
z

∂z
= 0 (15)

with suitable boundary conditions derived from eqs. (3)-(5).

Our approach consists of solving back and forth the n = 1-Stokes equations in each

domain. Starting from a guess solution, we solve first the equations in the interior domain 1

with the stress along the interface being imposed by the outer fluid. Then, we solve back the

equations in the exterior domain 2 with the stress being now imposed by the inner fluid. We

repeat the computations until the following criterion ||u1 − u2|| < 10−3 is satisfied, thereby

assuring continuity of the tangential and axial velocities. This simple, segregated scheme

was found to converge rapidly (within 5 iterations) for the linear set of equations at hand.

We use the FreeFem++ software (http://www.freefem.org) to generate a two-dimensional

triangulation of the azimuthal plane with the Delaunay–Voronoi algorithm. The mesh refine-

ment is controlled by the vertex densities imposed on both external and internal boundaries.

All equations are numerically solved by a finite-element method using two meshes, one for the
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interior domain and one for the exterior domain. Each set of equations is first multiplied by

r to avoid the singularity on the r = 0 axis. The associated variational formulation is then

derived and spatially discretized onto a basis of Arnold-Brezzi-Fortin MINI-elements15,16,

with 4-node P1b elements for the velocity components and 3-node P1 elements for the pres-

sure. The sparse matrices resulting from the projection of these variational formulations onto

the basis of finite elements are built with the FreeFem++ software. The reference results

presented in the following have been obtained for interior and exterior meshes respectively

made of 91656 triangles and 520204 triangles, and have been checked to be converged with

respect to mesh-refinement.
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FIG. 2. (a) transverse tangential velocity profile v
(i)
θ (1, z); empty (resp. full) symbols correspond

to the inner (resp. outer) fluid i = 1 (resp. i = 2). (b) Reconstruction of the tangential velocity

field V
(i)
θ (1, z, θ) on the inner and outer surfaces of the drop, as obtained by solving the exact

3C-2D n=1 Stokes equations; h = 0.1, a1 = 1, µ1 = 3/4 and µ2 = 1/4.

Simulations were run for different parameters, and always showed that the z component of

the velocity v
(i)
z was at least one order of magnitude smaller than the in-plane components

of the velocity. The presented results were obtained for h = 0.1, a1 = 1, µ1 = 3/4 and

µ2 = 1/4. Figure 2a depicts the interfacial tangential velocity profiles v
(1)
θ (1, z) = v

(2)
θ (1, z),

displaying a characteristic parabolic profile. In addition a two-dimensional reconstruction

of the surface inner and outer velocities is shown in figure 2b.

The Marangoni stress discontinuity (here nondimensionalized to 1) is recovered by sub-

stracting the outer shear from the inner one, as seen in figure 3a, which depicts the interfacial
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FIG. 3. (a) transverse tangential stress profile t
(1)
r,θ (1, z) (empty symbols for the inner fluid)

and t
(2)
r,θ (1, z) (full symbols for the outer fluid); (b) Reconstruction of the tangential stress fields

T
(i)
r,θ (1, θ, z) on the ”inner” and ”outer” surfaces of the drop, denoted respectively R1 and R2;

h = 0.1, a1 = 1, µ1 = 3/4 and µ2 = 1/4.
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FIG. 4. (a) transverse pressure profile q(1)(1, z) and q(2)(1, z). Reconstruction of the pressure fields

P (i)(1, z, θ) on the inner and outer surfaces of the drop; h = 0.1, a1 = 1, µ1 = 3/4 and µ2 = 1/4.

tangential shear stress profiles t
(1)
r,θ(1, z) and t

(2)
r,θ(1, z) . The associated two-dimensional re-

constructions of the surface inner and outer shear stresses are depicted in figure 3b.

The interfacial pressures depicted in figure 4 highlight the invariance of the 3D pressure

field with respect to z. For completeness, the normal viscous stress components on the
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FIG. 5. (a) transverse normal viscous stress profile t
(1
r,r(1, z) and t

(2)
r,r (1, z); (b) Reconstruction of

the normal viscous stress field T
(i)
rr (1, z, θ) on the inner and outer surfaces of the drop; h = 0.1,

a1 = 1, µ1 = 3/4 and µ2 = 1/4.

interface are also reported in figure 5. Observe that they are one order of magnitude less

than the pressure stresses.

IV. DEPTH-AVERAGED MODELLING

Classically, the smallness of the aspect ratio h = h̄/R̄ is exploited to separate the wall

normal dependance (i.e. in the direction z) of all the velocity fields from its in-plane averaged

value

V(i)(x, y, z) = u(i)(x, y)

(

6z(h− z)

h2

)

. (16)

At leading order, the pressure does not depend on z and the z-component of the velocity

may be neglected, yielding the depth-averaged equations

µi

(

∆‖ − 12/h2
)

u(i) = ∇‖pi, (17)

∇‖.u
(i) = 0, (18)

where ∆‖ =
(

∂2

∂x2 +
∂2

∂y2

)

is the in-plane Laplacian and ∇‖ =
(

∂
∂x
, ∂
∂y

)

the in-plane gradi-

ent. Equation (17-18) are called Brinkman equations12; they combine the classical Darcy

approximation of Hele-Shaw flows with the next order O
(

h̄2

R̄2

)

Stokes correction. Despite

its lower order, it is judicious, although mathematically disputable17, to include this term

in order to satisfy Marangoni boundary conditions.
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It is natural at this stage to introduce a depth-averaged in-plane streamfunction and the

depth averaged equations may be written in cylindrical coordinates (see Boos and Thess

(1997)11 for details) as

(

1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2

)(

1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂θ2
− k2

)

ψ(i) = 0, (19)

where we have introduced the aspect ratio k =
√
12R̄/h̄, assumed to be large. The depth-

averaged velocities are related to ψ(i) by

u
(i)
θ = −∂ψ

(i)

∂r
, (20)

u(i)r =
1

r

∂ψ(i)

∂θ
. (21)

The above equations are valid in each fluid and are closed by suitable boundary conditions

on the interface. The kinematic boundary conditions at r = 1 impose equal normal velocities

along the interface

ψ(1)
∣

∣

r=1
= ψ(2)

∣

∣

r=1
= 0, (22)

as well as the continuity of the tangential velocity

∂ψ(1)

∂r

∣

∣

∣

∣

r=1

=
∂ψ(2)

∂r

∣

∣

∣

∣

r=1

. (23)

The normal dynamic boundary condition cannot be imposed since the geometry of the

bubble is imposed to be circular. The tangential dynamic boundary condition, which ac-

counts for the Marangoni effect, is

µ1 r
∂

∂r

(

u
(1)
θ

r

)∣

∣

∣

∣

∣

r=1

− µ2 r
∂

∂r

(

u
(2)
θ

r

)∣

∣

∣

∣

∣

r=1

=
1

r

dγ

dθ

∣

∣

∣

∣

r=1

. (24)

The outer potential flow has to be matched far from the drop (r → ∞) while regularity

conditions must be imposed on the axis (r = 0). For stationary droplets, the streamfunction

is set to zero at the origin

ψ(1)
∣

∣

r=0
= 0. (25)

The bi-harmonic-like equation (19) is linear and its solution is the suitable linear combi-

nation of its four fundamental solutions which satisfy the boundary conditions (22)-(25) in

each fluid. These solutions consist of the two classical solutions of the Laplace equation in

circular geometry, rn sin(nθ) and r−n sin(nθ), as well as the two eigenfunctions of the same

10



Laplace equation with eigenvalues k2, namely, the two modified Bessel functions In(kr) and

Kn(kr). The aspect ratio k =
√
12R̄/h̄, which is assumed to be large, is the inverse of the

screening length of the exponential decay of the modified Bessel functions. Enforcing the far

field boundary condition rules out the two fundamental solutions that diverge at r → ∞ in

fluid 2. In a similar manner, enforcing a regularity condition on the axis (25) rules out the

two fundamental solutions diverging for r → 0 in fluid 1. Imposing the boundary condition

(22) at the interface, the solutions of the governing equations may therefore be chosen of

the form

ψ(1)(r, θ) =

∞
∑

n=1

bn

(

In(kr)

In(k)
− rn

)

sin(nθ) (26)

and

ψ(2)(r, θ) =
∞
∑

n=1

cn

(

Kn(kr)

Kn(k)
− 1

rn

)

sin(nθ). (27)

The constants are determined by the two remaining boundary conditions (23) and (24), as

detailed in Appendix A,

bn =
In(k)Kn−1(k)

dn
an, (28)

cn = −Kn(k)In+1(k)

dn
an, (29)

dn = −In+1(k)µ2

[

2kKn−1(k) + k2Kn(k)
]

+Kn−1(k)µ1

[

2kIn+1(k)− k2In(k)
]

. (30)

The expressions (26)-(30) are the analytical solution and iso-values of the streamfunction

and can be easily plotted to show the streamlines of the flow fields thus obtained. A typical

streamfunction field is depicted in Fig. 6 in the case of a steady state Gaussian surface tension

distribution γ(x, y) = exp[−((x − 1)2 + y2)/w2], where w corresponds to the typical size of

the gradient. Note that the flow is pulled along the interface away from the low surface

tension region, while being pushed towards the high surface tension point. In Baroud et

al. (2007)2 and Verneuil et al. (2009)5, such anomalous thermocapillary flow patterns were

observed and the increase of surface tension at the hot point was attributed to surfactant

depletion through the laser. The solution for a surface tension overshoot at the hot point

(as would be expected by a usual thermocapillary effect) is simply obtained by inverting the

sign of the arrows on the streamfunction contours, owing to the linearity of the underlying

equations.

Furthermore, we may validate our solution by checking for agreement with the solution of

Boos and Thess (1997)11, which is found by retaining only the first mode of the Fourier series
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FIG. 6. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) and a localized Marangoni

effect of Gaussian type; w = 0.4; µ1 = µ2 = 0.5. The large arrow shows the direction of the net

force acting on the drop.
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FIG. 7. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) and a constant surface

tension gradient along x; µ1 = µ2 = 0.5. The H and L labels correspond to the high and low surface

tension regions, respectively. The large arrow represents the direction of the total Marangoni force

acting on the drop.

(i.e. taking n = 1), shown in Fig. 7 (note the typographic mistake in their expression (4.22)

corresponding to our equation (30)). Here, we consider a drop submitted to a constant

surface tension gradient ∇γ = e
x
, i.e. γ = cos(θ), generated by a linear temperature or

surfactant concentration distribution.
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Note that in both the localized and linear heating cases, the result of Boos and Thess

(1997)11 are recovered, with the variations of the velocities in the radial direction occur on

a length scale imposed by the channel height. In Figures 6 and 7, this may be inferred from

the radial spacing between the streamlines which increases in the case h = 0.4 compared to

h = 0.1. The typical length scale in the azimuthal direction, on the other hand, is given

by the form of the surface tension variation, determined by w in the case of the Gaussian

surface tension distribution and R in the linear case.

V. MODEL VALIDATION

The validity of the Brinkman model for quantitatively describing surface tension driven

phenomena and in particular stress calculations can be questioned since the underlying

assumption of scale separation is not verified near the interface. As previously noted by

Thompson (1968)18 considering the flow in a Hele-Shaw cell around a thin solid cylinder,

asymptotic matching must be performed between an “outer” flow far from the interface and

an “inner” flow near the interface. While the former is governed by the Darcy equations

the flow is three-dimensional in the latter. In the absence of an equivalent analysis for

Marangoni flows, and despite recent preliminary attempts19, we resort to an a posteriori

validation of the depth-averaged model: the solution of Brinkman’s equations is compared

to a full 3D numerical simulation.

Although Brinkman equations have been validated for single phase pressure driven flow

in high aspect ratio rectangular pipes17, the only validation test of the Brinkman equations

for the modelling of two-phase flows was conducted, to the authors’ knowledge, by Boos and

Thess (1997)11. They considered the flow driven by a one-dimensional constant gradient of

surface tension along an infinite flat interface perpendicular to the channel walls and found

an analytical solution is the form of a series expansion, as already established by Nadim et

al. (1996)10. They compared the interface velocity obtained by solving Brinkman equations

with this exact three-dimensional solution and showed that the agreement improved as the

aspect ratio k increased.

Note however that this flow, which is driven by a one-dimensional constant gradient of

surface tension along an infinite flat interface, is particular in that the pressure contribution

and the viscous normal stress vanish exactly on the interface. The entire flow solution is
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in fact at constant pressure. It is therefore natural that a description based exclusively on

the tangential shear stress contribution provides the correct force balance on the interface,

as noticed by Nadim et al. (1996)10. These authors further used this observation as the

basis of a general expression of the Marangoni force solely based on the tangential shear

stress and applied it to the determination of the force acting on a Marangoni-driven drop.

We will show that this constitutes an erroneous extrapolation since in these more general

geometries, the Marangoni effect generates a pressure field that also contributes to the net

force acting on the drop.

For this purpose, we use the three-dimensional solutions presented in section III and

compare them to the Brinkman solutions. From first sight, the constant pressure across

the channel (figure 4) together with parabolic tangential velocity profiles and the extremely

small transverse velocity components observed in these 3C-2D Stokes calculations (figure

2), show that the key assumptions underlying Brinkman equations appear to hold for pure

Marangoni flow description.

More quantitative comparisons can be obtained by plotting the radial profile of the mean

tangential velocity obtained from the Brinkman equations uθ(r, θ = π/2) and the a posteriori

depth-average of the 3D Stokes simulations 〈Vθ(r, z, θ = π/2)〉 = 1/h
∫ h

z=0
Vθ(r, z, θ = π/2)dz,

where θ has been set to the arbitrary value of π/2 to factorize out the sinusoidal azimuthal

dependence (one has therefore 〈Vθ(r, z, θ = π/2)〉 = 〈vθ(r, z)〉). As shown in figure 8a, the

overall agreement is remarkable. The estimation given by Nadim et al. (1996)10, uNadimθ (r =

1, θ = π/2) = h
1.842µ

dγ
dx

also agrees well with the numerical solution, as shown by the cross in

figure 8a. The radial velocity profile averaged a posteriori in the Stokes simulations and the

solution of the Brinkman equations shows the same remarkable agreement (figure 8b).

In addition, the shear and normal stresses are compared in figure 9, displaying a very

good agreement. The pressure distribution is particularly well captured, on both sides of the

interface, as seen in figure 9b, where the normal viscous stress contribution is also displayed

and seen to be one order of magnitude less than the pressure contribution.

Although the presented computations do not bring a mathematical proof of the validity

of the Brinkman equations for two-phase flows in Hele-Shaw cells, they may be considered

as a reasonable validation of the depth-averaged model, not only as far as the qualitative

behavior of the flow is concerned, but also regarding the quantitative pressure and viscous

stresses close to the interface. These results also show that the contribution from the pressure
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field is of comparable magnitude as the tangential stress, as clearly evidenced by comparing

figure 5 and 6, while the viscous part of the normal stress on the other hand is one order of

magnitude (h/R) smaller. This result has two consequences: (i) the pressure contribution

should be included in force calculations on an interface in general, (ii) the determination of

this pressure field requires the computation of the full flow field.

VI. FORCE DUE TO THE MARANGONI FLOW

We now wish to evaluate the total force induced by the Marangoni flow on the drop. Three

stress terms, which apply a net force on the circular drop, must be taken into account: the

pressure field p as well as the viscous shear stresses in the tangential and normal directions,

namely τrθ = µ2

(

∂u
(2)
r

∂θ
+

∂u
(2)
θ

∂r
− u

(2)
θ

r

)

and τrr = 2µ2
∂u

(2)
r

∂r
. A last stress term is provoked by

the wall friction. The resulting x-component of the total force on the drop is given by the

projections of the former three contributions, integrated along the azimuthal direction and

the latter contribution integrated on the whole cross-section of the drop.

The viscous tangential shear force reduces to

Ft = µ2h

∫ 2π

0

(

−∂u
(2)
r

∂θ
− r

∂u
(2)
θ

∂r
+ u

(2)
θ

)

sin(θ)dθ

∣

∣

∣

∣

∣

r=1

, (31)

whereas the viscous normal force is recast, using the continuity equation on the drop interface

and integrations by parts, as

Fn = 2µ2h

∫ 2π

0

(

∂u
(2)
r

∂θ
− u

(2)
θ

)

sin(θ)dθ

∣

∣

∣

∣

∣

r=1

. (32)

Similarly, the pressure force is given by

Fp = h

∫ 2π

0

− p(2)
∣

∣

r=1
cos(θ)rdθ = h

∫ 2π

0

∂p(2)

∂θ

∣

∣

∣

∣

r=1

sin(θ)rdθ. (33)

The term ∂p(2)/∂θ may be retrieved from the tangential component of the Brinkman equa-

tions

µ2

[

(

1

r

∂

∂r
r
∂

∂r
− 1

r2
+

1

r2
∂2

∂θ2
− k2

)

u
(2)
θ +

2

r2
∂u

(2)
r

∂θ

]

=
1

r

∂p(2)

∂θ
. (34)

The pressure force becomes, after a double integration by parts,

Fp = µ2h

∫ 2π

0

(

2

r2
∂u

(2)
r

∂θ
+

(

∂2

∂r2
+

1

r

∂

∂r
− 2

r2
− k2

)

u
(2)
θ

)

sin(θ)r2dθ

∣

∣

∣

∣

∣

r=1

. (35)
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Let us now evaluate the viscous friction force of the plates on the drop. If one assumes that

the drop is in contact with the plates (wetting drop), then

Ff = −
∫ 2π

0

∫ 1

0

12µ1

h

(

u(1)r cos(θ)− u
(1)
θ sin(θ)

)

rdθdr. (36)

Note that if the drop is non wetting, the wetting film is assumed to be thin enough for the

shear to be entirely transmitted throughout its negligible thickness. An integration by parts

finally leads to

Ff = −µ1
12

h

∫ 2π

0

rψ(1) sin(θ)dθ
∣

∣

r=1
dθ. (37)

The final expression for the nondimensional force is obtained by summing the four dif-

ferent contributions found in Eqs. (31), (32), (35) and (37), Fm = Ft + Fn + Fp + Ff

Fm = µ2h

∫ 2π

0

(

3

r2
∂u

(2)
r

∂θ
+

(

∂2

∂r2
− k2 − 3

r2

)

u
(2)
θ − k2

R2r

µ1

µ2
ψ(1)

)

sin(θ)r2dθ

∣

∣

∣

∣

∣

r=1

. (38)

This expression shows, as a consequence of the orthogonality properties of the sine functions,

that only the first component of the Fourier series matters as far as the evaluation of the

force is concerned, since all other contributions vanish in the integration once multiplied by

sin(θ). The expressions of Appendix A can then be used to evaluate the various components

of the force:

Ft = πhµ2c1

(

2kK0(k)

K1(k)
+ k2

)

, (39)

Fn = −πhµ2c1
2kK0(k)

K1(k)
, (40)

Fp = πhµ2c1k
2, (41)

Ff = 0, (42)

Fm = 2πhµ2c1k
2. (43)

Note first that the normal viscous force Fn is one order of k smaller than the tangential

viscous force Ft, as a consequence of the continuity relation ∂ur

∂r

∣

∣

r=1
∼ 1

r
∂uθ

∂θ

∣

∣

r=1
and the

separation of scales along the azimuthal and radial directions away from the interface. The

above expressions further show that the total force (Fm) is approximately twice as large as

the force due to the tangential shear stress (Ft) and exactly twice as large as the result of the

total viscous stress (Ft + Fn) and, equivalently, twice as large as the pressure contribution.

Using the asymptotic expansions of (29) and (30) for n = 1, one is led to c1 =
a1
k2

+O
(

1
k3

)

,
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which yields

Fm ≃ 2hµ2

∫ 2π

0

dγ

dθ
sin(θ)dθ, (44)

or, in dimensional terms,

F̄m ≃ 2h̄
µ̄2

µ̄1 + µ̄2

∫ 2π

0

dγ̄

dθ
sin(θ)dθ. (45)

These forms of the total force may be evaluated for the two cases treated above. For instance,

in the case of a temperature induced Gaussian surface tension distribution, as that plotted

in Figure 6, one finds

F̄m ≃ −2
√
π∆T̄ ḠT h̄ w̄ µ̄2

R̄(µ̄1 + µ̄2)
, (46)

in agreement with the scaling law of Baroud et al. (1997)2. Note the sign of the force which

is directed away from the high surface tension region. In the case of a linear surface tension

gradient10–12 shown in figure 7, a1 = 1 and

F̄m = −2πh̄
µ̄2

µ̄1 + µ̄2

∆T̄ ḠT , (47)

which is twice the force predicted by Nadim et al. (1996)10, who neglected the contribution

of the normal stress to the force. Finally, we insist that the linearity of the Stokes equation

implies that only the sign of the force will change if the sign of the surface tension dependence

on temperature is inverted.

VII. A STATIONARY DROP IN A UNIFORM ADVECTION FLOW

We will now derive the force imposed on a drop by a uniform advection flow of velocity

Ū∞ in Hele-Shaw geometry. Recall that we non-dimensionalize the equations with R̄/Ū∞

as a time scale and R̄(µ̄1 + µ̄2)Ū∞ as force scale. The solutions satisfying the far field

boundary condition and the regularity condition on the axis may be written as the sum of

a potential flow ψp around the drop (and a corresponding velocity field up), violating the

continuity of tangential velocity and tangential shear stress along the interface of the drop,

and a correction flow of Brinkman’s type which restores this balance:

ψ(1) = B

(

I1(kr)

I1(k)
− r

)

sin(θ) (48)

ψ(2) =

(

C

(

K1(kr)

K1(k)
− 1

r

)

+ ψp

)

sin(θ) (49)
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FIG. 10. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) in presence of an outer

uniform flow; µ1 = µ2 = 0.5. The large arrow represents the net force, which is due to the drag

acting on the drop.

ψp = r − 1

r
, (50)

B =

(−2µ2(kK1(k) + 2K0(k)) + 4µ2K0(k)

d1

)

I1(k), (51)

C =

(

2µ1(−kI1(k) + 2I2(k))− 4µ2I2(k)

d1

)

K1(k), (52)

with d1 given by expression (30). The determination of the constants B and C is the topic

of appendix B. It may be further shown that the asymptotic expansion of C is

C =
2µ1

k
+

4− 9µ1 + 6µ2
1

k2
+O

(

1

k3

)

. (53)

The amplitude of this constant C has an influence on the typical flow fields, depicted in

figure 10. Since C < 2
k−1

at leading order, the radial part of ψ(2) increases monotonically

with r. This prevents the formation of recirculation zones in the outer fluid that are observed

in presence of additional soluto-capillary flow12. Since upr|r=1 = 0, upθ|r=1 = −2 sin(θ) and
∂2up

θ

∂r2

∣

∣

∣

r=1
= −6 sin(θ), plugging-in the flow fields of Eq.(49) into the general expression for

the force (38) yields the force Fu that acts on the drop owing

to the external flow:

F∞ = πhµ22k
2(1 + C). (54)
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Using the asymptotic estimate (53) yields a dimensionless drag force, at leading order

F∞ ≃ πhµ22k
2

(

1 +
2µ1

k
+

4− 9µ1 + 6µ2
1

k2

)

. (55)

This expression shows that taking into account the tangential stress condition along the

interface increases the drag force on the drop or bubble by two lower order terms in com-

parison to the case of a solid disk (F̄∞ = 24πŪµ̄2
R̄2

h̄
). Note that at fixed outer viscosity µ̄2,

the drag force is an increasing function of the inner viscosity.

The linearity of the Stokes equation enables one to add this uniform flow to a Marangoni

induced flow in order to derive the condition for the drag force and the Marangoni force to

be exactly balanced. At leading order, the total force becomes

F̄ ≃ µ̄2Ūπ2k
2h̄− 2h̄

µ̄2

µ̄1 + µ̄2

∫ 2π

0

∆γ̄
dγ

dθ
sin(θ)dθ. (56)

The drop therefore remains stationary in the oncoming stream of speed Ū if

∫ 2π

0

∆γ̄
dγ

dθ
sin(θ)dθ = k2Ūπ(µ̄1 + µ̄2). (57)

Typical flow fields of a drop in a uniform flow counterbalanced by a localized surface

tension gradient are depicted in Figure 11. This flow field compares favourably with the

experimental streamlines observed by Baroud et al. (2007)2 and Verneuil et al. (2009)5

inside and outside the droplet. In these experiments, the flow along the interface was directed

towards the hot spot, indicating that the surface tension rises with temperature (note that

this anomalous Marangoni flow is associated with the depletion of surfactant molecules from

the water-oil interface as a result of the local heating5), thus opposing the oncoming external

flow. In doing so, the Marangoni flow significantly modifies the streamlines, entraining fluid

that was originally far from the drop into the hot region, as shown in Fig. 11. This leading-

order modification of the flow field can have a significant effect on the transport of solutes

in the outer flow, as well as the transport of surfactant molecules along the surface of the

drop, as long as the solutal Peclet number is non zero.

The case of a constant surface tension gradient holding a drop stationary is shown in

Figure 12. The addition of the Marangoni flow causes the outer streamlines to become

straight, giving the impression that the drop becomes “cloacking” to the flow in the far-

field.
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FIG. 11. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) for a drop held stationary

in a constant outer flow with localized surface tension gradient;w̄ = 0.4; µ1 = µ2 = 0.5.
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FIG. 12. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) for a drop held stationary

in an outer flow through a linear surface tension gradient; µ1 = µ2 = 0.5.

VIII. TRANSLATING DROPLETS

With these expressions at hand, it is tempting to apply them to moving droplets. Al-

though such an approach has been followed by Taylor and Saffmann (1959)20, Nadim et al.

(1996)10 and Bush (1997)12 among others, it hinges onto dynamic contact line issues for

wetting droplets and the presence of curved dynamic wetting films for non wetting droplets.

In this latter case, it is known since Bretherton (1961)21, Foster and Burgess (1990)22 and

Park and Homsy (1994)23 that viscous dissipation in the dynamic meniscus region induces a
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second source of drag on a moving drop, that scales like Fca ∼ γ̄R̄Ca2/3, where the capillary

number Ca is defined as Ca = µ̄2Ū∞

γ̄
. This scaling can be obtained by a Landau-Levich type

balance between capillary and viscous forces in the thin films that lubricate the drop motion.

The relative strength of Fca with respect to the forces that can be calculated by neglecting

the thins films FD ∼ h̄µ̄2Ūdπk
2 is given by Fca/FD ∼ Ca−1/3k, showing that, despite the

vanishing thickness of the capillary films, their contribution to the drag forces dominates at

low capillary numbers23.

This dynamic wetting film effect, associated to the curvature variations in the dynamic

meniscus regions, cannot be modelled in the present depth-averaged approach assuming

a frozen flattened circular cylindrical interface. Still, for the purpose of comparison with

previous findings10,12,20 and with these strong limitations in mind, we now turn to the case

of translating droplets.

Translating drop in a quiescent outer fluid

Let us first consider a translating drop at velocity −Ūd in a stationary outer fluid. Using

a similar method, it can be shown that the flow becomes

ψ(1) =

(

B′

(

I1(kr)

I1(k)
− r

)

− r

)

sin(θ), (58)

and

ψ(2) =

(

C ′

(

K1(kr)

K1(k)
− 1

r

)

+ ψpot

)

sin(θ), (59)

with ψpot = −1
r
and

B′ =

(−2µ2(kK1(k) + 2K0(k)) + (3µ2 + µ1)K0(k)

d1

)

I1(k), (60)

C ′ =

(

2µ1(−kI1(k) + 2I2(k))− (3µ2 + µ1)I2(k)

d1

)

K1(k), (61)

as detailed in appendix C. Typical flow fields in the reference frame of the laboratory are

depicted in Figure 13.

Since ∂upot
r

∂θ

∣

∣

∣

r=1
= sin θ, ψ(1)

∣

∣

r=1
= − sin(θ), upotθ

∣

∣

r=1
= − sin(θ) and

∂2upot

θ

∂r2

∣

∣

∣

r=1
=

−6 sin(θ), inserting Eqs.(58) and (59) into the general expression for the force (38) yields

Fd = µ2hπ(2C
′k2 + k2) + hk2πµ1, (62)
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FIG. 13. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) for a drop translating

downwards, shown in the reference frame of the laboratory; µ1 = µ2 = 0.5. The arrow shows the

direction of the net force due to the drag force.

which gives, using C ′ = 2µ1

k
+

3−7µ1+6µ2
1

k2
+O

(

1
k3

)

,

Fd ≃ πhµ2k
2

(

1 +
4µ1

k
+

6− 14µ1 + 12µ2
1

k2

)

+ πhµ1k
2. (63)

This expression, once made dimensional, becomes

F̄d = h̄µ̄2Ūdπk
2 + h̄µ̄1Ūdπk

2 + h̄
4µ̄2µ̄1

µ̄1 + µ̄2
Ūdπk +O(1). (64)

It may be compared at leading order to expression (32) of Nadim et al. (1996)10. The first

two terms correspond exactly to their findings while the third one, though of the correct order

of magnitude reveals a discrepancy in the prefactor, since ours is
√
12/1.842 ≈ 1.9 larger.

Similarly to the pure Marangoni flow described in section VI, the Brinkman model takes

into account the pressure correction caused by imposition of the depth-averaged tangential

velocity and stress continuities, which is neglected by Nadim et al. (1996)10.

Translating drop in a uniform flow

As a next application of the flow patterns and forces derived in this section, let us now

consider a moving drop at velocity Ūd in an outer stream of velocity Ū∞. Linear superposition

of Eqs. (55) and (63) yields

F̄ ≃
(

2µ̄2Ū∞ − (µ̄1 + µ̄2)Ūd

)

πk2h̄. (65)
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In the case of a gas bubble (µ̄1 ≪ µ̄2), the dynamical equilibrium is reached when

Ūd = 2Ū∞, (66)

recovering the famous result of Taylor and Saffman (1959)20 in a dynamical setting, while

its initial derivation fifty years ago was entirely based on kinematic arguments.

Marangoni-driven self-propelled drop in a quiescent outer fluid

The next application considered is that of a Marangoni-driven self-propelled drop either

is a constant surface tension gradient, a situation widely discussed in square and round

capillaries24,25, or in a more general surface tension distribution. Combining the drag force

(64)and the Marangoni driving force (45), one is led to

F̄ = h̄(µ̄2 + µ̄1)Ūπk
2 + 4h̄

µ̄2µ̄1

µ̄1 + µ̄2
Ūπk − 2h̄

µ̄2

µ̄1 + µ̄2

∫ 2π

0

dγ̄

dθ
sin(θ)dθ. (67)

The cancellation of the force gives the final velocity of the drop,

Ūd = − 2µ̄2

∫ 2π

0
γ̄ cos(θ)dθ

π (k2(µ̄1 + µ̄2)2 + 4kµ̄2µ̄1)
, (68)

to be compared with the prediction of Nadminet al. (1996)10

ŪNadim = − µ̄2

∫ 2π

0
γ̄ cos(θ)dθ

π
(

k2(µ̄1 + µ̄2)2 + 4kµ̄2µ̄1

√
12/1.842

) . (69)

The two differences with the expressions of Nadim et al. (1996)10 already found in

expressions (64) and (45) are combined in the resulting expression for the terminal velocity.

Typical streamlines of these compound flows are depicted in figures 14 and 15.

Marangoni retardation of buoyancy driven droplets

In the case of a gas bubble, µ̄1 = 0 and a constant retarding surface tension gradient,

equation (65) yields

F̄ = h̄µ̄2Ūπk
2 + 6h̄µ̄2Ūπ − 2h̄

∫ 2π

0

dγ̄

dθ
sin(θ)dθ, (70)

introducing the notation of Bush (1997)12 T = ∆γ̄
µ̄U

.

24



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y

x

H

L

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

FIG. 14. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) of a translating drop

propelled by a following localized Marangoni force; w̄=0.4; µ1 = µ2 = 0.5.
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FIG. 15. Typical streamfunction patterns for h = 0.1 (a) and h = 0.4 (b) of a translating drop

propelled by a constant surface tension gradient; µ1 = µ2 = 0.5.

F̄ = h̄µ̄2Ūπ
(

k2 + (6 + 2T )
)

. (71)

Balancing this drag force with a buoyancy force in an inclined Hele-Shaw cell yields the

terminal velocity

Ūd ≃
h̄2ḡ sin(α)

12µ̄2

(

1− (6 + 2T )/k2
)

(72)
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whereas Eq. (5.23) of Bush (1997)12 yields

ŪBush ≃
h̄2ḡ sin(α)

12µ̄2

(

1− (2 + T )/k2
)

. (73)

It should be noted that we obtain the same scalings as Bush (1997)12 by a completely different

method, with a different prefactor however. We may speculate that this discrepancy could

be related to the asymptotic expansions used by Bush (1997) for the domain integration of

the viscous dissipation around the bubble, whereas the present analysis makes use of the

exact Bessel functions.

IX. SUMMARY AND DISCUSSION

In summary, we have proposed a thorough analysis of Marangoni induced forces on drops

in a Hele-Shaw geometry. The decomposition of the flow field into Fourier modes provides a

standard method to solve for the streamfunction and the forces in a general context, as long

as the form of the surface tension profile is known. This analysis unifies the two approaches

of Nadim et al. (1996)10, Boos and Thess (1997)11 and Bush (1997)12 through a rigorous

approach analogous to the analysis of a spherical drop of Hadamard (1911)13 and Rybzynski

(1911)14.

Two characteristic cases were studied in detail: (i) that of a localized forcing which might

correspond to heating from a laser source or a local variation of surfactant concentration

and (ii) the more classical case of a constant temperature gradient. The extention of the

method presented here to any Marangoni stress is straight-forward.

With thermocapillary applications in mind, one may ask what typical temperature dis-

tribution is the most efficient to block a drop. Examination of equation (46) shows that for

the same maximum temperature difference ∆T , Fm scales like w implying that the strength

of the force increases with the width of the hot spot. For a fixed laser power P however,

assuming that the hot spot size w scales like the laser width, ∆T ∝ P
πw2 and the resulting

force is inversely proportional to the spot width. This suggests that a tighter laser focussing

leads to an increased blocking efficiency. This result is consistent with the measurements of

the dependence on beam waist discussed in Baroud et al (2007)3 and Verneuil et al. (2009)5.

For a typical microfluidic application, consider the case of a water drop of radius 150 µm

and height 50 µm, with a maximum surface tension difference of 25 mN/m. Using the
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viscosities of water (µ1 = 10−3 Pa.s) and hexadecane as the external fluid (µ2 ≃ 3×10−3 Pa.s)

and taking w = 50 µm, we may calculate the forces acting on the drop. The Marangoni

force due to a localized forcing may be evaluated from Eq. (46) as Fm ≃ 10−6 N, showing

that the characteristic forces are on the order of a micro-Newton. In the same conditions,

the drag force caused by a uniform stream at 1 cm/s may be evaluated from the dimensional

version of Eq.( 55) given at leading order by Fu = 24πUµ2
R2

h
to also be on the order of a

micro-Newton, indicating that the drop can be stopped under these conditions.

The equilibria calculated above all hinge on assuming a circular drop in an infinite

medium, which allows analytical solutions to be found. In practical situations however,

the actual shape of the drop will be governed by the presence of walls and shear flows and

these departures from circularity and confinement will alter the relative contributions of the

stress fields. In particular, Verneuil et al. (2009)5 measured the force acting on a drop si-

multaneously with the internal velocity field. The values of the interface velocity were found

to be insufficient to account for the magnitude of the net force, a result that was attributed

to the confinement within the microchannel, since the shear stress between the elongated

drops and the lateral walls was found to provide a source for the observed force magnitudes.

This experiment motivates the development of numerical methods for solving Brinkman’s

equations in complex geometries. As the value of the capillary number is increased further,

the drop shape will significantly depart from circularity and this will couple back to the flow

fields. Further refinement of the model will need to be made to account for these shape

variations.

As discussed in section VIII, further extensions of the model should take into account

finite capillary number effects when droplets are translating, including the significant cur-

vature imbalance between the advancing and receding menisci for non wetting droplets and

contact angle hysteresis for the wetting case.

Finally the transport of solutes can also be determined from the knowledge of flow fields.

In the case of active molecules such as surfactants, this transport will feed back on the

surface tension distribution. Future numerical solutions of these coupled problems will allow

quantitative predictions on microfluidic thermocapillary manipulations.

As a last word of caution, it should be mentioned that Lee et al. (2012)19 have re-

cently observed experimentally strong deviations from parabolic profiles in the vicinity of

the interface using a geometrical anchor holding the droplet in place26. Such a situation, in

27



which Brinkman equations are likely to become invalid, was observed to happen when the

Marangoni effect was pulling on the interface in the opposite direction as that of the carrier

flow, which fundamentally differs from the presently considered case where the surface ten-

sion gradient pushes the fluid in the direction of the external flow, as required by the zero

force balance.
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APPENDIX A: MARANGONI FLOW

Starting with streamfunctions of the form given in section 3.

ψ(2) =
∞
∑

n=1

cn

(

Kn(kr)

Kn(k)
− 1

rn

)

sin(nθ), (74)

ψ(1) =

∞
∑

n=1

bn

(

In(kr)

In(k)
− rn

)

sin(nθ), (75)

the tangential velocities are easily expressed

u
(2)
θ =

∞
∑

n=1

cn

(

−K
′
n(kr)

Kn(k)
− n

rn+1

)

sin(nθ), (76)

u
(2)
θ =

∞
∑

n=1

cn

(

k
Kn−1(kr)

Kn(k)
+
n

r

Kn(kr)

Kn(k)
− n

rn+1

)

sin(nθ), (77)

u
(1)
θ =

∞
∑

n=1

bn

(

−I
′
n(kr)

In(k)
+ nrn−1

)

sin(nθ) (78)

u
(1)
θ =

∞
∑

n=1

bn

(

−kIn+1(kr)

In(k)
− n

r

In(kr)

Kn(k)
+ nrn−1

)

sin(nθ) (79)

The radial velocities are

u(2)r =
∞
∑

n=1

cn

(

n

r

Kn(kr)

Kn(k)
− n

rn+1

)

cos(nθ), (80)

u(1)r =

∞
∑

n=1

bn
n

r

(

In(kr)

In(k)
− nrn−1

)

cos(nθ), (81)

retrieving the pressure

µ2

[

(

1

r

∂

∂r
r
∂

∂r
− 1

r2
+

1

r2
∂2

∂θ2
− k2

)

u
(2)
θ +

2

r2
∂u

(2)
r

∂θ

]

=
1

r

∂p̄(2)

∂θ
. (82)

µ2

[

(

1

r

∂

∂r
+

∂2

∂r2
− 1

r2
+

1

r2
∂2

∂θ2
− k2

)

u
(2)
θ +

2

r2
∂u

(2)
r

∂θ

]

=
1

r

∂p̄(2)

∂θ
. (83)

requires
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∂u
(2)
θ

∂r
=

∞
∑

n=1

cn

(

−k2Kn(kr)

Kn(k)
− k

r

Kn−1(kr)

Kn(k)
− n(n + 1)

r2
Kn(kr)

Kn(k)
+
n(n + 1)

rn+2

)

sin(nθ), (84)

∂2u
(2)
θ

∂r2
=

∞
∑

n=1

cn

(

k3
Kn−1(kr)

Kn(k)
+

(n+ 1)k2

r

Kn(kr)

Kn(k)
+

(n2 + 2)k

r2
Kn−1(kr)

Kn(k)
(85)

+
n(n+ 1)(n+ 2)

r3
Kn(kr)

Kn(k)
− n(n + 1)(n+ 2)

rn+3

)

sin(nθ),

∂u
(1)
θ

∂r
=

∞
∑

n=1

bn

(

−k2 In(kr)
In(k)

+
k

r

In+1(kr)

In(k)
− n(n− 1)

r2
In(kr)

In(k)
+ n(n− 1)rn−2

)

sin(nθ), (86)

∂2u
(1)
θ

∂r2
=

∞
∑

n=1

bn

(

−k3 In+1(kr)

In(k)
− (n− 1)k2

r

In(kr)

In(k)
− (n2 + 2)k

r2
In+1(kr)

In(k)
(87)

−n(n− 1)(n− 2)

r3
In(kr)

In(k)
+ n(n− 1)(n− 2)rn−3

)

sin(nθ),

and the associated shear stresses are given by

∂u
(2)
θ /r

∂r
=

∞
∑

n=1

cn

(

1

r

K ′
n(kr)

Kn(k)
+

n

rn+2
− K ′′

n(kr)

Kn(k)
+
n(n + 1)

rn+2

)

sin(nθ), (88)

∂u
(2)
θ /r

∂r
=

∞
∑

n=1

bn

(

1

r

I ′n(kr)

In(k)
− nrn−2 − I ′′n(kr)

In(k)
+ n(n− 1)rn−2

)

sin(nθ). (89)

Imposing the continuity of tangential velocity as well as the Marangoni shear stress

discontinuity yields as boundary conditions

bn

(

−I
′
n(k)

In(k)
+ n

)

= cn

(

−K
′
n(k)

Kn(k)
− n

)

, (90)

µ1bn

(

I ′n(k)

In(k)
− I ′′n(k)

In(k)
+ n(n− 2)

)

− µ̄2cn

(

K ′
n(k)

Kn(k)
− K ′′

n(k)

Kn(k)
+ n(n+ 2)

)

= an. (91)

Using the following Bessel relations

In(kr)
′ = kIn+1(kr) +

n

r
In(kr) (92)

Kn(kr)
′ = −kKn−1(kr)−

n

r
Kn(kr) (93)

In(kr)
′′ = k2In(kr)−

k

r
In+1(kr) +

n(n− 1)

r2
In(kr) (94)
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Kn(kr)
′′ = k2Kn(kr) +

k

r
Kn−1(kr) +

n(n + 1)

r2
Kn(kr) (95)

the 2× 2 linear system becomes





−kIn+1(k)/In(k) −kKn−1(k)/Kn(k)

µ̄1(
−k2In(k)+2kIn+1(k)

In(k)
) µ2(

k2Kn(k)+2kKn−1(k)
Kn

(k))









bn

cn



 =





0

an



 , (96)

or in synthetic form

Mn





bn

cn



 =





0

an



 . (97)

The solution of this system is then given by





bn

cn



 =





Kn−1(k)an
dn

− In+1(k)an
dn



 (98)

with

dn = −µ2In+1(k)
(

k2Kn(k) + 2kKn−1(k)
)

+ µ1Kn−1(k)
(

−k2In(k) + 2kIn+1(k)
)

. (99)

Now specifying to the case n = 1, all the necessary expressions required for the determi-

nation of the forces are obtained

u
(2)
θ =

c1
K1(k)

(

kK0(kr) +
K1(kr)

r
− K1(k)

r2

)

sin(θ), (100)

∂u
(2)
θ

∂r
= − c1

K1(k)

(

k2K1(kr) +
kK0(kr)

r
+

2K1(kr)

r2
− 2K1(k)

r3

)

sin(θ), (101)

∂2u
(2)
θ

∂r2
=

c1
K1(k)

(

k3K0(kr) +
2k2K1(kr)

r
+

3kK0(kr)

r2
+

6K1(kr)

r3
− 6

K1(k

r4

)

sin(θ). (102)

Their evaluation on the boundary yields

u
(2)
θ

∣

∣

∣

r=1
=
c1kK0(k)

K1(k)
sin(θ), (103)

∂u
(2)
θ

∂r

∣

∣

∣

∣

∣

r=1

= −c1(k
2K1(k) + kK0(k))

K1(k)
sin(θ), (104)

∂2u
(2)
θ

∂r2

∣

∣

∣

∣

∣

r=1

=
c1(k

3K0(k) + 2k2K1(k)) + 3kK0(k)

K1(k)
sin(θ). (105)
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APPENDIX B: STATIONARY DROP IN UNIFORM FLOW

As detailed in Section 5, the solutions satisfying the far field boundary condition and the

regularity condition on the axis are

ψ(1) =

(

Ar +B
I1(kr)

I1(k)

)

sin(θ) (106)

ψ(2) =

(

D/r + r + C
K1(kr)

K1(k)

)

sin(θ). (107)

The boundary condition ψ(1) = ψ(2) = 0 yields

A +B = 0;D + 1 + C = 0; (108)

The flow therefore appears as the sum of a Marangoni flow, similar to that studied in the

previous section, and a potential flow:

ψ(1) = B

(

I1(kr)

I1(k)
− r

)

sin(θ) (109)

ψ(2) =

(

C

(

K1(kr)

K1(k)
− 1

r

)

+ ψp

)

sin(θ) (110)

with

ψp = r − 1

r
. (111)

Since

upθ =

(

1 +
1

r2

)

sin(θ) and r
∂upθ/r

∂r
=

(

−1

r
− 3

r3

)

sin(θ), (112)

B and C are given by the two remaining boundary conditions, i.e. the continuity of tangential

velocity and tangential shear stress, by a linear system analogous to the one solved in the

preceding section (see appendix A) with a different R.H.S.,

M1





B

C



 =





−2

4µ2



 (113)

The solution of this system is

B =

(−2µ2(kK1(k) + 2K0(k)) + 4µ2K0(k)

d1

)

I1(k), (114)

C =

(

2µ1(−kI1(k) + 2I2(k))− 4µ2I2(k)

d1

)

K1(k). (115)
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APPENDIX C: TRANSLATING DROP

When a translating drop is considered as in section 6, one gets similarly

M1





B′

C ′



 =





−2

3µ2 + µ1



 (116)

The solution of this system is

B′ =

(−2µ2(kK1(k) + 2K0(k)) + (3µ2 + µ1)K0(k)

d1

)

I1(k), (117)

C ′ =

(

2µ1(−kI1(k) + 2I2(k))− (3µ2 + µ1)I2(k)

d1

)

K1(k). (118)
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