
FINITE DIFFERENCES/FINITE VOLUMES & CONSERVATIONS LAWS Feb-April 09

Conservations laws : Derivation

Let us consider a subset depending on time D(t) ⊂ R3. Initially, for t = 0, any material particle in D(0) is
identified by its coordinate ξξξ. We define by xxx(ξξξ, t) the position at the time t of the particle that was initially
at ξξξ. The transformation (ξξξ, t) 7→ xxx(ξξξ, t) is invertible and sufficiently regular. The material velocity uuu and
jacobian of the transformation are :

uuu(xxx, t) =
∂xxx

∂t
and J(ξξξ, t) = ∇ξξξxxx(ξξξ, t) =

(
∂xi
∂ξj

)
1≤i≤3,1≤j≤3

For any function f(xxx, t) : R3×R+ 7→ R continuously differentiable (that could represent a physical property),
we define its particular derivative and sum over a moving volume :

df

dt
=
df(xxx(ξξξ, t), t)

dt
and If (t) =

∫
D(t)

f(xxx, t)dxxx

The aim here is to estimate the integral over the volume D(t) as a function of the initial position, and its
variation in time in order to establish some conservation properties :

1. Verify that
df

dt
= ∂tf + uuu · ∇xxxf and If (t) =

∫
D(0)

f(xxx(ξξξ, t), t) det(J)dξξξ

Answer. By using the standard derivation formulas of composed functions we get :

df

dt
= ∂tf +

3∑
i=1

∂f

∂xi

∂xi
∂t

= ∂tf +
3∑
i=1

ui
∂f

∂xi
= ∂tf + uuu · ∇xxxf

As for the integral, we perform a variable change in the first integral (by writing xxx as a function of ξξξ),
xxx : D(0)×R+ 7→ D(t). First we have dxxx = det(J)dξξξ, then the integration domain becomes D(0) and
the conclusion follows.

2. Show that
∂

∂t

(
∂xi(ξξξ, t)
∂ξj

)
=

3∑
k=1

∂ui
∂xk

∂xk
∂ξj

Answer. Again by inverting the derivatives w.r.t time and space and then by applying the derivatives to
the composed functions, we get :

∂

∂t

(
∂xi(ξξξ, t)
∂ξj

)
=

∂

∂ξj

(
∂xi(ξξξ, t)
∂t

)
=
∂ui
∂ξj

=
3∑

k=1

∂ui
∂xk

∂xk
∂ξj
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3. Show that
∂ det(J)

∂t
=
[
∇xxx · uuu

]
det(J).

Answer. One can easily verify that given a matrix M , its determinant can be written as det(M) =
L1 · (L2 × L3) where Lj are its lines (· is the canonical scalar product and × the cross product).
Therefore the derivation of det(J) follows the rule of the derivation of a product of functions :

∂ det(J)
∂t

=
∂L1

∂t
· (L2 × L3) + L1 ·

(
∂L2

∂t
× L3

)
+ L1 ·

(
L2 ×

∂L3

∂t

)
(0.1)

According to the previous question and the definition of J , we have that

∂Li
∂t

=
(
∂

∂t

(
∂xi(ξξξ, t)
∂ξj

))
1≤j≤3

=

(
3∑

k=1

∂ui
∂xk

∂xk
∂ξj

)
1≤j≤3

=
3∑

k=1

∂ui
∂xk

Lk

By replacing this relation into (0.1) and using some properties of the cross product and then by re-
arranging the different terms, we get :

∂ det(J)
∂t

=

(
3∑

k=1

∂u1

∂xk
Lk

)
· (L2 × L3) +

(
3∑

k=1

∂u2

∂xk
Lk

)
· (L3 × L1) +

(
3∑

k=1

∂u3

∂xk
Lk

)
· (L1 × L2)

=
∂u1

∂x1
L1 · (L2 × L3) +

∂u2

∂x2
L2 · (L3 × L1) +

∂u3

∂x3
L3 · (L1 × L2)

=
(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
L1 · (L2 × L3) =

[
∇xxx · uuu

]
det(J).

(0.2)

4. Show that the time derivative of If (t) can be written as

dIf (t)
dt

=
∫
D(t)

(
∂f(xxx, t)
∂t

+∇xxx · (uuu(xxx, t)) f(xxx, t)
)
dxxx

Answer. By using the previous results and by performing a change of variables, we get :

dIf (t)
dt

=
∫
D(0)

(
df(xxx(ξξξ, t), t)

dt
+∇xxx · (uuu(xxx(ξξξ, t), t)) f(xxx(ξξξ, t), t)

)
det(J)dξξξ

=
∫
D(0)

(∂tf(xxx(ξξξ, t), t) + uuu · ∇xxxf(xxx(ξξξ, t), t) +∇xxx · (uuu(xxx(ξξξ, t), t)) f(xxx(ξξξ, t), t)) det(J)dξξξ

=
∫
D(0)

(∂tf(xxx(ξξξ, t), t) +∇xxx · (uuu(xxx(ξξξ, t), t)f(xxx(ξξξ, t), t)) ) det(J)dξξξ

=
∫
D(t)

(
∂f(xxx, t)
∂t

+∇xxx · (uuu(xxx, t)f(xxx, t))
)
dxxx

5. The conservation of mass, momentum and total energy can be formulated as :

dIρ(t)
dt

= 0,
dIρuuu(t)
dt

=
∫
∂D(t)

σnnndS +
∫
D(t)

FFFdxxx, (0.3)
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dIρe(t)
dt

=
∫
∂D(t)

uuu · (σnnn) dS +
∫
D(t)

FFF · uuudxxx−
∫
∂D(t)

qqq ·nnndS (0.4)

where σ is the tensor of external forces, FFF is the internal force and qqq is the heat flux.
Derive the associated system of partial differential equations (Euler equations) when σ = −pId, FFF =
ρggg and qqq = −λ∇xxxT . The pressure p and the temperature T are defined by the equation of state, for
perfect gaz p = (γ − 1)

(
ρe− 1

2ρuuu · uuu
)

and T ≡ e− 1
2uuu · uuu. The heat conduction λ can be a constant.

Answer. For the conservation of mass, the transformation of the first integral relation of (0.3) into a differential
one is quite obvious (the integral being equal to zero foar each domain D(t) then ....) :

∂ρ

∂t
+∇xxx · (ρuuu) = 0.

For the momentum equation we first use the Green formula in order to transform boundary integrals into
volume integrals, secondly since we deal with a vector quantity the product inside the operator∇xxx· transforms
into a Kronecker product : ∫

D(t)

(
∂ρuuu

∂t
+∇xxx · (uuu⊗ (ρuuu))− divσ −FFF

)
dxxx = 0

which is equivalent to
∂ρuuu

∂t
+∇xxx · (uuu⊗ (ρuuu)) +∇p− ρggg = 0.

In order to derive the energy conservation equation 0.4, we apply the same technique as before :∫
D(t)

(
∂ρe

∂t
+∇xxx · (ρeuuu)− div(σuuu) + divqqq −FFF · uuu

)
dxxx = 0

which is equivalent to :
∂ρe

∂t
+∇xxx · ((ρe+ p)uuu)− λ∆T − ρggg · uuu = 0.

Bonus question/ Homework
Formulate these equations under the form (called primitive variables or non conservative form) :

∂VVV

∂t
+

3∑
j=1

AAAj(VVV )
∂VVV

∂xxxj
= S(V )

where VVV = (ρ,uuu, T )T . Show that, for any vector nnn with ‖nnn‖ 6= 0, the matrixAAA =
3∑
j=1

nnnjAAAj is diagonalizable.
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