Finite difference/Finite volume

Maximum principle (Discrete) and stability of the Finite difference scheme.

 1D Poisson Equation$$
-\frac{\partial^{2} \omega}{\partial \boldsymbol{x}^{2}}=f(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in(0,1), \text { with } \omega(0)=\omega(1)=0
$$

Then we consider the numerical scheme defined as

$$
\begin{align*}
+\frac{2+c_{1}}{\delta \boldsymbol{x}^{2}} w_{1} & -\frac{1}{\delta \boldsymbol{x}^{2}} w_{2}
\end{align*}=\beta_{1} f_{1} .
$$

where $\delta \boldsymbol{x}>0, c_{1} \geq 0, c_{N} \geq 0, \beta_{1}$ and β_{N} are given parameters of the scheme and $f_{i}=f\left(\boldsymbol{x}_{i}\right)$ with $0<\boldsymbol{x}_{i}<1$ are given for $i=1, \cdot, N$. Let use

$$
\boldsymbol{w}_{h}=\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{i} \\
\vdots \\
w_{N}
\end{array}\right) \quad \text { and } \quad \boldsymbol{b}_{h}=\left(\begin{array}{c}
\beta_{1} f_{1} \\
\vdots \\
f_{i} \\
\vdots \\
\beta_{N} f_{N}
\end{array}\right)
$$

1. Reforlumate the numerical scheme under the form $\underline{\boldsymbol{A}}_{h} \boldsymbol{w}_{h}=\boldsymbol{b}_{h}$ where $\underline{\boldsymbol{A}}_{h}=\underline{\boldsymbol{A}}_{h}^{\star}+\operatorname{Diag}\left(\frac{c_{1}}{\delta \boldsymbol{x}^{2}}, 0, \cdots, 0, \frac{c_{N}}{\delta \boldsymbol{x}^{2}}\right)$ is a matrix (to be defined) with a banded structure.
2. Verify that \underline{A}_{h} is symetric and positive defined (SPD) :

$$
\boldsymbol{v} \cdot \underline{A}_{h} \boldsymbol{v} \geq 0 \quad \forall \boldsymbol{v} \quad \text { and } \quad \boldsymbol{v} \cdot \underline{\boldsymbol{A}}_{h} \boldsymbol{v}=0 \Leftrightarrow \boldsymbol{v}=0
$$

3. For any positive vector $\boldsymbol{b} \geq 0$ and $\boldsymbol{b} \neq 0$, verify that the vector \boldsymbol{v}_{b} defined by $\boldsymbol{A}_{h} \boldsymbol{v}_{b}=\boldsymbol{b}$ is such as $\boldsymbol{v}_{b} \neq 0$.
4. Define by p the minimun index where components of \boldsymbol{v}_{b} are minimal. Verify that either $p=1$ or $p=N$ and in any case $\boldsymbol{v}_{b} \geq 0$.
5. Appling the previous result for canonical basis $\boldsymbol{v}_{b}=\boldsymbol{e}_{i}: i=1, \cdots, N$ find that $\underline{\boldsymbol{A}}_{h}$ is a monotone matrix (invertible and $\underline{\boldsymbol{A}}_{h}^{-1}$ is positive : $\left(\underline{\boldsymbol{A}}_{h}^{-1}\right)_{i j} \geq 0$).
6. Verify that $\left(\underline{\boldsymbol{A}}_{h}^{\star}\right)^{-1}-\left(\underline{\boldsymbol{A}}_{h}\right)^{-1}=\left(\underline{\boldsymbol{A}}_{h}\right)^{-1}\left(\underline{\boldsymbol{A}}_{h}-\underline{\boldsymbol{A}}_{h}^{\star}\right)\left(\underline{\boldsymbol{A}}_{h}^{\star}\right)^{-1}$ so that $\left(\underline{\boldsymbol{A}}_{h}^{\star}\right)^{-1}-\left(\underline{\boldsymbol{A}}_{h}\right)^{-1}$ is a positive matrix and therefore $\left(\underline{\boldsymbol{A}}_{h}\right)^{-1} \leq\left(\underline{\boldsymbol{A}}_{h}^{\star}\right)^{-1}$ and

$$
\left\|\underline{\boldsymbol{A}}_{h}^{-1}\right\|_{\infty}=\max _{i=1}^{N}\left(\sum_{j=1}^{N}\left|\left(\underline{\boldsymbol{A}}_{h}^{-1}\right)_{i j}\right|\right)=\max _{i=1}^{N}\left(\sum_{j=1}^{N}\left(\underline{\boldsymbol{A}}_{h}^{-1}\right)_{i j}\right) \leq\left\|\left(\underline{\boldsymbol{A}}_{h}^{\star}\right)^{-1}\right\|_{\infty}
$$

7. Verify that $\underline{\boldsymbol{A}}_{h}^{\star} \boldsymbol{v}=\mathbf{1}$ for $\boldsymbol{v}_{i}=T(i \delta \boldsymbol{x})$ with $T(\boldsymbol{x})=\frac{\boldsymbol{x}(1-\boldsymbol{x})}{2}$ and conclude that

$$
\left\|\left(\underline{\boldsymbol{A}}_{h}^{\star}\right)^{-1}\right\|_{\infty}=\operatorname{miax}_{i=1}^{N} \boldsymbol{v}_{i} \leq \frac{1}{8}, \quad \text { therefore } \quad\left\|\left(\underline{\boldsymbol{A}}_{h}\right)^{-1}\right\|_{\infty} \leq \frac{1}{8}
$$

