Lectures Références

Roger Peyret (NICE ESSI : 89),
Tim Warburton (Boston MIT : 03-05), Pierre Charrier (Bordeaux Matmeca 96-08)

Numerical Methods for PDE: Finite Differences and Finites Volumes

B. Nkonga
JAD/INRIA
2009

(1) Finite Difference(FD) and Finite volume(FV) : Overview
(2) Modelization and Simplified models of PDE.
(3) Scalar Advection-Diffusion Eqation.
(4) Approximation of a Scalar 1D ODE.
(5) FD for 1D scalar poisson equation (elliptic).
(6) FD for 1D scalar difusion equation (parabolic).
(7) FD for 1D scalar advection-diffusion equation.

8 Scalar Nonlinear Conservation law: 1D (hyperbolic).
(9) FV for scalar nonlinear Conservation law : 1D
(10) Multi-Dimensional extensions

Plan

(1) Finite Difference(FD) and Finite volume(FV): Overview
(2) Modelization and Simplified models of PDE.
(3) Scalar Advection-Diffusion Eqation.
a Approximation of a Scalar 1D ODE
(5) FD for 1D scalar poisson equation (elliptic).
(6) FD for 1D scalar difusion equation (parabolic).
(7) FD for 1D scalar advection-diffusion equation.
8. Scalar Nonlinear Conservation law: 1D (hyperbolic).
(9) FV for scalar nonlinear Conservation law : 1D
(70) Multi-Dimensional extensions

Plan

(1) Finite Difference(FD) and Finite volume(FV) : Overview
(2) Modelization and Simplified models of PDE.
(3) Scalar Advection-Diffusion Eqation.
(4) Approximation of a Scalar 1D ODE.
(5) FD for 10 scalar poisson equation (elliptic).
(6) FD for 1D scalar difusion equation (parabolic).
(7) FD for 1D scalar advection-diffusion equation.
8. Scalar Nonlinear Conservation law: 1D (hyperbolic).
(9) FV for scalar nonlinear Conservation law : 1D
(10) Multi-Dimensional extensions

Plan

(1) Finite Difference(FD) and Finite volume(FV) : Overview
(2) Modelization and Simplified models of PDE
(3) Scalar Advection-Diffusion Eqation.
(4) Approximation of a Scalar 1D ODE.
(5) FD for 1D scalar poisson equation (elliptic).
6. FD for 1 D scalar difusion equation (narabolic)
(7) FD for 1D scalar advection-diffusion equation.
(8) Scalar Nonlinear Conservation law : 1D (hyperbolic).
(2) FV/ for scalar nonlinear Conservation law: 10
(10) Multi-Dimensional extensions

Plan

(1) Finite Difference(FD) and Finite volume(FV) : Overview
(2) Modelization and Simplified models of PDE
(3) Scalar Advection-Diffusion Eqation.
(4) Approximation of a Scalar 1D ODE.
(5) FD for 1D scalar poisson equation (elliptic).

6 FD for 1D scalar difusion equation (parabolic).
(2) FD for 1 D scalar advection-diffusion equation.
8. Scalar Nonlinear Conservation law: 1D (hyperbolic).
(9) FV for scalar nonlinear Conservation law : 1D
(3) Multi-Dimensional extensions

Solution of a periodic Advection-Diffusion Equation.

Is defined by the Solution of the linear ODE:

$$
\left\{\begin{array}{c}
\frac{d A_{m}}{d t}=\mu_{m} A_{m} \\
A_{m}(0)=A\left(\omega_{m}\right)
\end{array} \Longrightarrow A_{m}(t)=A\left(\omega_{m}\right) \exp \left(\mu_{m} t\right)\right.
$$

- When $\mathcal{R} e\left(\mu_{m}\right)<0$ the solution decays exponentially fast in time. Rate is determined by the magnitude of $\mathcal{R} e\left(\mu_{m}\right)$.
- When $\mathcal{R} e\left(\mu_{m}\right)>0$ the solution grows exponentially fast in time. Rate is determined by the magnitude of $\mathcal{R} e\left(\mu_{m}\right)$.
- When $\mathcal{I} m\left(\mu_{m}\right) \neq 0$ the solution oscillates in time. The larger $\mathcal{I} m\left(\mu_{m}\right)$ is, the faster the solution oscillates in time.

Numerical Approximation of an ODE

$$
\begin{aligned}
\frac{d A}{d t} & =\mathcal{F}(A) \quad \text { with } \quad A(0)=A_{0} \\
& \Longrightarrow A(t+\delta t)=\mathcal{L}(A(t))
\end{aligned}
$$

Question : Can we solve this equation numerically such as to recover the different behavior, described in the previous slide, when \mathcal{F} is linear?
Answer: YES, by using a recurrence relation which approximates $A\left(t^{n}+\delta t\right)$ as a function of the previous discrete times $t^{n}, \ldots, t^{n-k}, \ldots, t^{0}=0$. Example of a one step scheme,
"Euler Forward ": $\quad \tilde{A}\left(t^{n}+\delta t\right)=\tilde{\mathcal{L}}(\tilde{A})=\tilde{A}\left(t^{n}\right)+\delta t \mathcal{F}\left(\tilde{A}\left(t^{n}\right)\right)$
But we have to take care of :
Consistency, Stability, Accuracy, Convergence.

Numerical Approximation of an ODE

- Consistency and Accuracy : what is the local discretization error (or local truncation error $\mathcal{E}=\mathcal{L}(A)-\tilde{\mathcal{L}}(A)$) for the discrete formula when we substitute the exact solution?
- For any smooth function ϑ is $\|\tilde{\mathcal{L}}(\vartheta)-\mathcal{L}(\vartheta)\|=O\left(\delta t^{1+\alpha}\right)$ with $\alpha>0$?
- Stability: Does the numerical solution behave in the same way as the exact solution? Is \tilde{A} bounded in a similar way to A ? Discrete operator does not amplify "noise" ?
- Accuracy: How close to the exact solution is the numerical solution? Can we choose δt small enough for the error to be below some threshold?
- Convergence : As we decrease the time step δt, does the end iterate converge to the solution at a given time $t=t_{*}>0$. $\|\tilde{A}-A\|=\|e\|=O\left(\delta t^{\beta}\right)$

Euler-Forward : Stability for $\mathcal{F}(A)=\mu A$

We consider the case of constant time step δt and denote $\tilde{A}^{n}=\tilde{A}(n \delta t):$
"Euler Forward ": $\quad \tilde{A}^{n+1}=\tilde{A}^{n}+\delta t \mathcal{F}\left(\tilde{A}^{n}\right)=(1+\mu \delta t) \tilde{A}^{n}$

For a given $\tilde{A}^{0}=A(0)$, Euler-Forward scheme gives :

$$
\tilde{A}^{n+1}=(1+\mu \delta t)^{n+1} A(0)
$$

- When $\mathcal{R} e\left(\mu_{m}\right) \leq 0$ the exact solution $A(t)=A(0) e^{\mu t}$ can decays exponentially fast in time. And $|A| \leq|A(0)|$.

Does this property satisfy by the Euler-Forward scheme?
$\left|\tilde{A}^{n+1}\right| \leq|A(0)| \quad \forall n$

Euler-Forward : Stability Region (yellow) for $\mathcal{F}(A)=\mu A$

For a given $\tilde{A}^{0}=A(0)$, Euler-Forward scheme gives :

$$
\tilde{A}^{n+1}=(1+\mu \delta t)^{n+1} A(0)
$$

$$
\left|\tilde{A}^{n+1}\right| \leq|A(0)| \quad \forall n \Longleftrightarrow|1+\mu \delta t|<1
$$

The region of the complex plane which satisfies this condition is the interior of the unit circle centered at $(-1,0)$

Euler-Forward scheme applied to the Fourier transform of

 the advection equation : always UnstableAdvection equation for the periodic interval has $\mu=\imath \omega c$ which is purely imaginary and

$\|1+\imath \omega c \delta t\|>1 \quad \forall \delta t>0 \quad$ if $\omega \neq 0, \quad c \neq 0$	
$\mu \delta t=\imath \delta t c \omega$	$\mathcal{I m}(\mu \delta t)$
$(-1,0)$	$\operatorname{Re}(\mu \delta t)$

Euler-Forward scheme applied to the Fourier transform of

 the advection-diffusion equation : stable under conditionAdvection-diffusion equation for the periodic interval has $\mu=\imath \omega c-\lambda \omega^{2}=-\lambda \omega^{2}\left(1-\imath \frac{c}{\lambda \omega}\right)$. Then for given ω, c and λ

$$
\left(1-\lambda \omega^{2} \delta t\right)^{2}+(\omega c \delta t)^{2} \leq 1 \Longleftrightarrow \delta t \omega^{2}\left(\delta t c^{2}+\delta t \lambda^{2} \omega^{2}-2 \lambda\right) \leq 0
$$

The stability is obtain when $\quad \delta t \leq \frac{2 \lambda}{c_{c}^{2}+\lambda^{2} \omega^{2}}$
$\mu \delta t=-\delta t \lambda \omega^{2}\left(1-\frac{\imath c}{\lambda \omega}\right)$
$\operatorname{Im}(\mu \delta t)$
$\frac{c}{\lambda \omega} \ll 1$
$(-1,0)$

Can we find schemes with better properties?

Integrating the ODE on the time interval $\left[t^{n}, t^{n}+\delta t\right)$

$$
\tilde{A}\left(t^{n}+\delta t\right)=\tilde{A}\left(t^{n}\right)+\int_{t^{n}}^{t^{n}+\delta t} \mathcal{F}(\tilde{A}(t)) d t
$$

- "Euler Forward " Explicit: $\mathcal{F}(\tilde{A}(t)) \simeq \mathcal{F}\left(\tilde{A}^{n}\right)$
- "Euler Backward " Implicit: $\mathcal{F}(\tilde{A}(t)) \simeq \mathcal{F}\left(\tilde{A}^{n+1}\right)$
- Semi-Implicit scheme :

$$
\mathcal{F}(\tilde{A}(t))=\simeq \theta \mathcal{F}\left(\tilde{A}^{n}\right)+(1-\theta) \mathcal{F}\left(\tilde{A}^{n+1}\right)
$$

- Adams-Bashford scheme : (linear approximation of \mathcal{F})

$$
\mathcal{F}(\tilde{A}) \simeq \mathcal{F}\left(\tilde{A}^{n}\right)+\frac{t-t^{n}}{\delta t}\left(\mathcal{F}\left(\tilde{A}^{n}\right)-\mathcal{F}\left(\tilde{A}^{n-1}\right)\right)
$$

Then

$$
\int_{t^{n}}^{t^{n}+\delta t} \mathcal{F}(\tilde{A}(t)) d t \simeq \delta t\left(\frac{3}{2} \mathcal{F}\left(\tilde{A}^{n}\right)-\frac{1}{2} \mathcal{F}\left(\tilde{A}^{n-1}\right)\right)
$$

Euler-Backward scheme applied to the Fourier transform of

 the advection equation : always stable$$
\tilde{A}^{n+1}-\delta t \mathcal{F}\left(\tilde{A}^{n+1}\right)=\tilde{A}^{n} \Longrightarrow \tilde{A}^{n+1}=\frac{1}{1-\mu \delta t} \tilde{A}^{n}
$$

Advection equation for the periodic interval has $\mu=\imath \omega c$ which is purely imaginary and

$$
\left|\frac{1}{1-\mu \delta t}\right|<1 \quad \forall \delta t>0 \quad \text { if } \omega \neq 0, \quad c \neq 0
$$

What about the accuracy of this scheme?

Stability of the Adams-Bashford scheme $\mathcal{F}(A)=\mu A$

$$
\left\{\begin{array}{c}
\tilde{A}^{n+1}-\left(1+\frac{3 \mu \delta t}{2}\right) \tilde{A}^{n}+\frac{\mu \delta t}{2} \tilde{A}^{n-1}=0 \\
\tilde{A}^{0}=A(0), \quad \tilde{A}^{-1}=A(-\delta t)
\end{array}\right.
$$

Let us defined $\mathcal{V}^{n+1}=\binom{\tilde{A}^{n+1}}{\tilde{A}^{n}}$ and $\mathcal{V}_{0}=\binom{A(0)}{A(-\delta t)}$. Then

$$
\left\{\begin{array}{c}
\mathcal{V}^{n+1}=\mathcal{M}^{n} \\
\mathcal{V}^{0}=\mathcal{V}_{0}
\end{array} \quad \text { where } \quad \mathcal{M}=\left(\begin{array}{cc}
1+\frac{3 \mu \delta t}{2} & -\frac{\mu \delta t}{2} \\
1 & 0
\end{array}\right)\right.
$$

Von Neumann Stability

The scheme is VN stable if \mathcal{M} is diagonalizable and

$$
\mathcal{P}(z)=\operatorname{det}(\mathcal{M}-z I d)=z^{2}-\left(1+\frac{3 \mu \delta t}{2}\right) z+\frac{\mu \delta t}{2}
$$

have all roots (r_{ℓ}) satisfying $\left|r_{\ell}\right| \leq 1$.

Miller Theorem

Let us consider a polynomial $\mathcal{P}(z)=\sum_{\ell=0}^{n} \alpha_{\ell} z^{\ell}$ where $\alpha_{\ell} \in \mathbb{C}$, $\alpha_{0} \neq 0$ and $\alpha_{\ell_{n}} \neq 0$. The we define the conjugate polynomial $\tilde{\mathcal{P}}(z)$ and the reduce polynomial $\mathcal{R}(z)$ (of degree $\leq n-1$) as :

$$
\tilde{\mathcal{P}}(z)=\sum_{\ell=0}^{n} \bar{\alpha}_{n-\ell} z^{\ell}, \quad \mathcal{R}(z)=\frac{1}{z}[\mathcal{P}(z) \tilde{\mathcal{P}}(0)-\mathcal{P}(0) \tilde{\mathcal{P}}(z)]
$$

Definition A Von Neumann polynomial is a polynomial that all roots (r_{ℓ}) are such as $\left|r_{\ell}\right| \leq 1$.

Theorem

$\mathcal{P}(z)$ is a Von Neumann polynomial If and only If one of this tow point is satisfied :

- $|\tilde{\mathcal{P}}(0)|>|\mathcal{P}(0)|$ and $\mathcal{R}(z)$ is a Von Neumann polynomial.
- $\mathcal{R}(z) \equiv 0$ and $\frac{d \mathcal{P}}{d z}$ is a Von Neumann polynomial.

Miller Th. for $\mathcal{P}(z)=z^{2}-(1+3 \nu) z+\nu$ with $\nu=\frac{\mu \delta t}{2}$

$$
\begin{gathered}
\tilde{\mathcal{P}}(z)=\bar{\nu} z^{2}-(1+3 \bar{\nu}) z+1 \\
\mathcal{R}(z)=\frac{1}{z}(\mathcal{P}(z)-\nu \tilde{\mathcal{P}}(z))=z-(1+3 \nu)-|\nu|^{2} z+\nu(1+3 \bar{\nu}) \\
=\left(1-|\nu|^{2}\right) z-1+3|\nu|^{2}-2 \nu
\end{gathered}
$$

When ν is imaginary (advection case), the root of \mathcal{R} satisfy

$$
|r|^{2}=\frac{\left(1-3|\nu|^{2}\right)^{2}+4|\nu|^{2}}{\left(1-|\nu|^{2}\right)^{2}}=\frac{\left(1-|\nu|^{2}\right)^{2}+8|\nu|^{4}}{\left(1-|\nu|^{2}\right)^{2}} \geq 1
$$

- $|\tilde{\mathcal{P}}(0)|>|\mathcal{P}(0)|$ if $\frac{|\mu| \delta t}{2}<1$. But \mathcal{R} is not a VN polynomial.

The tow levels Adams-Bashford scheme, applied to the Fourier transform of the advection equation, is not VN stable. Exercise : Obtain the same result by computing the eigenvalues of \mathcal{M}.

Some definitions

Let consider a scheme defined by the following operator

$$
\tilde{A}(t+\delta t)=\tilde{\mathcal{L}}(\tilde{A}(t))=\sum_{\ell=0}^{\ell_{\text {max }}} \alpha_{\ell} \tilde{A}^{n-\ell}+\sum_{\ell=0}^{\ell_{\max }} \beta_{\ell} \mathcal{F}\left(\tilde{A}^{n-\ell}\right)
$$

- Truncation error:

$$
\mathcal{E}(t+\delta t)=\frac{\mathcal{L}(A)-\tilde{\mathcal{L}}(A)}{\delta t}=\frac{A(t+\delta t)-\tilde{\mathcal{L}}(A(t))}{\delta t}
$$

- Local error :

$$
e(t+\delta t)=A(t+\delta t)-\tilde{A}(t+\delta t)
$$

- Consistency and Accuracy: A scheme is consistent of p 'th order accurate (with $p>0$) if

$$
\|\mathcal{E}(t+\delta t)\|=O\left(\delta t^{p}\right)
$$

Some definitions

$$
e(t+\delta t)=A(t+\delta t)-\tilde{A}(t+\delta t)=\tilde{\mathcal{L}}(A(t))-\tilde{\mathcal{L}}(\tilde{A}(t))+\delta t \mathcal{E}(t+\delta t)
$$

If $\tilde{\mathcal{L}}$ is linear then $e(t+\delta t)=\tilde{\mathcal{L}}(e(t))+\delta t \mathcal{E}(t+\delta t)$ and

$$
e^{n+1}=\tilde{\mathcal{L}}^{n+1}\left(e^{0}\right)+\delta t \sum_{p=1}^{n+1} \tilde{\mathcal{L}}^{n+1-p}\left(\mathcal{E}^{(p)}\right)
$$

- Linear stability: A scheme is linear-stable for the norm \|. || if for any time $t_{*}, \forall \delta t$ and for $n \delta t \leq t_{*}, \exists C>0$ such as

$$
\left\|\tilde{\mathcal{L}}^{n}\right\| \leq C
$$

For example the linear stability is achived when $\|\tilde{\mathcal{L}}\| \leq 1$

- Convergence : The scheme converge when:

$$
\lim _{\delta t \rightarrow 0}\|\tilde{A}(t)-A(t)\|=0 \quad \text { uniformly for all } t \in\left[0, t_{*}\right]
$$

Equivalence Theorem

Theorem : assume the initial error $\left\|e^{0}\right\|<\delta t^{p}, p$ acurecy order

A linear multistep scheme is convergent if and only if it is consistent and stable.

Demonstration of : consistent and stable \Longrightarrow Convergent

$$
\begin{aligned}
\left\|e^{n+1}\right\| & \leq\left\|\tilde{\mathcal{L}}^{n+1}\left(e^{0}\right)\right\|+\delta t \sum_{s=1}^{n+1}\left\|\tilde{\mathcal{L}}^{n+1-s}\left(\mathcal{E}^{(s)}\right)\right\| \\
& \leq\left\|\tilde{\mathcal{L}}^{n+1}\right\|\left\|e^{0}\right\|+\delta t \sum_{s=1}^{n+1}\left\|\tilde{\mathcal{L}}^{n+1-s}\right\|\left\|\mathcal{E}^{(s)}\right\| \\
& \leq C\left\|e^{0}\right\|+C \delta t \sum_{s=1}^{n+1}\left\|\mathcal{E}^{(s)}\right\| \text { stability used } \\
& \leq C\left(\left\|e^{0}\right\|+(n+1) \delta t^{1+p}\right) \text { consistency used } \\
& \leq C(1+T) \delta t^{p} \text { convergence obtained }
\end{aligned}
$$

Taylor's expansion

Assuming that $A(t)$ is sufficiently smooth (has m bounded derivatives). Then we can evaluate $A(t+\delta t)$ by a linear sum of $A(t)$ its derivatives at the time t :

$$
A(t+\delta t)=A(t)+\delta t \frac{d A}{d t}(t)+\frac{\delta t^{2}}{2} \frac{d^{2} A}{d t^{2}}(t)+\ldots+\frac{\delta t^{m}}{m!} \frac{d^{m} A}{d t^{m}}(t)+R_{m}(t)
$$

The residual $R_{m}=0\left(\delta t^{m+1}\right.$ takes various form.
Then we use the fact that $\frac{d A}{d t}(t)=\mathcal{F}(A)$ to obtain

$$
A(t+\delta t)=A(t)+\delta t \mathcal{F}(A(t))+\frac{\delta t^{2}}{2} \frac{d^{2} A}{d t^{2}}(t)+\ldots+\frac{\delta t^{m}}{m!} \frac{d^{m} A}{d t^{m}}(t)+R_{m}(t)
$$

Truncation error

Euler Forward: $\tilde{\mathcal{L}}(A(t))=A(t)+\delta t \mathcal{F}(A(t))$

$$
\mathcal{E}(t+\delta t)=\frac{A(t+\delta t)-\tilde{\mathcal{L}}(A(t))}{\delta t}=C \delta t
$$

This scheme is first order accurate.

2 levels $\mathrm{AB}: \tilde{\mathcal{L}}(A(t))=A(t)+\delta t \frac{3}{2} \mathcal{F}(A(t))-\delta t \frac{1}{2} \mathcal{F}(A(t-\delta t))$

$$
\mathcal{F}(A(t-\delta t))=\frac{d A}{d t}(t-\delta t)=\frac{d A}{d t}(t)-\delta t \frac{d^{2} A}{d t^{2}}(t)+C \delta t^{2}
$$

$$
\text { Then } \tilde{\mathcal{L}}(A(t))=A(t)+\delta t \mathcal{F}(A(t))+\frac{\delta t^{2}}{2} \frac{d^{2} A}{d t^{2}}(t)+C \delta t^{3}
$$

And finally $\mathcal{E}(t+\delta t)=\frac{A(t+\delta t)-\tilde{\mathcal{L}}(A(t))}{\delta t}=B \delta t^{2}$
This scheme is second order accurate.

Accurate one step Runge-Kutta (RKp) methods

Given the difficulties inherent in starting the higher order (AB) schemes we are encouraged to look for one-step methods which only require \tilde{A}^{n} to accurately evalute \tilde{A}^{n+1}.

- They require many evaluations \mathcal{F}
- They will be for some p 'th order accurate.
- They only need one starting value.

Modified Euler (RK2)

$$
\begin{aligned}
\tilde{A}^{n+\frac{1}{2}} & =\tilde{A}^{n}+\frac{\delta t}{2} \mathcal{F}\left(\tilde{A}^{n}\right) \\
\tilde{A}^{n+1} & =\tilde{A}^{n}+\delta t \mathcal{F}\left(\tilde{A}^{n+\frac{1}{2}}\right)
\end{aligned}
$$

Accurate one step Runge-Kutta (RKp) methods

$$
\begin{aligned}
\tilde{A}^{n+\frac{1}{2}} & =\tilde{A}^{n}+\frac{\delta t}{2} \mathcal{F}\left(\tilde{A}^{n}\right) \\
\tilde{A}^{n+1} & =\tilde{A}^{n}+\delta t \mathcal{F}\left(\tilde{A}^{n+\frac{1}{2}}\right) \\
\Longrightarrow \tilde{A}^{n+1}= & \tilde{A}^{n}+\delta t \mathcal{F}\left(\tilde{A}^{n}+\frac{\delta t}{2} \mathcal{F}\left(\tilde{A}^{n}\right)\right)
\end{aligned}
$$

$$
\mathcal{F}\left(A(t)+\frac{\delta t}{2} \mathcal{F}(A(t))\right)=\mathcal{F}(A(t))+\frac{\delta t}{2} \mathcal{F}(A(t)) \mathcal{F}^{\prime}(A(t))+O\left(\delta t^{2}\right)
$$

$$
=\frac{d A}{d t}+\frac{\delta t}{2} \frac{d^{2} A}{d t^{2}}+O\left(\delta t^{2}\right)
$$

Therefore $\tilde{\mathcal{L}}(A(t))=A(t)+\delta t \frac{d A}{d t}+\frac{\delta t^{2}}{2} \frac{d^{2} A}{d t^{2}}+O\left(\delta t^{3}\right)$ and

$$
\mathcal{E}(t+\delta t)=\frac{A(t+\delta t)-\tilde{\mathcal{L}}(A(t))}{\delta t}=O\left(\delta t^{2}\right)
$$

One step Runge-Kutta methods: RK3 family

$$
A^{n+1}=A^{n}+\delta t \alpha_{0} \mathcal{F}\left(\tilde{A}^{n}\right)+\delta t \alpha_{1} \mathcal{F}\left(\tilde{A}^{n}+\delta t \theta_{0} \mathcal{F}\left(\tilde{A}^{n}+\delta t \theta_{1} \mathcal{F}\left(A^{n}\right)\right)\right)
$$

Exercice

- Find $\alpha_{0}, \alpha_{1}, \theta_{0}$ and θ_{1} such as to obtain a tird's order accurate method.
- For a set of parapeters that gives a tird's order accurate method, chek the stability (advection and advection-difusion).

One step Runge-Kutta methods: RK3 family

$$
\begin{aligned}
& A^{n+1}=A^{n}+\delta t \alpha_{0} \mathcal{F}\left(\tilde{A}^{n}\right)+\delta t \alpha_{1} \mathcal{F}\left(\tilde{A}^{n}+\delta t \theta_{0} \mathcal{F}\left(\tilde{A}^{n}+\delta t \theta_{1} \mathcal{F}\left(A^{n}\right)\right)\right) \\
& \mathcal{F}\left(A+\theta_{0} \delta t \mathcal{F}\left(A+\theta_{1} \delta t \mathcal{F}(A)\right)\right) \\
& =\mathcal{F}(A)+\theta_{0} \delta t \mathcal{F}\left(A+\theta_{1} \delta t \mathcal{F}(A)\right) \mathcal{F}^{\prime}(A) \\
& +\frac{\theta_{0}^{2} \delta t^{2}}{2}\left[\mathcal{F}\left(A+\theta_{1} \delta t \mathcal{F}(A)\right)\right]^{2} \mathcal{F}^{\prime \prime}(A)+O\left(\delta t^{3}\right) \\
& =\frac{d A}{d t}+\theta_{0} \delta t \frac{d^{2} A}{d t^{2}}+\theta_{0} \theta_{1} \delta t^{2}\left[\mathcal{F}^{\prime}\right]^{2} \mathcal{F}+\frac{\theta_{0}^{2} \delta t^{2}}{2}[\mathcal{F}]^{2} \mathcal{F}^{\prime \prime}+O\left(\delta t^{3}\right) \\
& \tilde{\mathcal{L}}(A(t))=A(t)+\delta t\left(\left(\alpha_{0}+\alpha_{1}\right) \frac{d A}{d t}+\alpha_{1} \theta_{0} \delta t \frac{d^{2} A}{d t^{2}}\right) \\
& \quad \delta t \alpha_{1}\left(\theta_{0} \theta_{1} \delta t^{2}\left[\mathcal{F}^{\prime}\right]^{2} \mathcal{F}+\frac{\theta_{0}^{2} \delta t^{2}}{2}[\mathcal{F}]^{2} \mathcal{F}^{\prime \prime}\right)+O\left(\delta t^{4}\right)
\end{aligned}
$$

Accurate one step Runge-Kutta

$$
\begin{aligned}
\tilde{\mathcal{L}}(A(t)) & =A(t)+\delta t\left(\left(\alpha_{0}+\alpha_{1}\right) \frac{d A}{d t}+\alpha_{1} \theta_{0} \delta t \frac{d^{2} A}{d t^{2}}\right) \\
& \delta t \alpha_{1}\left(\theta_{0} \theta_{1} \delta t^{2}\left[\mathcal{F}^{\prime}\right]^{2} \mathcal{F}+\frac{\theta_{0}^{2} \delta t^{2}}{2}[\mathcal{F}]^{2} \mathcal{F}^{\prime \prime}\right)+O\left(\delta t^{4}\right)
\end{aligned}
$$

Condition for third order accurate :

$$
\alpha_{0}+\alpha_{1}=1, \quad \alpha_{1} \theta_{0}=\frac{1}{2}, \quad \theta_{1}=\frac{\theta_{0}}{2}, \quad \alpha_{1} \theta_{0}^{2}=\frac{1}{3},
$$

Then we obtain the Heun's third order formula with

$$
\theta_{0}=\frac{2}{3}, \quad \theta_{1}=\frac{1}{3}, \quad \alpha_{1}=\frac{3}{4}, \quad \alpha_{0}=\frac{1}{4},
$$

Accurate one step Runge-Kutta methods : simple RKp

 family$\tilde{A}^{*}=\tilde{A}^{n}$
For $\mathrm{m}=0, \mathrm{p}-1$

$$
\tilde{A}^{*}=\tilde{A}^{n}+\frac{\delta t}{p-m} \mathcal{F}\left(\tilde{A}^{*}\right)
$$

End
$A^{n+1}=\tilde{A}^{*}$

Back to the PDE with non periodic Boundaries

- We can't use the Fourier transform any more.

The next lecture consider a problen that is defined by the boundary conditions.
The Poisson equation (elliptic) is a Boundary Value Problem (BVP)

Plan

(1) Finite Difference(FD) and Finite volume(FV) : Overview
(2) Modelization and Simplified models of PDE
(3) Scalar Advection-Diffusion Eqation.
(4) Approximation of a Scalar 1D ODE.
(5) FD for 1D scalar poisson equation (elliptic).
(6) FD for 1D scalar difusion equation (parabolic).
(7) FD for 1D scalar advection-diffusion equation.
8. Scalar Nonlinear Conservation lam: 1D (hyperbolic).
(9) FV for scalar nonlinear Conservation law : 1D
(10) Multi-Dimensional extensions

Plan

(1) Finite Difference(FD) and Finite volume(FV) : Overview
(2) Modelization and Simplified models of PDE
(3) Scalar Advection-Diffusion Eqation.

4 Approximation of a Scalar 1D ODE.
(5) FD for 1 D scalar poisson equation (elliptic).

6 FD for 1D scalar difusion equation (parabolic).
(7) FD for 1D scalar advection-diffusion equation.
(8) Scalar Nonlinear Conservation law: 1D (hyperbolic)
๑) FV/ for scalar nonlinear Conservation law: 1D
(10) Multi-Dimensional extensions

Plan

(1) Finite Difference(FD) and Finite volume(FV) : Overview
(2) Modelization and Simplified models of PDE
(3) Scalar Advection-Diffusion Eqation.
(4) Approximation of a Scalar 1D ODE.
(5) FD for 1 D scalar poisson equation (elliptic).

6 FD for 1 D scalar difusion equation (parabolic)
(7) FD for 1D scalar advection-diffusion equation.
(8) Scalar Nonlinear Conservation law: 1D (hyperbolic).
(9) FV for scalar nonlinear Conservation law : 1D
(10) Multi-Dimensional extensions

Plan

(1) Finite Difference(FD) and Finite volume(FV) : Overview
(2) Modelization and Simplified models of PDE
(3) Scalar Advection-Diffusion Eqation.
(4) Approximation of a Scalar 1D ODE.
(5) FD for 1 D scalar poisson equation (elliptic).

6 FD for 1 D scalar difusion equation (parabolic).
(7) FD for 1D scalar advection-diffusion equation.

8 Scalar Nonlinear Conservation law: 1D (hyperbolic).
(9) FV for scalar nonlinear Conservation law : 1D
(10) Multi-Dimensional extensions

Plan

(1) Finite Difference(FD) and Finite volume(FV) : Overview
(2) Modelization and Simplified models of PDE
(3) Scalar Advection-Diffusion Eqation.
(4) Approximation of a Scalar 1D ODE.
(5) FD for 1 D scalar poisson equation (elliptic).

6 FD for 1 D scalar difusion equation (parabolic).
(7) FD for 1D scalar advection-diffusion equation.
8. Scalar Nonlinear Conservation law: 1D (hyperbolic).
(9) FV for scalar nonlinear Conservation law : 1D
(10) Multi-Dimensional extensions

Plan

(1) Finite Difference(FD) and Finite volume(FV) : Overview
(2) Modelization and Simplified models of PDE
(3) Scalar Advection-Diffusion Eqation.
(4) Approximation of a Scalar 1D ODE.
(5) FD for 1 D scalar poisson equation (elliptic).

6 FD for 1 D scalar difusion equation (parabolic).
(7) FD for 1D scalar advection-diffusion equation.
8. Scalar Nonlinear Conservation law: 1D (hyperbolic).
(9) FV for scalar nonlinear Conservation law : 1D
(10) Multi-Dimensional extensions

