Linear algebra and scientific programming.

Let us consider a matrix C define as :

$$\underline{\mathcal{C}} = \begin{bmatrix} -1 & 0 & 1\\ 1 & -1 & 0\\ 0 & 1 & -1 \end{bmatrix}$$

The aim here is to solve analytically and numericaly the ordinary differential equation (ODE)

$$\frac{d\boldsymbol{X}}{dt} = \underline{C}\boldsymbol{X} \quad \text{with} \quad \boldsymbol{X}(t=0) = \boldsymbol{X}^0$$

At the time T = 3 the solution of this equation is $\mathbf{X}(3) = \exp(3\underline{\mathcal{C}}) \mathbf{X}^0$. For $\mathbf{X}^0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

- Compute $\underline{\mathcal{C}}^2$, $\underline{\mathcal{C}}^3$ and $\underline{\mathcal{C}}^4$.

- Compute
$$\tilde{X}^{(k)}(3) = \sum_{m=0}^{k} \frac{3^{k}}{k!} \underline{\mathcal{C}}^{k}$$
 for k = 1, 2, 3 and 4.

- Compute $\boldsymbol{X}(3) = \exp(3\underline{\mathcal{C}}) \boldsymbol{X}^0$ and errors $e^{(k)}(3) = \boldsymbol{X}(3) - \tilde{\boldsymbol{X}}^{(k)}(3)$ and is norm $\|e^{(k)}(3)\|_2$. Let us now approximate the solution at the time T = 3 as follows :

$$\tilde{\boldsymbol{X}}(3)|_{\delta t} = \tilde{\boldsymbol{X}}^{K} \quad where \quad \delta t = \frac{3}{K}, \quad \tilde{\boldsymbol{X}}^{n+1} = \tilde{\boldsymbol{X}}^{n} + \delta t \underline{\mathcal{C}} \tilde{\boldsymbol{X}}^{n}, \quad 0 \le n \le K-1$$

- Compute $\tilde{\boldsymbol{X}}^{K}$ for $K = 1, 2, 3, 4, \dots$ (take care of the case N = 3) What is the limit $\lim_{K \to \infty} \tilde{\boldsymbol{X}}^{K}$, compare it to $\boldsymbol{X}(3)$. For T=100, 1000, 10000,

- Compute, numerically with a Fortran 90 language and scilab : $\tilde{\boldsymbol{X}}^{(k)}(T)$ for differents k and compare it to the exact solution.
- Compute, numerically with a Fortran 90 language and scilab : \tilde{X}^{K} for differents K (with $\delta t = \frac{T}{K}$) and compare it to the exact solution.
- plot the evolution of $\|\tilde{\boldsymbol{X}}^n\|_2$ as a function of n,
 - for T = 100 and K = 100.
 - for T = 100 and K = 1000.
 - for T = 100 and K = 10000.
 - for T = 10000 and K = 10000.