FINITE DIFFERENCES/FINITE VOLUMES & CONSERVATIONS LAWS Feb-April 09

Conservations laws : Derivation

Let us consider a subset depending on time D(t) C R3. Initially, for ¢ = 0, any material particle in D(0) is
identified by its coordinate £&. We define by x (€, t) the position at the time ¢ of the particle that was initially
at . The transformation (£,¢) — (€, t) is invertible and sufficiently regular. The material velocity u and
jacobian of the transformation are :
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For any function f(z,t) : R3xR* ~ R continuously differentiable (that could represent a physical property),
we define its particular derivative and sum over a moving volume :
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The aim here is to estimate the integral over the volume D(¢) as a function of the initial position, and its
variation in time in order to establish some conservation properties :
1. Verify that
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Answer. By using the standard derivation formulas of composed functions we get :
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As for the integral, we perform a variable change in the first integral (by writing & as a function of §),
z : D(0) x RT — D(t). First we have dz = det(J)d€, then the integration domain becomes D(0) and
the conclusion follows.

2. Show that
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Answer. Again by inverting the derivatives w.r.t time and space and then by applying the derivatives to
the composed functions, we get :
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3. Show that
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Answer. One can easily verify that given a matrix M, its determinant can be written as det(M) =

Ly - (Ly x L3) where L;j are its lines (- is the canonical scalar product and x the cross product).
Therefore the derivation of det(.J) follows the rule of the derivation of a product of functions :

- [vz u} det(J).
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According to the previous question and the definition of .J, we have that
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By replacing this relation into (0.I)) and using some properties of the cross product and then by re-
arranging the different terms, we get :

3
8det ou ou ou
(§ ax;Lk> (Lo x L3) + (§ 2Lk> (L3 x L) + (§ %‘:Lk> (Ly % Ly)

k=1
) dus dus
= S (Lg% L3) + a—@LQ (L x L) + a—xaLg (Ly % Lo)

ox

. (8u1 8u2 c')ug

— 4+ — Ly (Lo x Lg) = -u| det(J).
a$1+6$2+6$3> L ( 2% 3) |:vz u:| e(l)

0.2)
4. Show that the time derivative of Z;(¢) can be written as
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Answer. By using the previous results and by performing a change of variables, we get :
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5. The conservation of mass, momentum and total energy can be formulated as :
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where ¢ is the tensor of external forces, F' is the internal force and q is the heat flux.

Derive the associated system of partial differential equations (Euler equations) when ¢ = —pld, F =
pg and ¢ = —AV;T. The pressure p and the temperature 1" are defined by the equation of state, for
1

perfect gazp = (v — 1) (pe — % ou - u) and T' = e — 5u - u. The heat conduction A can be a constant.

Answer. For the conservation of mass, the transformation of the first integral relation of (0.3)) into a differential
one is quite obvious (the integral being equal to zero foar each domain D(¢) then ....) :
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For the momentum equation we first use the Green formula in order to transform boundary integrals into
volume integrals, secondly since we deal with a vector quantity the product inside the operator V- transforms
into a Kronecker product :
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which is equivalent to
Opu
¢ T Ve (@ (pu))+Vp—pg=0.

In order to derive the energy conservation equation (0.4, we apply the same technique as before :
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which is equivalent to :
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Bonus question/ Homework
Formulate these equations under the form (called primitive variables or non conservative form) :
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where V = (p,u, T)". Show that, for any vector n with ||n| # 0, the matrix A = anAj is diagonalizable.
j=1



