
FINITE DIFFERENCE/FINITE VOLUME

Maximum principle (Discrete) and stability of the Finite difference scheme.

1D Poisson Equation
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where δxxx > 0, c1 ≥ 0, cN ≥ 0, β1 and βN are given parameters of the scheme and fi = f (xxxi) with
0 < xxxi < 1 are given for i = 1, ·, N . Let use
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1. Reforlumate the numerical scheme under the formAAAhwwwh = bbbh

whereAAAh = AAA?h+Diag
(
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)
is a matrix (to be defined) with a banded structure.

2. Verify thatAAAh is symetric and positive defined (SPD) :

vvv ·AAAhvvv ≥ 0 ∀vvv and vvv ·AAAhvvv = 0⇔ vvv = 0

3. For any positive vector bbb ≥ 0 and bbb 6= 0, verify that the vector vvvb defined byAAAhvvvb = bbb is such
as vvvb 6= 0.

4. Define by p the minimun index where components of vvvb are minimal. Verify that either p = 1
or p = N and in any case vvvb ≥ 0.

5. Appling the previous result for canonical basis vvvb = eeei : i = 1, · · · , N find that AAAh is a
monotone matrix (invertible andAAA−1h is positive :
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7. Verify thatAAA?hvvv = 111 for vvvi = T (iδxxx) with T (xxx) = xxx(1−xxx)
2

and conclude that∥∥∥(AAA?h)−1∥∥∥∞ =
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, therefore
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