FINITE DIFFERENCES/FINITE VOLUMES & CONSERVATIONS LAWS Feb-April 09

Conservations laws : Derivation

Let us consider a subset depending on time D(t) C R3. Initially, for ¢ = 0, any material particle in D(0) is
identified by its coordinate £&. We define by x (€, t) the position at the time ¢ of the particle that was initially
at . The transformation (£,t) — (€,t) is invertible and sufficiently regular. The material velocity u and
jacobian of the transformation are :

9, 1<i<3,1<5<3

For any function f(z,t) : R3xR* ~ R continuously differentiable (that could represent a physical property),
we define its particular derivative and sum over a moving volume :

df _ df(z(§.t),t)
dt dt
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The aim here is to estimate the integral over the volume D(t) as a function of the intial position, and its
variation in time in order to establish some conservation properties :

1. Verify that
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4. Therefore, show that the time derivative of Z;(t) can be written as
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5. The conservation of mass, momentum and total energy can be formulated as :
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where ¢ is the tensor of external forces, F' is the internal force and q is the heat flux.

Derive the associated system of partial differential equations (Euler equations) when ¢ = —pld, F' =

pg and ¢ = —AVT. The pressure p and the temperature 1" are defined by the equation of state, for

perfect gazp = (v — 1) (pe — % ou - u) and T =e — %u u. The heat conduction A can be a constant.



