Collision Strategy for Direct Simulation of Moving Fibers

<u>P. LAURE²</u>, A. MEGALLY¹ and T. COUPEZ¹

(G. BEAUME, PhD student)

1 - Cemef, Ecole des Mines de Paris, Sophia-Antipolis, France

2 - INLN, UMR CNRS-Université de Nice, Sophia-Antipolis, France

Introduction (1)

Injection of thermoplastic

Injection of fiber-reinforced polymer

- use the same process as classical thermoplastic
- complex composite products with improved mechanical properties
- mechanical properties depend on fiber orientation

Introduction (2)

• Fiber orientation in flow motion

Shear flow

Elongational flow

Background & Motivations

Macroscopic modelling

■ Dilute suspension → Jeffery's equation [Jeffery 1922]

Newtonian fluid –slender body theory

p orientation vector

• Semi-concentrated suspension \rightarrow Folgar and Tucker's equation [Folgar 1984]

Population of fiber :
$$a_2 = \int_{p} \psi(p)p \otimes p \, dp = \frac{1}{N} \sum_{k=1}^{N} p_k \otimes p_k$$

$$\frac{Da_{=2}}{Dt} = \underline{\Omega}a_2 - \underline{a}_2 \underline{\Omega} + \lambda(\underline{\dot{\varepsilon}}a_2 + \underline{a}_2 \underline{\dot{\varepsilon}} - 2\underline{\dot{\varepsilon}} : \underline{a}_4) + 2C_I \overline{\dot{\varepsilon}}(I_d - 3\underline{a}_2)$$

$$I_d = \frac{1}{N} \sum_{k=1}^{N} p_k \otimes p_k$$
fiber-fiber interaction term

Objectives : Micromechanic modelling approach

Micromechanic approach \rightarrow Direct simulation

Simulate directly the motion of a dense population of fiber in a REV Particle interactions are given by a fluid-structure coupling

Gives macroscopic informations on tensor a₂ and rheological properties

Numerical Procedure

 Numerical approach similar to Glowinski & Joseph's modelling [Glowinski 1999] (Fictitious domain method for particulate flows)

Computation of Velocity field (1)

1) Characteristic function

$$1_{\Omega_{j}}(\mathbf{x},t) = \begin{cases} 1 & \mathbf{x} \in \Omega_{j} \\ 0 & \mathbf{x} \notin \Omega_{j} \end{cases}$$

j = fluid or solid (fibers)

2) Velocity field

 $\nabla \cdot \sigma = 0$

$$\int_{\Omega} 1_{\Omega_{f}} 2\eta \varepsilon(u) : \varepsilon(v) d\Omega + \int_{\Omega} 1_{\Omega_{s}} \mathbf{r} \varepsilon(u) : \varepsilon(v) d\Omega$$
$$- \int_{\Omega} p \nabla v d\Omega = 0$$
Penalization ~ 10³ η
 $\varepsilon(u) = 0$

$$\nabla \cdot \mathbf{u} = 0$$
 $- \int_{\Omega} q \nabla v d\Omega = 0$

7

Update fiber position and orientation (2)

Computation of Characteristic Function (3)

Voxelisation method

Single Fiber Motion in shear flow

Hydrodynamical Interactions

It is not necessary to have an explicit form (as in [Yamane 1994], [Fan 1998])

- drag forces
- lubrification forces (short range interactions)

The central particle moves due to hydrodynamical interactions

The period of rotation changes

Sphericals particles in Couette Flow

Many Fibers – Collision Strategy

Spheres – short-range hydr. forces (moderate concentration)

Lubrification theory: repulsion force exerted by j on $i \parallel n_{ij} = \frac{\overline{O_j O_i}}{||\overline{O_j O_i}||}$ $F_{ij} = -\frac{3}{2} \pi R^2 \eta \frac{(\mathbf{u}_i - \mathbf{u}_j) \cdot \mathbf{n}_{ij}}{||\overline{O_j O_i}|| - 2 R} \mathbf{n}_{ij}$ $F_{ij} \checkmark \text{ as } \mathbf{O_i} \longrightarrow \mathbf{O_j}$

- Modifies u_i and moves O_i in the n_{ij} direction
- Accurate computation needs a small region between two spheres

$$||\overrightarrow{O_jO_i}|| > 2 \ R + \alpha$$

depends on mesh

Spheres - Collisions (concentrated suspension)

Assumptions : <u>no fluid between spheres</u> same mass elastic choc, no friction

If P collision point :

$$\left(\mathbf{u}_i^+(P) - \mathbf{u}_j^+(P)\right)$$
. $\mathbf{n}_{ij} = -\left(\mathbf{u}_i^-(P) - \mathbf{u}_j^-(P)\right)$. \mathbf{n}_{ij}

Modifies center velocities

$$\mathbf{u}_i^+ = \mathbf{u}_i^- - \delta_u \mathbf{n}_{ij}$$
 $\mathbf{u}_j^+ = \mathbf{u}_j^- + \delta_u \mathbf{n}_{ij}$
 $\delta_u = \left[(\mathbf{u}_i^- - \mathbf{u}_j^-) \cdot \mathbf{n}_{ij} \right]$
 < 0

Spheres - algorithm

If $u_i \sim u_j \rightarrow$ the action of hydrodynamic forces and analogy with collision process by imposing at time $t + \Delta t$

$$\min_{i,j} (d_{ij}) \ge 0 \quad \text{with} \quad d_{ij} = ||\overrightarrow{O_j O_i}|| - 2 \ R - \alpha$$

compute the smallest D_i = min_j(d_ij)

```
if ( D_i < 0)
    delta_u = |D_i|/Delta_t/2
    u_i = u_i + delta_u n_ij
    u_j = u_j - delta_u n_ij
endif</pre>
```

```
end loop j
    compute D = min_i(D_i)
    end loop i
    D = min_ij (d_ij)
end while
```


Examples with Spheres (1)

$$\begin{split} NE &= 58\ 000\ ,\ \ \Delta t = .05\ ,\ \gamma = 1 \\ Size &= 1.5\ x\ 1,\ R = .075,\ \ \varphi = 50\ \%\ , \end{split}$$

t = 30

Examples with Spheres (3)

No collision strategy

 $\alpha = .02$

Cylindrical Fibers ?

Conditions : $h_{ij} > 2R + \alpha$ if $l_{ij}, l_{ji} < L_f/2$

Examples with fibers

No collision strategy

Conclusions

We have developed a micromechanical modelling approach

- compute directly the motion of a dense population of fibers

- Model the exact particle interaction by using a multi-domain approach and collision strategy.

In Progress studies of macroscopic properties :

Influence of security zone α

***** Computation of coefficient interaction (C_i)

- Check closure approximations
- $\boldsymbol{\diamondsuit}$ Rheology of suspension ($\boldsymbol{\eta}$ and stress tensor)