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Quasiperiodic drift flow in the Couette-Taylor
problem

by

P. Laure”), J. Menck!), and J. Scheurle 1

1. Introducti

The Couette-Taylor problem deals with the flow of an incompressible, viscous fluid between
two coaxial rotating cylinders. Depending on the angular velocities of the cylinders, different
flow patterns are observed in experiments. Mathematically, transitions between different
flow patterns can be described by instabilities and bifurcations of certain solutions of the
Navier-Stokes equations for this problem. In this paper we consider the counterrotating case,
i.e. the cylinders rotate in opposite directions. We describe a sequence of three successive
instabilities and corresponding bifurcations which occur in a certain parameter regime when
the Reynolds number is increased. The primary bifurcation is the classical bifurcation from
Couette flow to Gortler-Taylor vortex flow (cf. Taylor [1923]), the secondary one leads to
wavy vortex flow, and the tertiary one leads to what we call quasiperiodic drift flow. We
also indicate how this result is linked to related work on the Couette-Taylor problem and
give an outline of the method by which we have obtained it. A key step of our method is the
reduction of the Navier-Stokes equations to a system of ordinary differential equations. This
is achieved by invariant manifold theory and ideas from the theory of dynamical systems
with symmetry.

The plan of the paper is as follows. In section 2 we introduce the basic equations. In section 3
we discuss stability of the Couette flow. Section 4 is devoted to the reduction procedure.
Finally, in section 5 we analyse the reduced equation and state the main result.
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2. The basic equations and solutions

Let R; and Ry be the radii of the inner and outer cylinders, respectively, and denote their
angular velocities by €; and Q. According to the geometry of the experimental apparatus,
we choose cylindrical coordinates r, ©, z and denote the velocity field in the fluid by

V = (V;, Ve, V.)T and the pressure field by p. The superscript T' denotes the corresponding
column vector. Both are functions of the spatial coordinates and time ¢. Also, we introduce
the dimensionless parameters

_ . i o b .
(21) §) = ngﬂ,, n= R./HO, rj = 1"7], r = 1_1’
and
(2.2) R = %1

where R is the Reynolds number, d = Ry — R; is the width of the gap between the cylin-
ders, and v is the kinematic viscosity of the fluid. As usual, we impose non-slip boundary
conditions at the cylinder walls and assume 27 /a-periodicity of V and p in the axial direc-
tion (infinitely long cylinders). Here the wave number a will be fixed eventually. Then the
Navier-Stokes equations for V and p in dimensionless form read as follows:

av
E=AV—R(V-V)V—VP }(rISrSrz,OEIF{,zE]R)
VeV =0
(2.3) Vi=Ve=0 (r=r,r=rs)
Ve =10 nim=ipr)

VQ = Q/T]’ (T’=’f"2)
V and p are 2n/a—periodicin z and 27 — periodicin ©.

Here A is the Laplace operator, and V the nabla operator.

These equations are covariant with respect to the symmetry group I' = SO(2) x O(2), where
S0(2) acts by rotations R, : © + © + ¢ with angle ¢ € [0,2r) around the z-axis, and O(2)
acts by translations T, : z = z + a along the z-axis and through the flip S : 2 =+ —z (see
Golubitsky and Stewart [1986]).

One advantage of the symmetry is that one can describe the transitions between different
flow patterns by symmetry breaking bifurcations and characterize different solutions (V,p)
by their symmetry, or more precisely by the isotropy subgroup of V'

Yv = {yel|yV = V}.

There is a stationary solution, namely the Couette flow (COU), for which one has the explicit
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analytic expression

Vo = (0,V8,07, °=R j (V3(r)?/r)dr
(2.4)

i 3 pel) lngol S B1'3 g LG 1
V() =Ar+Blr A=iitay P T-wn-m

It has the symmetry of the full group I', i.e. ©gouy =T, and represents an azimuthal flow.
Another type of stationary solution which is going to play a role in the discussion below
is the Gortler-Taylor vortex flow (GTV). Its isotropy subgroup is Tgrv = SO(2) x Z,(S)
where Z,(S) is the subgroup of O(2) generated by the flip S. Consequently, this flow is not
invariant under the translations T,. Here flat flow cells form in the fluid. In contrast to

those flows, for the wavy vortex flow (WV) also the SO(2)-symmetry is broken. This flow
is time periodic and for fixed time invariant under Y wy = Z:(R,,S) only, i.e. under a
rotation R, followed by the flip S. Here wavy flow cells form in the fluid. Actually, the wavy
vortex solution is a rotating wave or relative equilibrium with respect to the group 50(2),

i.e. its trajectory in (V,p)-space is also a group orbit. The corresponding flow cells rotate
periodically around the axis of the cylinders. Since the translational symmetry is broken,
these solutions occur in families of conjugate trajectories which just differ by a translation
s (0

3. Stability of the Couette flow

Next we discuss stability of the Couette flow depending on the parameters R,Q and 1. To
this end we introduce relative variables U and ¢ via

(3.1) V=V4U p=p"+gq

and write the basic equations (2.3) as an evolution equation

(3.2) %% = LR,Y,nU + N(R.Q,q)(U) (U€H)

for U in a suitable Hilbert space H C [La((r1,72) X IR x R)]? of solenoidal vector fields which
are periodic in © and z. It is well known that this can be achieved using the Weyl projection
operator to eliminate the pressure field g (see Ladyshenskaya [1963], Iudovich [1965], Iooss
[1971], and Témam [1977]). Here L is a closed linear operator with dense domain of definition
D in H. The elements of D have zero trace at r = r; and r = ry. By || - ||[p we denote
the graph norm in D with respect to L. The resolvent of L is compact, i.e. L has pure
point spectrum, and L generates a holomorphic compact semigroup exp(Lt)izo in H. The
operator N : D — H is quadratic and continuous.
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There is a local existence and uniqueness theorem for the initial value problem corresponding
to (3.2):

Theorem. For all T' > 0, there exists a § such that (3.2) has an unique (classical) solution
U e C°([0,T], D) n C*((0,T], H) with U(0) = Us for all Uy € D with [1U]lp < é.

Hence, the evolution equation (3.2) generates a local semiflow S, in D). Moreover, it has
been shown, e.g. by Sattinger [1969/70] and Kirchgdssner and Kielhéfer [1973], that the
principle of linearized stability holds true for the trivial solution I/ = 0 which represents the

Couette flow. It says the following: if all eigenvalues of L have negative real parts, then
U = 0 is asymptotically stable with respect to the semiflow S; (in the sense of Liapunov).
If there is at least one eigenvalue of L with positive real part, then U/ = 0 is unstable. Note,
that here in Liapunov’s notion of stability the norm || - ||p is used to measure initial values
and the H-norm is used to measure U(t) for { > 0.

Using this principle, it is not difficult to prove that for sufficiently small values of R the
Couette flow is asymptotically stable. Indeed, in this case L is just a small perturbation of
the Laplace operator which is negative definite. Hence, all eigenvalues of L have negative
real parts. However, for all Q and 5, there exists a critical Reynolds number R, = R.(,7)
such that for R > R.(Q,7) the Couette flow is unstable. How many eigenvalues cross the
imaginary axis right at R = R. and how the corresponding eigenfunctions which we call
critical modes, look like depends on Q and 5. By definition of H, the general complex form
of the critical modes is

U = U(r)eitkaz+m®) (k,m € Z).

Numerically one finds a curve in the rectangle —1.2 < 0 < —0.4, 0.4 < 5 < 1.0, along
which critical modes with ¥ = 1 and two different azimuthal wave numbers m = 0 and
m = 1 occur simultaneously at R = R.({},7) (cf. Langford et al. [1988]). This is called a
bicritical instability of the Couette flow. We now fix a point (£, 7.) on this curve, choose «

appropriately, and consider (3.2) for n = 7. and (R, Q) near the corresponding critical point
Pe = (R:(Q,7.), Q) in the (R,Q)-plane. There L has a real eigenvalue u(R, ) and a pair
of complex conjugate eigenvalues y(R, ) +iw(R, ). All these eigenvalues have multiplicity
two. For R = R. and = ). they simultaneously sit on the imaginary axis. Hence,
the corresponding critical eigenspace E is six-dimensional. The other eigenvalues of L are
strictly bounded away from the imaginary axis for (R, ) near P..
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4. Reduction

Because of the above properties of L and N, one can use center manifold theory (see e.g.
Henry [1981]) to reduce (3.2) to a six-dimensional system of first order ordinary differential
equations for (R, () near P. and U € D near 0

(4.1) %%:X(R,ﬂ)(x) (z near 0 in IR,

where z is a vector of coordinates in the critical eigenspace E. The vector field

X = X(R,9,) is equivariant with respect to the symmetry group I, i.e. it commutes with a
certain representation of I' on E. This system fully describes all solutions of (3.2) which exist
and stay close to U = 0 (in the H-norm) for all ¢, including stability properties. It is obtained
by restricting (3.2) to a six-dimensional invariant manifold M C D, the center manifold,
which is represented as the graph of a smooth map ¥ = U(R,R,-). The latter is defined for
z near 0 in E and has values in the complementary eigenspace of L(R.,Qc,n.). The vector
field X and the map ¥ satisfy a so-called homological equation

(4.2) [id+ D¥X = L(- + ¥)+ N(-+¥)

which can be used to compute Taylor expansions for both X and ¥ at z = 0. This leads to
linear elliptic boundary value problems for the Taylor coefficients of W. The results in this
paper only depend on terms of order up through two of ¥ and up through three of X.

A further reduction can be achieved using the symmetry of X. For example, following
Menck [1991], one can devide out the center manifold M by the action of the subgroup
I'= SO(2-) % §' of T, which leads to the orbit space M. Here different points on the group
orbits of T are identified. Globally, this is not a manifold, rather it is an algebraic variety
with cone-like singularities. But corresponding to a certain region on M, where the group
orbits of I' are two-tori, M; has a stratum which is a four-dimensional manifold locally.
There the motion of (4.1) transverse to the group orbits of T' is described by a smooth

four-dimensional system

(4.3) i—f = Y(R,Q)(£) (¢ near 0 in IRY),
where £ is a vector of suitably choosen invariant coordinates &1,&2,&3 and 4. To describe
the relation between £ and the coordinates on the center manifold M we introduce complex

coordinates (; (j = 0,1,2) in E defined by
(4.4) z =Y (GV; +GW;),

where Vo = Uo(r)e™, Wo = SVo and Vi = Ui(r)ef@+),V, = SKh, W, = Vi, Wy = W,
denote critical modes corresponding to the zero eigenvalue and the pair of complex conjugate
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eigenvalues, respectively. Then we have

6l & = 3G + Ial?)
S1GE =161, & = Im(@ad).

&
&

(4.5)

It turns out, that the Z;-symmetry & — £, & — &, &3 — —&3 and & — —§&; still acts
nontrivially on this system. Hence, the restriction of (4.3) to the fixed point subspace
Fiz(Z;) = {¢€ € R*|&; = £ = 0} finally leads to a two-dimensional system for £, and &;.
Setting

(4.6)

this system has the form

Mo+ bbb + b6 +  hot.
(A=—o)la+ arbrile + sz% + h.o.t.

&
&
The coefficients depend on the parameters A and o. Note, that the terms which are quadratic

in (£1,€2) involve third order terms of the vector field X. This is a consequence of the fact
that the orbit space M. is globally nonlinear.

(4.7)
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5. Analysis of the reduced system

Numerical computations show that roughly speaking, we can think of A and o given by (4.6)
as being

(5.1) Ax R— R(Q,n:) and o=Q-0Q. (as (R,Q)— F).

To compute the relevant Taylor coefficients of X and ¥ from (4.2), we used a combination

of symbolic computations and a numerical boundary value problem solver (cf. Laure and
Demay [1988]).

Here is a table of results for X which we obtained for differnt values of 7. € [0.4,0.85],
a~3.6,R=R.and 2 =Q:

Iable

e <l Pi P % pl-m 4-¢ B b % a3

i 0

0.85 |[-7.918 -152.5 -109.5 -191.2 2.8 -88.2 -44.17 -182.5 -62.16 -117

0.825 | -18.43 -188.7 -118.8 -208.1 -6.5 -122.5 -46.96 -204.8 -68.44 -130.4
0.8 -30.04 -228.2 -129  -227.1 -16.5 -160.1  -50.02 -227.9 -74.47 -144.2
0.775 | -42.71 -270.9 -139.8 -248.2 -27.5 -201.4 -53.35 -252.2 -80.44 -158.5
0.75 |-57.01 -318.4 -152 -2724 -39.6 2474 -57.2 -271.7 -86.15 -173.4
0.725 | -72.83 -370.4 -165.3 -299.4 -52.6 -208.8 -61.4 -305.3 -91.92 -189.3
0.7 -90.89 -428.7 -180.4 -330.7 -67.1 -357.1 -66.35 -334.9 -97.5 -206.4
0.675|-111.4 -494 -197.3 -366.5 -83 -423.3 -T2 -367.6 -103.1 -224.9
0.65 |-134.8 -567.2 -216.3 -407.4 -100.5 -499.2 -78.5 -404 -109 -2454
0.625|-162.1 -651  -238.4 -455.6 -120.2 -587 -86.2 -444.7 -114.8 -268.1
0.6 .194.1 -747.2 -263.9 -512.1 -142.5 -689.1 -95.2 -491.2 -120.9 -294

0.575 | -232.2 -858.7 -293.8 -579.2 -168 -809.2 -105.9 -545 -127.4 -323.7
055 |-278.5 -989.9 -329.6 -660.5 -197.9 -951.9 -118.7 -608.2 -134.5 -358.6
0.525 | -335.6 -1146 -373.2 -760.5 -233.3 -1124 -134.1 -684.4 -142.5 -400.7
0.5 408.2 -1337 -427.8 -885.7 -276.9 -1334 -1529 -777.8 -151.9 -452.5
0.475 | -503.2 -1573 -498.6 -1047 -332.4 -1595 -176.4 -896.1 -163.6 -518.8
045 |-633 -1877 -594.8 -1260 -405.2 -1932 -206.4 -1053 -180.2 -608.1
0.425|-822 -2288 -735.6 -1557 -509.4 -2383 -246.9 -1272 -206.6 -736.7
0.4 1125 -2890 -965.9 -2001 -674.1 -3041 -306 -1610 -257.4 -942.5

This table refers to the following representation of X as a I'-equivariant vector-field (cf.
Golubitsky and Langford [1988]):
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€1 061G
X = (& 4i2%3) ( 0 ) +(S + i24ct) ( 0 )
0

0
0 0
(5.2) +(p' +1g") ( G ) +264(P’+i92)( G )
G2 =3

0 0
Hﬁﬂﬂ(ﬁ&) Hm#ﬁﬁ(cﬁ)
@G —(5G
Here ¢/, p?, ¢ (j = 1,2,3,4) denote functions of R, and the [-invariants &, &, €2, £3€4 and
s = Re(C2¢i1C2). A subscript 0 denotes the value of these functions for R = R.,Q = . and
all the other arguments equal to zero. A subscript 1 or 2 denotes the corresponding value of
the partial derivative with respect to £; and &;, respectively.

The correspondence between the values of the coefficients in (4.7) at A = ¢ = 0 and the
entries of the table is as follows:

(53) i o g i

a =pl-p} @ =p)
Therefore, the following inequalities are satisfied:

b1, by, by —a; < 0
(5.4) by—a;s0 for 7,049
d — ﬂQbQ = (I]_b]_ > 0

We now analyse (4.7) under these conditions. Neglecting the higher order terms and choosing
the values of the coefficients at A = & = 0, by simple algebraic computations one obtains the
following approximations. The curve given by A = 0 in the (A, o)-plane is a curve of primary
bifurcations of the trivial solution & = & = 0. This corresponds to the classical primary
instability of the Couette flow which has already been studied by Taylor [1923]. Early
rigorous treatments of this instability are in Iudovich [1965], Velte [1966], and Kirchgassner
and Sorger [1969]. The bifurcating Taylor vortex flow is represented by the equilibria

(5.5) &L= Ey-A/by, &£ =0 (A>0, B arbitrary)

of the truncated system (4.7). Furthermore, one finds the curve of secondary bifurcations
A = oby/(by — a1), along which another family of equilibria given by

(bl = azJ/\ = 610' = ((11 - bg)A + bga'

&L = d » &2 d

by — az b’l_al)

(5.6)
(z\ >0, p2A >0 > pA, where p = e Py =l
2

by
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branches off from the previous one. This corresponds to a curve of secondary instabilities
in the Couette-Taylor problem where the Taylor vortex flow looses stability to wavy vortex
flow. This happens actually through a Hopf bifurcation (see Davey, DiPrima and Stewart
(1968], Chossat and looss [1985], Golubitsky and Stewart [1986] and Golubitsky and Langford
[1988]). We point out, that the numerical value of py in (5.6) is positive for 0.4 < 7. < 0.475
and negative for 0.5 < 5. < 0.85 according to our computations. Also note, that the stability
of the approximate Couette and Gortler-Taylor vortex flows inside Fiz(Z») is consistent with
their actual stability. However, to really prove stability by the present method, one has to
take into account the full orbit space Mz Equation (4.3) is not adequate to do this in
case of the Couette and Gortler-Taylor vortex flows. Since those are 50(2)-symmetric, their
[-orbits in M are not two-tori. Menck [1992] uses an extended system to overcome this
difficulty.

To analyse the stability of the wavy vortex flow, we can use equation (4.3). Inside Fiz(Z2)
the corresponding equilibria (5.6) are asymptotically stable for all values of A and & for which
they exist. According to Menck [1991], their stability in Mz is therefore determined by the
eigenvalues of the 2 x 2 matrix

i ( —2p3éa + Poba — gt )

(5.7) ; WEaaek
9361 + 2(q8 — 3)&a cpla + 213

In points of Fiz(Z,) the matrix of the linearization of (4.3) block-diagonalizes in a (&1, &2)-
and a (£3,€&)-block. The matrix B is equivalent to the latter. If we evaluate B along the
branch of equilibria (5.6), then trace B(A, o) becomes a linear function of o and det B(A, )
becomes a quadratic function of o. According to our computations,

trace B(M o) =2p3& <0, det B(A,0)= &H[(R)? +(63)?] >0 for o=Ap
(5.8)
trace B(\, o) = &(cd —2p3) <0, det B(A,0)= 223 <0 for o= Ap.

Therefore, trace B(A,0) < 0 for all A and o as in (5.6) and the function det B(A,-) has a
unique simple zero o = ao(A) € (Api, Ap2) for all A > 0,

(5.9) det B(\, po(X)) = 0.

This implies that B(},a) has a simple zero eigenvalue and a negative real eigenvalue along
the curve o = ap(A) (A > 0) in the (A, o)-plane. Hence, along such a curve the equilibria of
(4.3) corresponding to (5.6) loose their stability through a bifurcation of still another family
of equilibria when either o is decreased or A is increased. Because of the Z;-symmetry, this is
actually a pitchfork bifurcation. Note, that the eigenvector belonging to the zero eigenvalue
is antisymmetric with respect to this symmetry. This follows from the block structure of
the corresponding matrix. Consequently, the bifurcating equilibria are not Z,-symmetric.
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We also mention, that oo(A) turns out to be positive for 0.4 < 5. < 0.55 and negative for
0.6 < 1. < 0.85.

A more careful analysis shows that this tertiary bifurcation is subcritical, and the bifurcating
equilibria are unstable near the bifurcation point. It is an interesting open question whether
the bifurcating solution branch turns to the right and attains stability somewhere away from
the bifurcation point. Correspondingly, in the Couette-Taylor problem there is a curve of
tertiary instabilities starting at the origin in the (A,o)-plane. There the wavy vortex flow
looses stability through a bifurcation of quasiperiodic drift solutions (QD). These do not
have any obvious spatial symmetry and, therefore, from a generic point of view they fill the
I-orbits, i.e. 2-tori, corresponding to the bifurcating equilibria of (4.3) densly. Actually,
they are quasiperiodic rotating waves with two frequencies. In a still photograph the corre-
sponding fluid flow almost looks like the wavy vortex flow. But the flow cells do not have

any spatial symmetry. As time increases, they do not only rotate in the azimuthal direction,
but also slowly drift in the axial direction of the cylinders.

We summarize our results in the following theorem.

Theorem. There is a parameter regime in the Couette-Taylor problem (2.3), in particular
0.4 <n <£0.55, a ~ 3.6, where the following sequence of successive bifurcations occurs when
the Reynolds number R is increased quasistatically:

COU ~— GTV = WV — @D.

At the primary and secondary bifurcations asymptotic stability (in the sense of Liapunov)
is exchanged to the bifurcating solutions. The tertiary bifurcation is a subcritical pitch-
fork bifurcation, through which the wavy vortex flow looses stability. Here the bifurcating
quasiperiodic drift flow is unstable close to the bifurcation point.

Remark. The quasiperiodic drift flow is not to be confused with the modulated wavy vortex
flow which usually is observed after the tertiary instability in the standard Couette-Taylor
experiment, where the outer cylinder is held fixed. That flow is also quasiperiodic, but still
has a spatial Z;-symmetry. In the parameter regime, which we have studied, there appear to
be no such solutions. As far as the identification of the quasiperiodic solutions as drift states
and a theoretical and numerical computation of the curve of bifurcation, the direction of
bifurcation and stability of that drift state is concerned, our theorem provides a supplement
to the general bifurcation picture for this parameter regime developed by Golubitsky and
Stewart [1986] and Golubitsky and Langford [1988] (see also Chossat and looss [1992]). For
an analysis of bifurcations to drift states in related contexts, cf. Chossat and Golubistky
[1988] and Golubitsky, Krupa and Lin [1991].
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