Exercise (20pts) The purpose in this exercise is to analyse numerical approximations of the advection problem :

$$
\begin{cases}\frac{\partial \omega}{\partial t}+c \frac{\partial \omega}{\partial x}=0, & \forall x \in(0,1), \quad \forall t>0, \tag{0.1}\\ \omega(t, x=0)=0 & \forall t \\ \omega(t, x=1)=0 & \forall t\end{cases}
$$

where $\omega(t, x)$ is a scalar function. We consider a regular mesh defined by $t^{n}=n \delta t$ and $x_{i}=i \delta x$ where $\delta t>0$ and $\delta x>0$ are given. It is always assume that $\frac{\delta t}{\delta x}$ is bounded when δt and δx goes to zero. The numerical scheme define, for any n and i, an approximation ω_{i}^{n} of $\omega\left(t^{n}, x_{i}\right)$
Consider the following Finite difference scheme at $\left(t^{n}, x_{i}\right)$:

$$
\frac{\omega_{i}^{n+1}-\omega_{i}^{n}}{\delta t}+\frac{c}{\delta x}\left[\boldsymbol{\phi}_{\beta}\left(\omega_{i}^{n}, \omega_{i+1}^{n}\right)-\boldsymbol{\phi}_{\beta}\left(\omega_{i-1}^{n}, \omega_{i}^{n}\right)\right]=0
$$

where β is a parameter of the scheme and

$$
\boldsymbol{\phi}_{\beta}\left(\omega_{i}, \omega_{i+1}\right)=\frac{1}{2}\left[\omega_{i}+\omega_{i+1}-\frac{\beta \delta x}{c \delta t}\left(\omega_{i+1}-\omega_{i}\right)\right]
$$

1. 4 pts) Derive the condition to be satisfied by β in order to achieve consistency. Is $\beta=\frac{1}{\delta x}$ in this range?
2. We consider the case where $\beta=\frac{|c| \delta t}{\delta x}$,

- 3pts) Show that the numerical scheme is first order accurate in time and space.
-2 pts) Derive a CFL condition to achive L^{∞} stability.

3. We now consider the case where $\beta=\frac{c^{2} \delta t^{2}}{\delta x^{2}}$

- 7pts) Show that the numerical scheme is second order accurate in space and time
- 4pts) Derive a CFL condition to achive Von Neumann stability.

Exercise (5pts) The purpose in this exercise is to derive and analyse a numerical approximation of the following problem :

$$
\begin{cases}\frac{\partial T}{\partial t}=\lambda \frac{\partial^{2} T}{\partial x^{2}}, & \forall x \in(0,1), \tag{0.2}\\ T(t, x)=T_{0}(x) & \forall x \in(0,1), \\ T(t, x=0)=0 \\ T(t, x=1)=0 & \forall t \geq 0 \\ T t \geq 0\end{cases}
$$

We consider a regular mesh define by N points $x_{j}=j \delta x$ for $j=1, \cdots, N$ and $\delta x=\frac{1}{N+1}$. The size of the mesh (N) is a given parameter.
For a given parameter $\theta>0$ and $\theta \neq \frac{1}{2}$, we consider a Finite difference strategy where the approximated solution of (0.2) is defined by a vector $\boldsymbol{\omega}(t)$ (components are $\omega_{i}(t)$ for $i=1, \ldots, N$) satisfying the following recurrence (from step n to step $n+1$)

$$
\left\{\begin{align*}
\omega^{n+\theta}-\theta \delta t \underline{\mathcal{A}} \omega^{n+\theta} & =\omega^{n} \tag{0.3}\\
\boldsymbol{\omega}^{n+1-\theta} & =\omega^{n+\theta}+(1-2 \theta) \delta t \underline{\mathcal{A}} \omega^{n+\theta} \\
\omega^{n+1}-\theta \delta t \underline{\mathcal{A}} \omega^{n+1} & =\omega^{n+1-\theta}
\end{align*}\right.
$$

where $\omega^{m}=\boldsymbol{\omega}(m \delta t)$ and ω^{0} is given. The matrix $\mathcal{\mathcal { A }}$ is given by

$$
\underline{\mathcal{A}}=\frac{\lambda}{\delta x^{2}}\left(\begin{array}{ccccc}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & 1 & -2 & 1 \\
0 & \cdots & 0 & 1 & -2
\end{array}\right)
$$

1. Define a matrix $\underline{\mathcal{B}}$ such that the numerical scheme (0.3) can be put under the form $\omega^{n+1}=\underline{\mathcal{B}} \omega^{n}$
2. Give an approximation of $\underline{\mathcal{B}}$ in the space spanned by $\left\{I, \underline{\mathcal{A}}, \underline{\mathcal{A}^{2}}\right\}$, where I is the identity matrix. Hint : Use the Taylor expansion $(I-\epsilon \underline{\mathcal{A}})^{-1}=I-\epsilon \underline{\mathcal{A}}+\epsilon^{2} \underline{\mathcal{A}}^{2}+O\left(\epsilon^{3}\right), \quad \forall \epsilon \in \mathbb{R}, \quad|\epsilon| \ll 1$.
3. Choose the parameter $\theta=\theta_{0}$ such as $\underline{\mathcal{B}}=\exp (\delta t \underline{\mathcal{A}})+O\left(\delta t^{3}\right)$.
4. Formulate the eigenvalues ν_{j} of the matrix as functions of μ_{j} the eigenvalues of $\underline{\mathcal{A}}$.
5. The L^{2} stability is in this case equivalent to $\left|\nu_{j}\right| \leq 1$. Give a range of values of θ for which the numerical scheme (0.3) is L^{2} stable $\forall \delta t$ and $\forall \delta x$. Verify that θ_{0} is in this range.
