## Conservations laws: Derivation

Let us consider a subset depending on time  $\mathcal{D}(t) \subset \mathbb{R}^3$ . Initially, for t=0, any material particle in  $\mathcal{D}(0)$  is identified by its coordinate  $\boldsymbol{\xi}$ . We define by  $\boldsymbol{x}(\boldsymbol{\xi},t)$  the position at the time t of the particle that was initially at  $\boldsymbol{\xi}$ . The transformation  $(\boldsymbol{\xi},t) \mapsto \boldsymbol{x}(\boldsymbol{\xi},t)$  is invertible and sufficiently regular. The material velocity  $\boldsymbol{u}$  and jacobian of the transformation are:

$$m{u}(m{x},t) = rac{\partial m{x}}{\partial t}$$
 and  $\underline{J}(m{\xi},t) = 
abla_{m{\xi}} m{x}(m{\xi},t) = \left(rac{\partial x_i}{\partial \xi_j}
ight)_{1 \leq i \leq 3, 1 \leq j \leq 3}$ 

For any function  $f(x,t): \mathbb{R}^3 \times \mathbb{R}^+ \mapsto \mathbb{R}$  continuously differentiable (that could represent a physical property), we define its particular derivative and sum over a moving volume :

$$rac{df}{dt} = rac{df(m{x}(m{\xi},t),t)}{dt}$$
 and  $\mathcal{I}_f(t) = \int_{\mathcal{D}(t)} f(m{x},t) dm{x}$ 

The aim here is to estimate the integral over the volume  $\mathcal{D}(t)$  as a function of the initial position, and its variation in time in order to establish some conservation properties :

1. Verify that

$$\frac{df}{dt} = \partial_t f + \boldsymbol{u} \cdot \nabla_{\boldsymbol{x}} f \quad \text{ and } \quad \mathcal{I}_f(t) = \int_{\mathcal{D}(0)} f(\boldsymbol{x}(\boldsymbol{\xi}, t), t) \det(\underline{J}) d\boldsymbol{\xi}$$

**Answer**. By using the standard derivation formulas of composed functions we get:

$$\frac{df}{dt} = \partial_t f + \sum_{i=1}^3 \frac{\partial f}{\partial x_i} \frac{\partial x_i}{\partial t} = \partial_t f + \sum_{i=1}^3 u_i \frac{\partial f}{\partial x_i} = \partial_t f + \boldsymbol{u} \cdot \nabla_{\boldsymbol{x}} f$$

As for the integral, we perform a variable change in the first integral (by writing  $\boldsymbol{x}$  as a function of  $\boldsymbol{\xi}$ ),  $\boldsymbol{x}: \mathcal{D}(0)\times\mathbb{R}^+\mapsto \mathcal{D}(t)$ . First we have  $d\boldsymbol{x}=\det(\underline{J})d\boldsymbol{\xi}$ , then the integration domain becomes  $\mathcal{D}(0)$  and the conclusion follows.

2. Show that

$$\frac{\partial}{\partial t} \left( \frac{\partial x_i(\boldsymbol{\xi}, t)}{\partial \xi_j} \right) = \sum_{k=1}^3 \frac{\partial u_i}{\partial x_k} \frac{\partial x_k}{\partial \xi_j}$$

**Answer**. Again by inverting the derivatives w.r.t time and space and then by applying the derivatives to the composed functions, we get :

$$\frac{\partial}{\partial t} \left( \frac{\partial x_i(\boldsymbol{\xi}, t)}{\partial \xi_j} \right) = \frac{\partial}{\partial \xi_j} \left( \frac{\partial x_i(\boldsymbol{\xi}, t)}{\partial t} \right) = \frac{\partial u_i}{\partial \xi_j} = \sum_{k=1}^3 \frac{\partial u_i}{\partial x_k} \frac{\partial x_k}{\partial \xi_j}$$

3. Show that

$$\frac{\partial \det(\underline{J})}{\partial t} = \left[\nabla_{\boldsymbol{x}} \cdot \boldsymbol{u}\right] \det(\underline{J}).$$

**Answer**. One can easily verify that given a matrix M, its determinant can be written as  $\det(M) = L_1 \cdot (L_2 \times L_3)$  where  $L_j$  are its lines ( $\cdot$  is the canonical scalar product and  $\times$  the cross product). Therefore the derivation of  $\det(\underline{J})$  follows the rule of the derivation of a product of functions:

$$\frac{\partial \det(\underline{J})}{\partial t} = \frac{\partial L_1}{\partial t} \cdot (L_2 \times L_3) + L_1 \cdot \left(\frac{\partial L_2}{\partial t} \times L_3\right) + L_1 \cdot \left(L_2 \times \frac{\partial L_3}{\partial t}\right) \tag{0.1}$$

According to the previous question and the definition of  $\underline{J}$ , we have that

$$\frac{\partial L_i}{\partial t} = \left(\frac{\partial}{\partial t} \left(\frac{\partial x_i(\boldsymbol{\xi}, t)}{\partial \xi_j}\right)\right)_{1 \le j \le 3} = \left(\sum_{k=1}^3 \frac{\partial u_i}{\partial x_k} \frac{\partial x_k}{\partial \xi_j}\right)_{1 < j < 3} = \sum_{k=1}^3 \frac{\partial u_i}{\partial x_k} L_k$$

By replacing this relation into (0.1) and using some properties of the cross product and then by rearranging the different terms, we get:

$$\frac{\partial \det(\underline{J})}{\partial t} = \left(\sum_{k=1}^{3} \frac{\partial u_{1}}{\partial x_{k}} L_{k}\right) \cdot (L_{2} \times L_{3}) + \left(\sum_{k=1}^{3} \frac{\partial u_{2}}{\partial x_{k}} L_{k}\right) \cdot (L_{3} \times L_{1}) + \left(\sum_{k=1}^{3} \frac{\partial u_{3}}{\partial x_{k}} L_{k}\right) \cdot (L_{1} \times L_{2})$$

$$= \frac{\partial u_{1}}{\partial x_{1}} L_{1} \cdot (L_{2} \times L_{3}) + \frac{\partial u_{2}}{\partial x_{2}} L_{2} \cdot (L_{3} \times L_{1}) + \frac{\partial u_{3}}{\partial x_{3}} L_{3} \cdot (L_{1} \times L_{2})$$

$$= \left(\frac{\partial u_{1}}{\partial x_{1}} + \frac{\partial u_{2}}{\partial x_{2}} + \frac{\partial u_{3}}{\partial x_{3}}\right) L_{1} \cdot (L_{2} \times L_{3}) = \left[\nabla_{\boldsymbol{x}} \cdot \boldsymbol{u}\right] \det(\underline{J}).$$
(0.2)

4. Show that the time derivative of  $\mathcal{I}_f(t)$  can be written as

$$\frac{d\mathcal{I}_f(t)}{dt} = \int_{\mathcal{D}(t)} \left( \frac{\partial f(\boldsymbol{x},t)}{\partial t} + \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{u}(\boldsymbol{x},t)) f(\boldsymbol{x},t) \right) d\boldsymbol{x}$$

Answer. By using the previous results and by performing a change of variables, we get:

$$\begin{split} \frac{d\mathcal{I}_{f}(t)}{dt} &= \int_{\mathcal{D}(0)} \left( \frac{df(\boldsymbol{x}(\boldsymbol{\xi},t),t)}{dt} + \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{u}(\boldsymbol{x}(\boldsymbol{\xi},t),t)) f(\boldsymbol{x}(\boldsymbol{\xi},t),t) \right) \det(\underline{J}) d\boldsymbol{\xi} \\ &= \int_{\mathcal{D}(0)} \left( \partial_{t} f(\boldsymbol{x}(\boldsymbol{\xi},t),t) + \boldsymbol{u} \cdot \nabla_{\boldsymbol{x}} f(\boldsymbol{x}(\boldsymbol{\xi},t),t) + \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{u}(\boldsymbol{x}(\boldsymbol{\xi},t),t)) f(\boldsymbol{x}(\boldsymbol{\xi},t),t) \right) \det(\underline{J}) d\boldsymbol{\xi} \\ &= \int_{\mathcal{D}(0)} \left( \partial_{t} f(\boldsymbol{x}(\boldsymbol{\xi},t),t) + \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{u}(\boldsymbol{x}(\boldsymbol{\xi},t),t)) f(\boldsymbol{x}(\boldsymbol{\xi},t),t) \right) d\boldsymbol{\xi} \\ &= \int_{\mathcal{D}(t)} \left( \frac{\partial f(\boldsymbol{x},t)}{\partial t} + \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{u}(\boldsymbol{x},t)) f(\boldsymbol{x},t) \right) d\boldsymbol{x} \end{split}$$

5. The conservation of mass, momentum and total energy can be formulated as:

$$\frac{d\mathcal{I}_{\rho}(t)}{dt} = 0, \quad \frac{d\mathcal{I}_{\rho \boldsymbol{u}}(t)}{dt} = \int_{\partial \mathcal{D}(t)} \underline{\sigma} \boldsymbol{n} dS + \int_{\mathcal{D}(t)} \boldsymbol{F} d\boldsymbol{x}, \tag{0.3}$$

$$\frac{d\mathcal{I}_{\rho e}(t)}{dt} = \int_{\partial \mathcal{D}(t)} \boldsymbol{u} \cdot (\underline{\sigma} \boldsymbol{n}) \, dS + \int_{\mathcal{D}(t)} \boldsymbol{F} \cdot \boldsymbol{u} d\boldsymbol{x} - \int_{\partial \mathcal{D}(t)} \boldsymbol{q} \cdot \boldsymbol{n} dS \tag{0.4}$$

where  $\underline{\sigma}$  is the tensor of external forces, F is the internal force and q is the heat flux.

Derive the associated system of partial differential equations (Euler equations) when  $\underline{\sigma} = -pId$ ,  $\mathbf{F} = \rho \mathbf{g}$  and  $\mathbf{q} = -\lambda \nabla_{\mathbf{x}} T$ . The pressure p and the temperature T are defined by the equation of state, for perfect gaz  $p = (\gamma - 1) \left( \rho e - \frac{1}{2} \rho \mathbf{u} \cdot \mathbf{u} \right)$  and  $T \equiv e - \frac{1}{2} \mathbf{u} \cdot \mathbf{u}$ . The heat conduction  $\lambda$  can be a constant.

**Answer**. For the conservation of mass, the transformation of the first integral relation of (0.3) into a differential one is quite obvious (the integral being equal to zero foar each domain  $\mathcal{D}(t)$  then ....):

$$\frac{\partial \rho}{\partial t} + \nabla_{\boldsymbol{x}} \cdot (\rho \boldsymbol{u}) = 0.$$

For the momentum equation we first use the Green formula in order to transform boundary integrals into volume integrals, secondly since we deal with a vector quantity the product inside the operator  $\nabla_x$  transforms into a Kronecker product:

$$\int_{\mathcal{D}(t)} \left( \frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{u} \otimes (\rho \boldsymbol{u})) - \operatorname{div} \underline{\sigma} - \boldsymbol{F} \right) d\boldsymbol{x} = 0$$

which is equivalent to

$$\frac{\partial \rho \boldsymbol{u}}{\partial t} + \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{u} \otimes (\rho \boldsymbol{u})) + \nabla p - \rho \boldsymbol{g} = 0.$$

In order to derive the energy conservation equation 0.4, we apply the same technique as before :

$$\int_{\mathcal{D}(t)} \left( \frac{\partial \rho e}{\partial t} + \nabla_{\boldsymbol{x}} \cdot (\rho e \boldsymbol{u}) - \operatorname{div}(\underline{\sigma} \boldsymbol{u}) + \operatorname{div} \boldsymbol{q} - \boldsymbol{F} \cdot \boldsymbol{u} \right) d\boldsymbol{x} = 0$$

which is equivalent to:

$$\frac{\partial \rho e}{\partial t} + \nabla_{\boldsymbol{x}} \cdot ((\rho e + p)\boldsymbol{u}) - \lambda \Delta T - \rho \boldsymbol{g} \cdot \boldsymbol{u} = 0.$$

## **Bonus question/ Homework**

Formulate these equations under the form (called primitive variables or non conservative form):

$$\frac{\partial \mathbf{V}}{\partial t} + \sum_{j=1}^{3} \underline{\mathbf{A}}_{j}(\mathbf{V}) \frac{\partial \mathbf{V}}{\partial \mathbf{x}_{j}} = S(V)$$

where  $V = (\rho, \boldsymbol{u}, T)^T$ . Show that, for any vector  $\boldsymbol{n}$  with  $\|\boldsymbol{n}\| \neq 0$ , the matrix  $\boldsymbol{A} = \sum_{j=1}^{3} \boldsymbol{n}_j \underline{\boldsymbol{A}}_j$  is diagonalizable.